organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

6-Nitro-1,3-benzoxazole-2(3H)-thione

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Bioorganique, Faculté des Sciences, Université Chouaib Doukkali, BP 20, M-24000 El Jadida, Morocco, and bLaboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: m_ahbala@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 9 August 2019; accepted 11 August 2019; online 16 August 2019)

In the title compound, C7H4N2O3S, the dihedral angle between the fused ring system (r.m.s. deviation = 0.008 Å) and the nitro group at the 6-position is 7.3 (2)°. In the crystal, bifurcated N—H⋯(O,O) hydrogen bonds link the mol­ecules into [010] chains. The chains are cross-linked by ππ stacking inter­actions to form (001) sheets.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The mono-nitration of some benzimidazole derivatives has been reported (Benchidmi et al., 1995[Benchidmi, M., El Kihel, A., Essassi, E. M., Knouzi, N., Toupet, L., Danion-Bougot, R. & Carrié, R. (1995). Bull. Soc. Chim. Belg. 104, 605-611.]; El Kihel et al., 1999[El Kihel, A., Benchidmi, M., Essassi, E. M. & Danion-Bougot, R. (1999). Synth. Commun. 29, 387-397.]). In this work, the nitration of benzoxazole-2-thione has been carried out and the crystal structure determined to establish the location of the NO2 group (the 5- or 6-position) in the product (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

The plane of the fused ring system (r.m.s. deviation = 0.008 Å) is slightly inclined to the plane of the nitro group [dihedral angle = 7.3 (2)°]. In the crystal, the mol­ecules are linked by bifurcated N—H⋯(O,O) hydrogen bonds (Table 1[link]) to form [010] chains (Fig. 2[link]). The chains are cross-linked by weak aromatic ππ stacking between the benzene ring and oxazole ring to form (001) sheets, the inter-centroid distance being 3.646 (3) Å (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.84 2.41 3.068 (3) 135
N1—H1⋯O3i 0.84 2.36 3.137 (3) 154
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Projection of the title compound structure onto the (100) plane, showing mol­ecules connected by hydrogen bonds (dashed blue lines).
[Figure 3]
Figure 3
Crystal packing for the title compound showing mol­ecules linked by hydrogen bonds (dashed blue lines) and ππ inter­actions (green lines).

Synthesis and crystallization

To benzoxazole-2-thione (0.025 mol) in 92% H2SO4 (10 ml) was added dropwise with stirring a cooled mixture of 42% HNO3 (2.5 ml) and 92% H2SO4 (1 ml). The resulting mixture was allowed to stand for 1 h at 273–278 K and then poured in an ice–water mixture (50 g – 50 g). After addition of NaCl (10 g), the solution, maintained at 273–283 K, deposited solid material, which was filtered off, washed with cold water and dissolved in hot water. The pH of the resulting solution was adjusted to 7.5–8 with 3 M NH3. 6-Nitro­benzoxazole-2-thione was filtered off and recrystallized several times from methanol solution to give yellow blocks.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C7H4N2O3S
Mr 196.18
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 4.576 (4), 15.755 (13), 11.134 (9)
β (°) 100.45 (3)
V3) 789.3 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.38
Crystal size (mm) 0.35 × 0.28 × 0.21
 
Data collection
Diffractometer Bruker D8 VENTURE Super DUO
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.668, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 17038, 1870, 1538
Rint 0.032
(sin θ/λ)max−1) 0.658
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.110, 1.03
No. of reflections 1870
No. of parameters 118
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.26
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), WinGX and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXTL2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: WinGX and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

6-Nitro-1,3-benzoxazole-2(3H)-thione top
Crystal data top
C7H4N2O3SF(000) = 400
Mr = 196.18Dx = 1.651 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 4.576 (4) ÅCell parameters from 1870 reflections
b = 15.755 (13) Åθ = 2.6–27.9°
c = 11.134 (9) ŵ = 0.38 mm1
β = 100.45 (3)°T = 296 K
V = 789.3 (11) Å3Block, yellow
Z = 40.35 × 0.28 × 0.21 mm
Data collection top
Bruker D8 VENTURE Super DUO
diffractometer
1870 independent reflections
Radiation source: INCOATEC IµS micro-focus source1538 reflections with I > 2σ(I)
HELIOS mirror optics monochromatorRint = 0.032
Detector resolution: 10.4167 pixels mm-1θmax = 27.9°, θmin = 2.6°
φ and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2020
Tmin = 0.668, Tmax = 0.747l = 1414
17038 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.3797P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
1870 reflectionsΔρmax = 0.30 e Å3
118 parametersΔρmin = 0.26 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.18641 (11)0.72656 (3)0.51464 (5)0.05120 (19)
O10.8774 (3)0.58902 (7)0.44023 (12)0.0400 (3)
O20.2383 (5)0.33844 (10)0.26846 (17)0.0859 (7)
O30.1051 (4)0.39654 (11)0.1403 (2)0.0766 (6)
N10.7184 (3)0.70175 (9)0.33226 (14)0.0374 (3)
H10.6889020.7531570.3144600.045*
N20.1258 (4)0.40037 (11)0.21413 (16)0.0500 (4)
C10.9228 (4)0.67448 (11)0.42680 (16)0.0360 (4)
C20.6377 (4)0.56547 (10)0.35289 (15)0.0325 (4)
C30.5143 (4)0.48630 (11)0.33371 (16)0.0383 (4)
H30.5866710.4391750.3800320.046*
C40.2721 (4)0.48278 (11)0.23917 (17)0.0379 (4)
C50.1602 (4)0.55204 (13)0.16860 (18)0.0429 (4)
H50.0046360.5454470.1068070.051*
C60.2929 (4)0.63094 (12)0.18979 (18)0.0425 (4)
H60.2232680.6780350.1428310.051*
C70.5340 (4)0.63613 (10)0.28427 (16)0.0331 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0455 (3)0.0438 (3)0.0604 (4)0.0078 (2)0.0005 (2)0.0129 (2)
O10.0442 (7)0.0267 (6)0.0445 (7)0.0005 (5)0.0042 (5)0.0015 (5)
O20.1327 (18)0.0374 (8)0.0735 (12)0.0331 (10)0.0189 (11)0.0090 (8)
O30.0572 (10)0.0574 (10)0.1077 (15)0.0142 (8)0.0056 (10)0.0284 (10)
N10.0369 (8)0.0232 (6)0.0508 (9)0.0024 (6)0.0043 (6)0.0038 (6)
N20.0596 (11)0.0418 (9)0.0495 (10)0.0154 (8)0.0120 (8)0.0138 (8)
C10.0364 (9)0.0285 (8)0.0437 (10)0.0021 (7)0.0093 (7)0.0027 (7)
C20.0345 (8)0.0279 (8)0.0343 (8)0.0019 (6)0.0044 (7)0.0001 (6)
C30.0493 (10)0.0257 (8)0.0392 (9)0.0012 (7)0.0061 (8)0.0015 (7)
C40.0428 (9)0.0308 (8)0.0419 (10)0.0062 (7)0.0125 (8)0.0071 (7)
C50.0378 (9)0.0453 (10)0.0432 (10)0.0001 (8)0.0009 (8)0.0049 (8)
C60.0422 (10)0.0351 (9)0.0471 (10)0.0049 (7)0.0005 (8)0.0053 (8)
C70.0332 (8)0.0248 (7)0.0418 (9)0.0023 (6)0.0078 (7)0.0015 (6)
Geometric parameters (Å, º) top
S1—C11.630 (2)C2—C31.370 (3)
O1—C11.375 (2)C2—C71.384 (2)
O1—C21.378 (2)C3—C41.384 (3)
O2—N21.212 (3)C3—H30.9300
O3—N21.217 (3)C4—C51.387 (3)
N1—C11.346 (2)C5—C61.385 (3)
N1—C71.379 (2)C5—H50.9300
N1—H10.8389C6—C71.382 (3)
N2—C41.464 (2)C6—H60.9300
C1—O1—C2107.67 (13)C2—C3—H3123.0
C1—N1—C7110.69 (15)C4—C3—H3123.0
C1—N1—H1123.5C3—C4—C5124.17 (17)
C7—N1—H1124.8C3—C4—N2117.11 (17)
O2—N2—O3122.37 (19)C5—C4—N2118.72 (18)
O2—N2—C4118.72 (19)C6—C5—C4120.28 (18)
O3—N2—C4118.91 (19)C6—C5—H5119.9
N1—C1—O1107.49 (14)C4—C5—H5119.9
N1—C1—S1129.98 (14)C7—C6—C5116.58 (17)
O1—C1—S1122.54 (13)C7—C6—H6121.7
C3—C2—O1127.43 (15)C5—C6—H6121.7
C3—C2—C7123.77 (17)N1—C7—C6133.39 (16)
O1—C2—C7108.80 (15)N1—C7—C2105.34 (16)
C2—C3—C4113.92 (16)C6—C7—C2121.27 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.842.413.068 (3)135
N1—H1···O3i0.842.363.137 (3)154
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Faculty of Science, Mohammed V University in Rabat, Morocco for the X-ray measurements and Chouaib Doukkali University (El Jadida Morocco) for support.

References

First citationBenchidmi, M., El Kihel, A., Essassi, E. M., Knouzi, N., Toupet, L., Danion-Bougot, R. & Carrié, R. (1995). Bull. Soc. Chim. Belg. 104, 605–611.  CrossRef CAS Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl Kihel, A., Benchidmi, M., Essassi, E. M. & Danion-Bougot, R. (1999). Synth. Commun. 29, 387–397.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds