metal-organic compounds
5-Chloro-2-ferrocenylbenzo[d]oxazole
aFacultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, 04510, Mexico
*Correspondence e-mail: eiklimova@yahoo.com.mx
The 5H5)(C12H7ClNO)], consists of one ferrocenyl group bonded to chlorobenzo[d]oxazole. The conformation of the ferrocenyl moiety is slightly away from eclipsed. The bond angles between the 5-chloro-benzoxazole and ferrocenyl fragments are N—C—C = 127.4 (7)° and O—C—C = 116.8 (7)°. The benzo[d]oxazole ring is planar (r.m.s. deviation = 0.0042 Å) and makes an angle of 11.3 (4)° with the cyclopentadienyl ring attached to it. The crystal packing is characterized by intermolecular π–π contacts, resulting in chain formation along the b-axis direction. The centroid-to-centroid distance between the six- and five-membered rings is 3.650 (5) Å. Together with a C—H⋯π interaction, these intermolecular contacts form laminar arrays along the ac plane.
of the title compound, [Fe(CCCDC reference: 1945546
Structure description
Benzoxazoles are among the most important compounds in et al., 2015), including antibiotic, antimicrobial, antivirals, dyes, fluorescent brightening agents, biomarkers, biosensors and fluorescent materials (Zhang et al., 2017). The major strategy for the synthesis of benzoxazoles (Boyd et al., 2002) is the condensation of carboxylic acids and their derivatives with 2-aminophenoles, but this often requires harsh reaction conditions (high reaction temperature and use of acidic activators and oxidants).
They exhibit remarkable pharmacological activities, are used as building blocks for biochemical and pharmaceutical agents (SinghIt is known that ferrocene derivatives (Togni & Hayashi, 1995) exhibit important functional derivatives, which are useful in medicinal as well as in synthetic fields (Larik et al., 2017). The incorporation of a ferrocene entity can significantly improve the biological activity of molecules (Klimova et al., 2012). Many drugs contain ferrocene moieties in their structures, such as ferrocifen, tamoxifen (Top et al., 2003; Jaouen et al., 2015) and ferroquine, which are excellent anticancer and antimalarial agents (Dubar et al., 2008).
In this context, it is proposed that due to the synergy between a benzoxazole and a ferrocene unit present in a molecule, it should exhibit an important biological activity. We present here a continuation of this work, we present here the synthesis of 2-ferrocenylbenzoxazoles and the d]oxazole. The synthesis of this compound was done by reaction of diferrocenylcyclopropenyl cations (Klimova et al., 2003) with aminoalcohols in the presence of triethylamine, obtaining good yields (Sánchez et al., 2018).
of 5-chloro-2-ferrocenylbenzo[The ) consist of one ferrocenyl bonded through the C5 atom to 5-chlorobenzo[d]oxazole. All bond lengths and angles are in the range observed for ferrocenyl and aromatic rings, and in the same way, the bond lengths C6=N1 = 1.297 (10), C7—O1 = 1.381 (9) and C10—Cl1 = 1.751 (8) Å correspond to literature reports (Su et al., 2018; Liu et al., 2017). The conformation of the ferrocenyl moiety is slightly away from eclipsed. The bond angles between the 5-chloro-benzoxazole and ferrocenyl fragments are N1—C6—C5 = 127.4 (7)° and O1—C6—C5 = 116.8 (7)°. The five- and six-membered rings of the 5-chlorobenzo[d]oxazole fragment are coplanar with an r.m.s. deviation for the fitted atoms of 0.0042 Å [equation plane: −2.42 (1)x + 6.79 (1)y + 7.16 (2)z = 7.60 (2)]. However, there is a slight deviation from the coplanarity with the 5-chlorobenzo[d]oxazole and the five-membered C1–C5 rings making an angle of 11.3 (4)°.
of the title compound (Fig. 1In the crystal packing (Fig. 2), there are intermolecular π–π and C—H⋯π contacts. The centroids Cg3 of the five-membered ring C13–C17 of the ferrocenyl group and Cg4 of the six-membered ring C7–C12 of 5-chlorobenzo[d]oxazole establish a weak intermolecular π–π interaction [Cg3⋯Cg4i = 3.650 (5) Å; symmetry code: (i) x, y − 1, z], resulting in chain formation along the b-axis direction. On the other hand, an intermolecular interaction C17—H17⋯Cg2ii [Cg2 is the centroid of ring C1–C5; H17⋯Cg2 = 3.322 Å; symmetry code: (ii) −x + 1, y − , −z + 1] of type C—H⋯π is present. All these intermolecular contacts form a laminar array along the ac plane.
Synthesis and crystallization
2-Amino-4-chlorophenol (5 mmol) and Et3N (1.0 ml) were added while stirring to a solution of 1-morpholine-2,3-diferrocenilcyclopropenium tetrafluoridoborate (4 mmol) (Klimova et al. 2005) in dry acetonitrile (70 ml). After stirring for 6 h at 348 K, the solvents were removed in vacuo and the residue was dissolved in dichloromethane (30 ml). The solution was mixed with Al2O3 (activity III) (20 g) and the solvent was evaporated in air. This material was placed on the top of a column with Al2O3 (the height of alumina was ca 20 cm) and the elution was performed first with hexane and then with hexane - ether (3:1) and hexane - dichloromethane (4:1) to give the title compound (yield 30%, orange–brown crystals, m.p. 421–422 K). 1H NMR [400 MHz, CDCl3, δ (p.p.m.)]: 4.18 (s, 5H, C5H5), 4.53 (m, 2H, C5H4), 5.07 (m, 2H, C5H4), 7.27 (dd, J = 2.1, 8.4 Hz, 1H, C6H3), 7.43 (d, J = 8.4 Hz, 1H, C6H3), 7.64 (d, J = 2.1 Hz, 1H, C6H3). 13C NMR [100 MHz, CDCl3, δ (p.p.m.)]: 70.58 (C5H5), 69.25, 71.71 (C5H4), 80.85 (CipsoFc), 114.83, 127.04, 127.87 (C6H3), 131.29, 145.27, 163.23 (3 C). MS (El, 70 eV): m/z 337 [M]+. Analysis calculated for C17H12ClFeNO: C, 60.48; H, 3.58; N, 4.15. Found: C, 60.47; H, 3.52; N, 4.27%.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 1Structural data
CCDC reference: 1945546
https://doi.org/10.1107/S2414314619010964/vm4041sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314619010964/vm4041Isup2.hkl
Data collection: CrysAlis PRO (Agilent, 2013); cell
CrysAlis PRO; Agilent, 2013; data reduction: CrysAlis RED (Agilent, 2013); program(s) used to solve structure: SHELXS2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2006).[Fe(C5H5)(C12H7ClNO)] | F(000) = 344 |
Mr = 337.58 | Dx = 1.653 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 1067 reflections |
a = 5.7854 (7) Å | θ = 4.1–27.7° |
b = 9.2974 (11) Å | µ = 1.30 mm−1 |
c = 12.6443 (12) Å | T = 130 K |
β = 94.217 (10)° | Prism, brown |
V = 678.29 (13) Å3 | 0.18 × 0.06 × 0.04 mm |
Z = 2 |
Agilent Xcalibur Atlas Gemini diffractometer | 2001 independent reflections |
Graphite monochromator | 1782 reflections with I > 2σ(I) |
Detector resolution: 10.4685 pixels mm-1 | Rint = 0.045 |
ω scans | θmax = 25.3°, θmin = 3.5° |
Absorption correction: analytical (CrysAlis RED; Agilent, 2013) | h = −6→6 |
Tmin = 0.89, Tmax = 0.956 | k = −8→11 |
3384 measured reflections | l = −14→15 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.047 | w = 1/[σ2(Fo2) + (0.0549P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.114 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 1.02 e Å−3 |
2001 reflections | Δρmin = −0.49 e Å−3 |
190 parameters | Absolute structure: Flack x determined using 562 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: 0.01 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3847 (12) | 0.8652 (9) | 0.3871 (7) | 0.0214 (18) | |
H1 | 0.247272 | 0.888213 | 0.344774 | 0.026* | |
C2 | 0.4058 (13) | 0.7612 (9) | 0.4687 (6) | 0.024 (2) | |
H2 | 0.285423 | 0.701615 | 0.491262 | 0.028* | |
C3 | 0.6407 (14) | 0.7623 (9) | 0.5108 (7) | 0.026 (2) | |
H3 | 0.703353 | 0.702801 | 0.566885 | 0.031* | |
C4 | 0.7664 (13) | 0.8653 (10) | 0.4566 (7) | 0.0246 (19) | |
H4 | 0.926355 | 0.887431 | 0.469155 | 0.03* | |
C5 | 0.6079 (13) | 0.9296 (9) | 0.3797 (7) | 0.0213 (18) | |
C6 | 0.6662 (13) | 1.0362 (9) | 0.3026 (7) | 0.0243 (19) | |
C7 | 0.6049 (13) | 1.1657 (8) | 0.1601 (6) | 0.0213 (18) | |
C8 | 0.8238 (12) | 1.1923 (9) | 0.2083 (6) | 0.0201 (18) | |
C9 | 0.9673 (13) | 1.2921 (8) | 0.1624 (7) | 0.0236 (19) | |
H9 | 1.118427 | 1.31383 | 0.192706 | 0.028* | |
C10 | 0.8763 (13) | 1.3570 (9) | 0.0706 (7) | 0.0228 (18) | |
C11 | 0.6569 (13) | 1.3292 (9) | 0.0229 (6) | 0.0247 (19) | |
H11 | 0.604232 | 1.378095 | −0.040318 | 0.03* | |
C12 | 0.5138 (12) | 1.2289 (11) | 0.0685 (6) | 0.0255 (18) | |
H12 | 0.363378 | 1.206041 | 0.037843 | 0.031* | |
C13 | 0.5383 (13) | 0.5194 (9) | 0.2913 (6) | 0.0240 (19) | |
H13 | 0.413364 | 0.461252 | 0.310905 | 0.029* | |
C14 | 0.5257 (15) | 0.6234 (9) | 0.2105 (7) | 0.027 (2) | |
H14 | 0.391541 | 0.647201 | 0.166087 | 0.033* | |
C15 | 0.7489 (13) | 0.6867 (9) | 0.2066 (6) | 0.026 (2) | |
H15 | 0.790132 | 0.760485 | 0.159482 | 0.032* | |
C16 | 0.8978 (15) | 0.6201 (9) | 0.2854 (7) | 0.028 (2) | |
H16 | 1.057646 | 0.640494 | 0.300784 | 0.033* | |
C17 | 0.7634 (15) | 0.5156 (10) | 0.3380 (7) | 0.031 (2) | |
H17 | 0.818626 | 0.454729 | 0.394737 | 0.037* | |
Cl1 | 1.0453 (4) | 1.4841 (2) | 0.0092 (2) | 0.0328 (6) | |
Fe1 | 0.62694 (17) | 0.71553 (12) | 0.35316 (8) | 0.0194 (3) | |
N1 | 0.8578 (11) | 1.1084 (7) | 0.3008 (5) | 0.0229 (16) | |
O1 | 0.5007 (9) | 1.0647 (6) | 0.2210 (4) | 0.0235 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.019 (4) | 0.020 (4) | 0.026 (5) | 0.001 (3) | 0.006 (3) | −0.001 (4) |
C2 | 0.026 (4) | 0.031 (5) | 0.015 (4) | 0.000 (3) | 0.014 (3) | −0.005 (4) |
C3 | 0.035 (5) | 0.032 (5) | 0.011 (4) | 0.005 (4) | 0.001 (3) | 0.002 (3) |
C4 | 0.021 (4) | 0.031 (5) | 0.022 (4) | −0.003 (4) | 0.001 (4) | −0.002 (4) |
C5 | 0.025 (4) | 0.016 (4) | 0.024 (5) | 0.000 (3) | 0.006 (3) | −0.004 (4) |
C6 | 0.023 (4) | 0.028 (5) | 0.022 (5) | 0.002 (4) | −0.001 (4) | −0.007 (4) |
C7 | 0.026 (4) | 0.019 (4) | 0.020 (4) | −0.001 (3) | 0.010 (3) | −0.005 (3) |
C8 | 0.022 (3) | 0.019 (5) | 0.020 (4) | 0.002 (3) | 0.004 (3) | −0.002 (4) |
C9 | 0.022 (4) | 0.027 (5) | 0.022 (5) | 0.003 (4) | 0.006 (3) | −0.008 (4) |
C10 | 0.031 (4) | 0.014 (4) | 0.024 (5) | −0.003 (4) | 0.011 (4) | 0.001 (4) |
C11 | 0.030 (4) | 0.030 (5) | 0.014 (4) | 0.000 (4) | 0.004 (3) | −0.001 (4) |
C12 | 0.024 (4) | 0.029 (5) | 0.023 (4) | 0.008 (4) | 0.000 (3) | 0.002 (5) |
C13 | 0.026 (4) | 0.027 (5) | 0.019 (5) | −0.008 (4) | 0.000 (3) | −0.002 (4) |
C14 | 0.027 (4) | 0.034 (5) | 0.020 (4) | −0.002 (4) | −0.003 (4) | −0.008 (4) |
C15 | 0.034 (4) | 0.029 (6) | 0.018 (4) | −0.006 (4) | 0.015 (3) | 0.001 (4) |
C16 | 0.021 (4) | 0.029 (5) | 0.033 (5) | 0.004 (3) | 0.001 (4) | −0.009 (4) |
C17 | 0.036 (5) | 0.028 (5) | 0.029 (5) | 0.008 (4) | 0.004 (4) | 0.004 (4) |
Cl1 | 0.0360 (13) | 0.0284 (13) | 0.0354 (13) | −0.0030 (10) | 0.0122 (11) | 0.0046 (11) |
Fe1 | 0.0205 (5) | 0.0224 (6) | 0.0156 (5) | −0.0004 (6) | 0.0022 (4) | −0.0001 (6) |
N1 | 0.022 (4) | 0.026 (4) | 0.022 (4) | −0.006 (3) | 0.003 (3) | −0.001 (3) |
O1 | 0.021 (3) | 0.027 (3) | 0.023 (3) | −0.001 (2) | 0.001 (2) | 0.001 (3) |
C1—C2 | 1.412 (12) | C9—C10 | 1.378 (11) |
C1—C5 | 1.433 (11) | C9—H9 | 0.95 |
C1—Fe1 | 2.042 (8) | C10—C11 | 1.389 (10) |
C1—H1 | 0.95 | C10—Cl1 | 1.751 (8) |
C2—C3 | 1.423 (10) | C11—C12 | 1.399 (12) |
C2—Fe1 | 2.056 (8) | C11—H11 | 0.95 |
C2—H2 | 0.95 | C12—H12 | 0.95 |
C3—C4 | 1.410 (12) | C13—C17 | 1.390 (11) |
C3—Fe1 | 2.036 (8) | C13—C14 | 1.405 (11) |
C3—H3 | 0.95 | C13—Fe1 | 2.035 (8) |
C4—C5 | 1.419 (11) | C13—H13 | 0.95 |
C4—Fe1 | 2.036 (8) | C14—C15 | 1.423 (11) |
C4—H4 | 0.95 | C14—Fe1 | 2.044 (8) |
C5—C6 | 1.446 (12) | C14—H14 | 0.95 |
C5—Fe1 | 2.023 (8) | C15—C16 | 1.412 (11) |
C6—N1 | 1.297 (10) | C15—Fe1 | 2.049 (8) |
C6—O1 | 1.381 (9) | C15—H15 | 0.95 |
C7—C12 | 1.370 (11) | C16—C17 | 1.438 (13) |
C7—O1 | 1.381 (9) | C16—Fe1 | 2.044 (9) |
C7—C8 | 1.387 (10) | C16—H16 | 0.95 |
C8—C9 | 1.400 (12) | C17—Fe1 | 2.034 (9) |
C8—N1 | 1.408 (10) | C17—H17 | 0.95 |
C2—C1—C5 | 107.7 (7) | C16—C15—Fe1 | 69.6 (5) |
C2—C1—Fe1 | 70.4 (4) | C14—C15—Fe1 | 69.5 (5) |
C5—C1—Fe1 | 68.6 (4) | C16—C15—H15 | 126.2 |
C2—C1—H1 | 126.1 | C14—C15—H15 | 126.2 |
C5—C1—H1 | 126.1 | Fe1—C15—H15 | 126.3 |
Fe1—C1—H1 | 126.4 | C15—C16—C17 | 107.5 (7) |
C1—C2—C3 | 107.3 (7) | C15—C16—Fe1 | 70.0 (5) |
C1—C2—Fe1 | 69.3 (5) | C17—C16—Fe1 | 69.0 (5) |
C3—C2—Fe1 | 68.9 (5) | C15—C16—H16 | 126.3 |
C1—C2—H2 | 126.4 | C17—C16—H16 | 126.3 |
C3—C2—H2 | 126.4 | Fe1—C16—H16 | 126.3 |
Fe1—C2—H2 | 126.9 | C13—C17—C16 | 107.9 (7) |
C4—C3—C2 | 109.6 (7) | C13—C17—Fe1 | 70.0 (5) |
C4—C3—Fe1 | 69.7 (5) | C16—C17—Fe1 | 69.7 (5) |
C2—C3—Fe1 | 70.4 (4) | C13—C17—H17 | 126 |
C4—C3—H3 | 125.2 | C16—C17—H17 | 126 |
C2—C3—H3 | 125.2 | Fe1—C17—H17 | 125.8 |
Fe1—C3—H3 | 126.3 | C5—Fe1—C17 | 160.2 (3) |
C3—C4—C5 | 106.8 (7) | C5—Fe1—C13 | 158.5 (3) |
C3—C4—Fe1 | 69.7 (5) | C17—Fe1—C13 | 40.0 (3) |
C5—C4—Fe1 | 69.0 (4) | C5—Fe1—C4 | 40.9 (3) |
C3—C4—H4 | 126.6 | C17—Fe1—C4 | 123.2 (3) |
C5—C4—H4 | 126.6 | C13—Fe1—C4 | 159.5 (3) |
Fe1—C4—H4 | 126.2 | C5—Fe1—C3 | 68.0 (3) |
C4—C5—C1 | 108.6 (7) | C17—Fe1—C3 | 107.4 (3) |
C4—C5—C6 | 125.4 (7) | C13—Fe1—C3 | 123.9 (3) |
C1—C5—C6 | 125.9 (7) | C4—Fe1—C3 | 40.5 (3) |
C4—C5—Fe1 | 70.0 (5) | C5—Fe1—C1 | 41.3 (3) |
C1—C5—Fe1 | 70.1 (5) | C17—Fe1—C1 | 156.8 (3) |
C6—C5—Fe1 | 123.0 (6) | C13—Fe1—C1 | 122.3 (3) |
N1—C6—O1 | 115.7 (7) | C4—Fe1—C1 | 69.2 (3) |
N1—C6—C5 | 127.4 (7) | C3—Fe1—C1 | 68.1 (3) |
O1—C6—C5 | 116.8 (7) | C5—Fe1—C16 | 123.3 (3) |
C12—C7—O1 | 127.3 (7) | C17—Fe1—C16 | 41.3 (4) |
C12—C7—C8 | 125.3 (8) | C13—Fe1—C16 | 68.2 (3) |
O1—C7—C8 | 107.4 (6) | C4—Fe1—C16 | 106.7 (3) |
C7—C8—C9 | 119.1 (7) | C3—Fe1—C16 | 121.8 (3) |
C7—C8—N1 | 109.5 (7) | C1—Fe1—C16 | 160.6 (3) |
C9—C8—N1 | 131.4 (7) | C5—Fe1—C14 | 122.9 (3) |
C10—C9—C8 | 116.0 (7) | C17—Fe1—C14 | 67.8 (3) |
C10—C9—H9 | 122 | C13—Fe1—C14 | 40.3 (3) |
C8—C9—H9 | 122 | C4—Fe1—C14 | 158.1 (3) |
C9—C10—C11 | 124.4 (8) | C3—Fe1—C14 | 160.4 (3) |
C9—C10—Cl1 | 118.5 (6) | C1—Fe1—C14 | 108.3 (3) |
C11—C10—Cl1 | 117.1 (6) | C16—Fe1—C14 | 68.1 (3) |
C10—C11—C12 | 119.7 (7) | C5—Fe1—C15 | 107.8 (3) |
C10—C11—H11 | 120.2 | C17—Fe1—C15 | 68.5 (4) |
C12—C11—H11 | 120.2 | C13—Fe1—C15 | 68.2 (3) |
C7—C12—C11 | 115.6 (7) | C4—Fe1—C15 | 121.6 (3) |
C7—C12—H12 | 122.2 | C3—Fe1—C15 | 157.3 (3) |
C11—C12—H12 | 122.2 | C1—Fe1—C15 | 124.5 (3) |
C17—C13—C14 | 108.9 (7) | C16—Fe1—C15 | 40.4 (3) |
C17—C13—Fe1 | 70.0 (5) | C14—Fe1—C15 | 40.7 (3) |
C14—C13—Fe1 | 70.2 (4) | C5—Fe1—C2 | 68.6 (3) |
C17—C13—H13 | 125.6 | C17—Fe1—C2 | 121.4 (4) |
C14—C13—H13 | 125.6 | C13—Fe1—C2 | 107.8 (3) |
Fe1—C13—H13 | 125.8 | C4—Fe1—C2 | 68.9 (3) |
C13—C14—C15 | 108.1 (7) | C3—Fe1—C2 | 40.7 (3) |
C13—C14—Fe1 | 69.5 (4) | C1—Fe1—C2 | 40.3 (3) |
C15—C14—Fe1 | 69.8 (4) | C16—Fe1—C2 | 157.6 (3) |
C13—C14—H14 | 125.9 | C14—Fe1—C2 | 124.1 (3) |
C15—C14—H14 | 125.9 | C15—Fe1—C2 | 160.7 (3) |
Fe1—C14—H14 | 126.3 | C6—N1—C8 | 103.5 (6) |
C16—C15—C14 | 107.6 (8) | C7—O1—C6 | 103.9 (6) |
C5—C1—C2—C3 | 0.0 (9) | C8—C9—C10—C11 | 0.0 (13) |
Fe1—C1—C2—C3 | 58.7 (6) | C8—C9—C10—Cl1 | 179.5 (6) |
C5—C1—C2—Fe1 | −58.7 (6) | C9—C10—C11—C12 | −0.3 (13) |
C1—C2—C3—C4 | −0.1 (9) | Cl1—C10—C11—C12 | −179.9 (7) |
Fe1—C2—C3—C4 | 58.9 (6) | O1—C7—C12—C11 | 179.6 (8) |
C1—C2—C3—Fe1 | −58.9 (6) | C8—C7—C12—C11 | −1.0 (13) |
C2—C3—C4—C5 | 0.1 (9) | C10—C11—C12—C7 | 0.8 (12) |
Fe1—C3—C4—C5 | 59.4 (6) | C17—C13—C14—C15 | −0.2 (10) |
C2—C3—C4—Fe1 | −59.3 (6) | Fe1—C13—C14—C15 | 59.3 (6) |
C3—C4—C5—C1 | −0.1 (9) | C17—C13—C14—Fe1 | −59.5 (6) |
Fe1—C4—C5—C1 | 59.7 (6) | C13—C14—C15—C16 | 0.3 (9) |
C3—C4—C5—C6 | −176.7 (8) | Fe1—C14—C15—C16 | 59.4 (6) |
Fe1—C4—C5—C6 | −116.9 (9) | C13—C14—C15—Fe1 | −59.1 (6) |
C3—C4—C5—Fe1 | −59.8 (6) | C14—C15—C16—C17 | −0.3 (9) |
C2—C1—C5—C4 | 0.0 (9) | Fe1—C15—C16—C17 | 59.0 (6) |
Fe1—C1—C5—C4 | −59.7 (6) | C14—C15—C16—Fe1 | −59.3 (6) |
C2—C1—C5—C6 | 176.6 (8) | C14—C13—C17—C16 | 0.0 (10) |
Fe1—C1—C5—C6 | 116.9 (9) | Fe1—C13—C17—C16 | −59.7 (6) |
C2—C1—C5—Fe1 | 59.7 (6) | C14—C13—C17—Fe1 | 59.6 (6) |
C4—C5—C6—N1 | −12.4 (14) | C15—C16—C17—C13 | 0.2 (9) |
C1—C5—C6—N1 | 171.6 (8) | Fe1—C16—C17—C13 | 59.9 (6) |
Fe1—C5—C6—N1 | −100.2 (9) | C15—C16—C17—Fe1 | −59.7 (6) |
C4—C5—C6—O1 | 167.2 (8) | O1—C6—N1—C8 | −1.3 (9) |
C1—C5—C6—O1 | −8.8 (12) | C5—C6—N1—C8 | 178.3 (8) |
Fe1—C5—C6—O1 | 79.4 (9) | C7—C8—N1—C6 | 1.1 (9) |
C12—C7—C8—C9 | 0.7 (12) | C9—C8—N1—C6 | −179.7 (9) |
O1—C7—C8—C9 | −179.8 (7) | C12—C7—O1—C6 | 179.3 (8) |
C12—C7—C8—N1 | 180.0 (8) | C8—C7—O1—C6 | −0.2 (8) |
O1—C7—C8—N1 | −0.5 (8) | N1—C6—O1—C7 | 1.0 (9) |
C7—C8—C9—C10 | −0.1 (11) | C5—C6—O1—C7 | −178.7 (7) |
N1—C8—C9—C10 | −179.2 (8) |
Acknowledgements
Thanks are due to Minerva Monroy, Gustavo Huerta Vargas, Rene Sebastian Joo Cisneros, and Claudia Olivia Oliva Colunga for their technical assistance.
Funding information
The authors thank PAPIIT-DGAPA-UNAM (IN 217318) and CONACyT (251437) for their financial support of this work.
References
Agilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England. Google Scholar
Boyd, G. V. (2002). Houben-Weyl Methods of Molecular Transformations. In Science of Synthesis, Vol. 11, edited by E. Schaumann, p. 481. Stuttgart: Thieme. Google Scholar
Dubar, F., Khalife, J., Brocard, J., Dive, D. & Biot, C. (2008). Molecules, 13, 2900–2907. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Jaouen, G., Vessières, A. & Top, S. (2015). Chem. Soc. Rev. 44, 8802–8817. Web of Science CrossRef CAS PubMed Google Scholar
Klimova, E. I., Berestneva, T. K., Ortega, S. H., Iturbide, D. M., Márquez, A. G. & García, M. M. (2005). J. Organomet. Chem. 690, 3333–3339. Web of Science CSD CrossRef CAS Google Scholar
Klimova, E. I., KlimovaBerestneva, T., Ramirez, L., Cinquantini, A., Corsini, M., Zanello, P., Hernández-Ortega, M. & García, M. (2003). Eur. J. Org. Chem. pp. 4265–4272. Web of Science CSD CrossRef Google Scholar
Klimova, E. I., Sanchez García, J. J., Klimova, T., Apan, T. R., Vázquez López, E. A., Flores-Álamo, M. & Martínez García, M. (2012). J. Organomet. Chem. 708–709, 37–45. Web of Science CSD CrossRef CAS Google Scholar
Larik, F. A., Saeed, A., Fattah, T. A., Muqadar, U. & Channar, P. A. (2017). Appl. Organomet. Chem. 31, e3664. Web of Science CrossRef Google Scholar
Liu, Y., Xu, J., Zhang, J., Xu, X. & Jin, Z. (2017). Org. Lett. 19, 5709–5712. Web of Science CSD CrossRef CAS PubMed Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sánchez García, J. J., Flores-Álamo, M., Martínez-Klimova, E., Ramírez Apan, T. & Klimova, E. I. (2018). J. Organomet. Chem. 867, 312–322. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, S., Veeraswamy, G., Bhattarai, D., Goo, J., Lee, K. & Choi, Y. (2015). Asia. J. Org. Chem. 4, 1338–1361. Web of Science CrossRef CAS Google Scholar
Su, S., Li, J., Sun, M., Zhao, H., Chen, Y. & Li, J. (2018). Chem. Commun. 54, 9611–9614. Web of Science CSD CrossRef CAS Google Scholar
Togni, A. & Hayashi, T. (1995). Ferrocenes. Weinheim: VCH. Google Scholar
Top, S., Vessières, A., Leclercq, G., Quivy, J., Tang, J., Vaissermann, J., Huché, M. & Jaouen, G. (2003). Chem. Eur. J. 9, 5223–5236. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, W., Liu, J., Macho, J. M., Jiang, X., Xie, D., Jiang, F., Liu, W. & Fu, L. (2017). Eur. J. Med. Chem. 126, 7–14. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.