metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-Chloro-2-ferrocenylbenzo[d]oxazole

CROSSMARK_Color_square_no_text.svg

aFacultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, 04510, Mexico
*Correspondence e-mail: eiklimova@yahoo.com.mx

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 31 July 2019; accepted 5 August 2019; online 16 August 2019)

The asymmetric unit of the title compound, [Fe(C5H5)(C12H7ClNO)], consists of one ferrocenyl group bonded to chloro­benzo[d]oxazole. The conformation of the ferrocenyl moiety is slightly away from eclipsed. The bond angles between the 5-chloro-benzoxazole and ferrocenyl fragments are N—C—C = 127.4 (7)° and O—C—C = 116.8 (7)°. The benzo[d]oxazole ring is planar (r.m.s. deviation = 0.0042 Å) and makes an angle of 11.3 (4)° with the cyclo­penta­dienyl ring attached to it. The crystal packing is characterized by inter­molecular ππ contacts, resulting in chain formation along the b-axis direction. The centroid-to-centroid distance between the six- and five-membered rings is 3.650 (5) Å. Together with a C—H⋯π inter­action, these inter­molecular contacts form laminar arrays along the ac plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Benzoxazoles are among the most important compounds in heterocyclic compounds. They exhibit remarkable pharmacological activities, are used as building blocks for biochemical and pharmaceutical agents (Singh et al., 2015[Singh, S., Veeraswamy, G., Bhattarai, D., Goo, J., Lee, K. & Choi, Y. (2015). Asia. J. Org. Chem. 4, 1338-1361.]), including anti­biotic, anti­microbial, anti­virals, dyes, fluorescent brightening agents, biomarkers, biosensors and fluorescent materials (Zhang et al., 2017[Zhang, W., Liu, J., Macho, J. M., Jiang, X., Xie, D., Jiang, F., Liu, W. & Fu, L. (2017). Eur. J. Med. Chem. 126, 7-14.]). The major strategy for the synthesis of benzoxazoles (Boyd et al., 2002[Boyd, G. V. (2002). Houben-Weyl Methods of Molecular Transformations. In Science of Synthesis, Vol. 11, edited by E. Schaumann, p. 481. Stuttgart: Thieme.]) is the condensation of carb­oxy­lic acids and their derivatives with 2-amino­phenoles, but this often requires harsh reaction conditions (high reaction temperature and use of acidic activators and oxidants).

It is known that ferrocene derivatives (Togni & Hayashi, 1995[Togni, A. & Hayashi, T. (1995). Ferrocenes. Weinheim: VCH.]) exhibit important functional derivatives, which are useful in medicinal as well as in synthetic fields (Larik et al., 2017[Larik, F. A., Saeed, A., Fattah, T. A., Muqadar, U. & Channar, P. A. (2017). Appl. Organomet. Chem. 31, e3664.]). The incorporation of a ferrocene entity can significantly improve the biological activity of mol­ecules (Klimova et al., 2012[Klimova, E. I., Sanchez García, J. J., Klimova, T., Apan, T. R., Vázquez López, E. A., Flores-Álamo, M. & Martínez García, M. (2012). J. Organomet. Chem. 708-709, 37-45.]). Many drugs contain ferrocene moieties in their structures, such as ferrocifen, tamoxifen (Top et al., 2003[Top, S., Vessières, A., Leclercq, G., Quivy, J., Tang, J., Vaissermann, J., Huché, M. & Jaouen, G. (2003). Chem. Eur. J. 9, 5223-5236.]; Jaouen et al., 2015[Jaouen, G., Vessières, A. & Top, S. (2015). Chem. Soc. Rev. 44, 8802-8817.]) and ferroquine, which are excellent anti­cancer and anti­malarial agents (Dubar et al., 2008[Dubar, F., Khalife, J., Brocard, J., Dive, D. & Biot, C. (2008). Molecules, 13, 2900-2907.]).

In this context, it is proposed that due to the synergy between a benzoxazole and a ferrocene unit present in a mol­ecule, it should exhibit an important biological activity. We present here a continuation of this work, we present here the synthesis of 2-ferrocenylbenzoxazoles and the crystal structure of 5-chloro-2-ferrocenylbenzo[d]oxazole. The synthesis of this compound was done by reaction of diferrocenyl­cyclo­propenyl cations (Klimova et al., 2003[Klimova, E. I., KlimovaBerestneva, T., Ramirez, L., Cinquantini, A., Corsini, M., Zanello, P., Hernández-Ortega, M. & García, M. (2003). Eur. J. Org. Chem. pp. 4265-4272.]) with amino­alcohols in the presence of tri­ethyl­amine, obtaining good yields (Sánchez et al., 2018[Sánchez García, J. J., Flores-Álamo, M., Martínez-Klimova, E., Ramírez Apan, T. & Klimova, E. I. (2018). J. Organomet. Chem. 867, 312-322.]).

The asymmetric unit of the title compound (Fig. 1[link]) consist of one ferrocenyl bonded through the C5 atom to 5-chloro­benzo[d]oxazole. All bond lengths and angles are in the range observed for ferrocenyl and aromatic rings, and in the same way, the bond lengths C6=N1 = 1.297 (10), C7—O1 = 1.381 (9) and C10—Cl1 = 1.751 (8) Å correspond to literature reports (Su et al., 2018[Su, S., Li, J., Sun, M., Zhao, H., Chen, Y. & Li, J. (2018). Chem. Commun. 54, 9611-9614.]; Liu et al., 2017[Liu, Y., Xu, J., Zhang, J., Xu, X. & Jin, Z. (2017). Org. Lett. 19, 5709-5712.]). The conformation of the ferrocenyl moiety is slightly away from eclipsed. The bond angles between the 5-chloro-benzoxazole and ferrocenyl fragments are N1—C6—C5 = 127.4 (7)° and O1—C6—C5 = 116.8 (7)°. The five- and six-membered rings of the 5-chloro­benzo[d]oxazole fragment are coplanar with an r.m.s. deviation for the fitted atoms of 0.0042 Å [equation plane: −2.42 (1)x + 6.79 (1)y + 7.16 (2)z = 7.60 (2)]. However, there is a slight deviation from the coplanarity with the 5-chloro­benzo[d]oxazole and the five-membered C1–C5 rings making an angle of 11.3 (4)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 60% probability level.

In the crystal packing (Fig. 2[link]), there are inter­molecular ππ and C—H⋯π contacts. The centroids Cg3 of the five-membered ring C13–C17 of the ferrocenyl group and Cg4 of the six-membered ring C7–C12 of 5-chloro­benzo[d]oxazole establish a weak inter­molecular ππ inter­action [Cg3⋯Cg4i = 3.650 (5) Å; symmetry code: (i) x, y − 1, z], resulting in chain formation along the b-axis direction. On the other hand, an inter­molecular inter­action C17—H17⋯Cg2ii [Cg2 is the cen­troid of ring C1–C5; H17⋯Cg2 = 3.322 Å; symmetry code: (ii) −x + 1, y − [{1\over 2}], −z + 1] of type C—H⋯π is present. All these inter­molecular contacts form a laminar array along the ac plane.

[Figure 2]
Figure 2
Crystal packing of 5-chloro-2-ferrocenylbenzo[d]oxazole showing the short contacts of type ππ and C—H⋯π.

Synthesis and crystallization

2-Amino-4-chloro­phenol (5 mmol) and Et3N (1.0 ml) were added while stirring to a solution of 1-morpholine-2,3-diferrocenilcyclo­propenium tetra­fluorido­borate (4 mmol) (Klimova et al. 2005[Klimova, E. I., Berestneva, T. K., Ortega, S. H., Iturbide, D. M., Márquez, A. G. & García, M. M. (2005). J. Organomet. Chem. 690, 3333-3339.]) in dry aceto­nitrile (70 ml). After stirring for 6 h at 348 K, the solvents were removed in vacuo and the residue was dissolved in di­chloro­methane (30 ml). The solution was mixed with Al2O3 (activity III) (20 g) and the solvent was evaporated in air. This material was placed on the top of a column with Al2O3 (the height of alumina was ca 20 cm) and the elution was performed first with hexane and then with hexane - ether (3:1) and hexane - di­chloro­methane (4:1) to give the title compound (yield 30%, orange–brown crystals, m.p. 421–422 K). 1H NMR [400 MHz, CDCl3, δ (p.p.m.)]: 4.18 (s, 5H, C5H5), 4.53 (m, 2H, C5H4), 5.07 (m, 2H, C5H4), 7.27 (dd, J = 2.1, 8.4 Hz, 1H, C6H3), 7.43 (d, J = 8.4 Hz, 1H, C6H3), 7.64 (d, J = 2.1 Hz, 1H, C6H3). 13C NMR [100 MHz, CDCl3, δ (p.p.m.)]: 70.58 (C5H5), 69.25, 71.71 (C5H4), 80.85 (CipsoFc), 114.83, 127.04, 127.87 (C6H3), 131.29, 145.27, 163.23 (3 C). MS (El, 70 eV): m/z 337 [M]+. Analysis calculated for C17H12ClFeNO: C, 60.48; H, 3.58; N, 4.15. Found: C, 60.47; H, 3.52; N, 4.27%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [Fe(C5H5)(C12H7ClNO)]
Mr 337.58
Crystal system, space group Monoclinic, P21
Temperature (K) 130
a, b, c (Å) 5.7854 (7), 9.2974 (11), 12.6443 (12)
β (°) 94.217 (10)
V3) 678.29 (13)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.30
Crystal size (mm) 0.18 × 0.06 × 0.04
 
Data collection
Diffractometer Agilent Xcalibur Atlas Gemini
Absorption correction Analytical (CrysAlis RED; Agilent, 2013[Agilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.89, 0.956
No. of measured, independent and observed [I > 2σ(I)] reflections 3384, 2001, 1782
Rint 0.045
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.114, 1.08
No. of reflections 2001
No. of parameters 190
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.02, −0.49
Absolute structure Flack x determined using 562 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013)
Absolute structure parameter 0.01 (3)
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]), CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.], CrysAlis RED (Agilent, 2013[Agilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]), SHELXS2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO; Agilent, 2013; data reduction: CrysAlis RED (Agilent, 2013); program(s) used to solve structure: SHELXS2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2006).

5-Chloro-2-ferrocenylbenzo[d]oxazole top
Crystal data top
[Fe(C5H5)(C12H7ClNO)]F(000) = 344
Mr = 337.58Dx = 1.653 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1067 reflections
a = 5.7854 (7) Åθ = 4.1–27.7°
b = 9.2974 (11) ŵ = 1.30 mm1
c = 12.6443 (12) ÅT = 130 K
β = 94.217 (10)°Prism, brown
V = 678.29 (13) Å30.18 × 0.06 × 0.04 mm
Z = 2
Data collection top
Agilent Xcalibur Atlas Gemini
diffractometer
2001 independent reflections
Graphite monochromator1782 reflections with I > 2σ(I)
Detector resolution: 10.4685 pixels mm-1Rint = 0.045
ω scansθmax = 25.3°, θmin = 3.5°
Absorption correction: analytical
(CrysAlis RED; Agilent, 2013)
h = 66
Tmin = 0.89, Tmax = 0.956k = 811
3384 measured reflectionsl = 1415
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0549P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.114(Δ/σ)max < 0.001
S = 1.08Δρmax = 1.02 e Å3
2001 reflectionsΔρmin = 0.49 e Å3
190 parametersAbsolute structure: Flack x determined using 562 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.01 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3847 (12)0.8652 (9)0.3871 (7)0.0214 (18)
H10.2472720.8882130.3447740.026*
C20.4058 (13)0.7612 (9)0.4687 (6)0.024 (2)
H20.2854230.7016150.4912620.028*
C30.6407 (14)0.7623 (9)0.5108 (7)0.026 (2)
H30.7033530.7028010.5668850.031*
C40.7664 (13)0.8653 (10)0.4566 (7)0.0246 (19)
H40.9263550.8874310.4691550.03*
C50.6079 (13)0.9296 (9)0.3797 (7)0.0213 (18)
C60.6662 (13)1.0362 (9)0.3026 (7)0.0243 (19)
C70.6049 (13)1.1657 (8)0.1601 (6)0.0213 (18)
C80.8238 (12)1.1923 (9)0.2083 (6)0.0201 (18)
C90.9673 (13)1.2921 (8)0.1624 (7)0.0236 (19)
H91.1184271.313830.1927060.028*
C100.8763 (13)1.3570 (9)0.0706 (7)0.0228 (18)
C110.6569 (13)1.3292 (9)0.0229 (6)0.0247 (19)
H110.6042321.3780950.0403180.03*
C120.5138 (12)1.2289 (11)0.0685 (6)0.0255 (18)
H120.3633781.2060410.0378430.031*
C130.5383 (13)0.5194 (9)0.2913 (6)0.0240 (19)
H130.4133640.4612520.3109050.029*
C140.5257 (15)0.6234 (9)0.2105 (7)0.027 (2)
H140.3915410.6472010.1660870.033*
C150.7489 (13)0.6867 (9)0.2066 (6)0.026 (2)
H150.7901320.7604850.1594820.032*
C160.8978 (15)0.6201 (9)0.2854 (7)0.028 (2)
H161.0576460.6404940.3007840.033*
C170.7634 (15)0.5156 (10)0.3380 (7)0.031 (2)
H170.8186260.4547290.3947370.037*
Cl11.0453 (4)1.4841 (2)0.0092 (2)0.0328 (6)
Fe10.62694 (17)0.71553 (12)0.35316 (8)0.0194 (3)
N10.8578 (11)1.1084 (7)0.3008 (5)0.0229 (16)
O10.5007 (9)1.0647 (6)0.2210 (4)0.0235 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.019 (4)0.020 (4)0.026 (5)0.001 (3)0.006 (3)0.001 (4)
C20.026 (4)0.031 (5)0.015 (4)0.000 (3)0.014 (3)0.005 (4)
C30.035 (5)0.032 (5)0.011 (4)0.005 (4)0.001 (3)0.002 (3)
C40.021 (4)0.031 (5)0.022 (4)0.003 (4)0.001 (4)0.002 (4)
C50.025 (4)0.016 (4)0.024 (5)0.000 (3)0.006 (3)0.004 (4)
C60.023 (4)0.028 (5)0.022 (5)0.002 (4)0.001 (4)0.007 (4)
C70.026 (4)0.019 (4)0.020 (4)0.001 (3)0.010 (3)0.005 (3)
C80.022 (3)0.019 (5)0.020 (4)0.002 (3)0.004 (3)0.002 (4)
C90.022 (4)0.027 (5)0.022 (5)0.003 (4)0.006 (3)0.008 (4)
C100.031 (4)0.014 (4)0.024 (5)0.003 (4)0.011 (4)0.001 (4)
C110.030 (4)0.030 (5)0.014 (4)0.000 (4)0.004 (3)0.001 (4)
C120.024 (4)0.029 (5)0.023 (4)0.008 (4)0.000 (3)0.002 (5)
C130.026 (4)0.027 (5)0.019 (5)0.008 (4)0.000 (3)0.002 (4)
C140.027 (4)0.034 (5)0.020 (4)0.002 (4)0.003 (4)0.008 (4)
C150.034 (4)0.029 (6)0.018 (4)0.006 (4)0.015 (3)0.001 (4)
C160.021 (4)0.029 (5)0.033 (5)0.004 (3)0.001 (4)0.009 (4)
C170.036 (5)0.028 (5)0.029 (5)0.008 (4)0.004 (4)0.004 (4)
Cl10.0360 (13)0.0284 (13)0.0354 (13)0.0030 (10)0.0122 (11)0.0046 (11)
Fe10.0205 (5)0.0224 (6)0.0156 (5)0.0004 (6)0.0022 (4)0.0001 (6)
N10.022 (4)0.026 (4)0.022 (4)0.006 (3)0.003 (3)0.001 (3)
O10.021 (3)0.027 (3)0.023 (3)0.001 (2)0.001 (2)0.001 (3)
Geometric parameters (Å, º) top
C1—C21.412 (12)C9—C101.378 (11)
C1—C51.433 (11)C9—H90.95
C1—Fe12.042 (8)C10—C111.389 (10)
C1—H10.95C10—Cl11.751 (8)
C2—C31.423 (10)C11—C121.399 (12)
C2—Fe12.056 (8)C11—H110.95
C2—H20.95C12—H120.95
C3—C41.410 (12)C13—C171.390 (11)
C3—Fe12.036 (8)C13—C141.405 (11)
C3—H30.95C13—Fe12.035 (8)
C4—C51.419 (11)C13—H130.95
C4—Fe12.036 (8)C14—C151.423 (11)
C4—H40.95C14—Fe12.044 (8)
C5—C61.446 (12)C14—H140.95
C5—Fe12.023 (8)C15—C161.412 (11)
C6—N11.297 (10)C15—Fe12.049 (8)
C6—O11.381 (9)C15—H150.95
C7—C121.370 (11)C16—C171.438 (13)
C7—O11.381 (9)C16—Fe12.044 (9)
C7—C81.387 (10)C16—H160.95
C8—C91.400 (12)C17—Fe12.034 (9)
C8—N11.408 (10)C17—H170.95
C2—C1—C5107.7 (7)C16—C15—Fe169.6 (5)
C2—C1—Fe170.4 (4)C14—C15—Fe169.5 (5)
C5—C1—Fe168.6 (4)C16—C15—H15126.2
C2—C1—H1126.1C14—C15—H15126.2
C5—C1—H1126.1Fe1—C15—H15126.3
Fe1—C1—H1126.4C15—C16—C17107.5 (7)
C1—C2—C3107.3 (7)C15—C16—Fe170.0 (5)
C1—C2—Fe169.3 (5)C17—C16—Fe169.0 (5)
C3—C2—Fe168.9 (5)C15—C16—H16126.3
C1—C2—H2126.4C17—C16—H16126.3
C3—C2—H2126.4Fe1—C16—H16126.3
Fe1—C2—H2126.9C13—C17—C16107.9 (7)
C4—C3—C2109.6 (7)C13—C17—Fe170.0 (5)
C4—C3—Fe169.7 (5)C16—C17—Fe169.7 (5)
C2—C3—Fe170.4 (4)C13—C17—H17126
C4—C3—H3125.2C16—C17—H17126
C2—C3—H3125.2Fe1—C17—H17125.8
Fe1—C3—H3126.3C5—Fe1—C17160.2 (3)
C3—C4—C5106.8 (7)C5—Fe1—C13158.5 (3)
C3—C4—Fe169.7 (5)C17—Fe1—C1340.0 (3)
C5—C4—Fe169.0 (4)C5—Fe1—C440.9 (3)
C3—C4—H4126.6C17—Fe1—C4123.2 (3)
C5—C4—H4126.6C13—Fe1—C4159.5 (3)
Fe1—C4—H4126.2C5—Fe1—C368.0 (3)
C4—C5—C1108.6 (7)C17—Fe1—C3107.4 (3)
C4—C5—C6125.4 (7)C13—Fe1—C3123.9 (3)
C1—C5—C6125.9 (7)C4—Fe1—C340.5 (3)
C4—C5—Fe170.0 (5)C5—Fe1—C141.3 (3)
C1—C5—Fe170.1 (5)C17—Fe1—C1156.8 (3)
C6—C5—Fe1123.0 (6)C13—Fe1—C1122.3 (3)
N1—C6—O1115.7 (7)C4—Fe1—C169.2 (3)
N1—C6—C5127.4 (7)C3—Fe1—C168.1 (3)
O1—C6—C5116.8 (7)C5—Fe1—C16123.3 (3)
C12—C7—O1127.3 (7)C17—Fe1—C1641.3 (4)
C12—C7—C8125.3 (8)C13—Fe1—C1668.2 (3)
O1—C7—C8107.4 (6)C4—Fe1—C16106.7 (3)
C7—C8—C9119.1 (7)C3—Fe1—C16121.8 (3)
C7—C8—N1109.5 (7)C1—Fe1—C16160.6 (3)
C9—C8—N1131.4 (7)C5—Fe1—C14122.9 (3)
C10—C9—C8116.0 (7)C17—Fe1—C1467.8 (3)
C10—C9—H9122C13—Fe1—C1440.3 (3)
C8—C9—H9122C4—Fe1—C14158.1 (3)
C9—C10—C11124.4 (8)C3—Fe1—C14160.4 (3)
C9—C10—Cl1118.5 (6)C1—Fe1—C14108.3 (3)
C11—C10—Cl1117.1 (6)C16—Fe1—C1468.1 (3)
C10—C11—C12119.7 (7)C5—Fe1—C15107.8 (3)
C10—C11—H11120.2C17—Fe1—C1568.5 (4)
C12—C11—H11120.2C13—Fe1—C1568.2 (3)
C7—C12—C11115.6 (7)C4—Fe1—C15121.6 (3)
C7—C12—H12122.2C3—Fe1—C15157.3 (3)
C11—C12—H12122.2C1—Fe1—C15124.5 (3)
C17—C13—C14108.9 (7)C16—Fe1—C1540.4 (3)
C17—C13—Fe170.0 (5)C14—Fe1—C1540.7 (3)
C14—C13—Fe170.2 (4)C5—Fe1—C268.6 (3)
C17—C13—H13125.6C17—Fe1—C2121.4 (4)
C14—C13—H13125.6C13—Fe1—C2107.8 (3)
Fe1—C13—H13125.8C4—Fe1—C268.9 (3)
C13—C14—C15108.1 (7)C3—Fe1—C240.7 (3)
C13—C14—Fe169.5 (4)C1—Fe1—C240.3 (3)
C15—C14—Fe169.8 (4)C16—Fe1—C2157.6 (3)
C13—C14—H14125.9C14—Fe1—C2124.1 (3)
C15—C14—H14125.9C15—Fe1—C2160.7 (3)
Fe1—C14—H14126.3C6—N1—C8103.5 (6)
C16—C15—C14107.6 (8)C7—O1—C6103.9 (6)
C5—C1—C2—C30.0 (9)C8—C9—C10—C110.0 (13)
Fe1—C1—C2—C358.7 (6)C8—C9—C10—Cl1179.5 (6)
C5—C1—C2—Fe158.7 (6)C9—C10—C11—C120.3 (13)
C1—C2—C3—C40.1 (9)Cl1—C10—C11—C12179.9 (7)
Fe1—C2—C3—C458.9 (6)O1—C7—C12—C11179.6 (8)
C1—C2—C3—Fe158.9 (6)C8—C7—C12—C111.0 (13)
C2—C3—C4—C50.1 (9)C10—C11—C12—C70.8 (12)
Fe1—C3—C4—C559.4 (6)C17—C13—C14—C150.2 (10)
C2—C3—C4—Fe159.3 (6)Fe1—C13—C14—C1559.3 (6)
C3—C4—C5—C10.1 (9)C17—C13—C14—Fe159.5 (6)
Fe1—C4—C5—C159.7 (6)C13—C14—C15—C160.3 (9)
C3—C4—C5—C6176.7 (8)Fe1—C14—C15—C1659.4 (6)
Fe1—C4—C5—C6116.9 (9)C13—C14—C15—Fe159.1 (6)
C3—C4—C5—Fe159.8 (6)C14—C15—C16—C170.3 (9)
C2—C1—C5—C40.0 (9)Fe1—C15—C16—C1759.0 (6)
Fe1—C1—C5—C459.7 (6)C14—C15—C16—Fe159.3 (6)
C2—C1—C5—C6176.6 (8)C14—C13—C17—C160.0 (10)
Fe1—C1—C5—C6116.9 (9)Fe1—C13—C17—C1659.7 (6)
C2—C1—C5—Fe159.7 (6)C14—C13—C17—Fe159.6 (6)
C4—C5—C6—N112.4 (14)C15—C16—C17—C130.2 (9)
C1—C5—C6—N1171.6 (8)Fe1—C16—C17—C1359.9 (6)
Fe1—C5—C6—N1100.2 (9)C15—C16—C17—Fe159.7 (6)
C4—C5—C6—O1167.2 (8)O1—C6—N1—C81.3 (9)
C1—C5—C6—O18.8 (12)C5—C6—N1—C8178.3 (8)
Fe1—C5—C6—O179.4 (9)C7—C8—N1—C61.1 (9)
C12—C7—C8—C90.7 (12)C9—C8—N1—C6179.7 (9)
O1—C7—C8—C9179.8 (7)C12—C7—O1—C6179.3 (8)
C12—C7—C8—N1180.0 (8)C8—C7—O1—C60.2 (8)
O1—C7—C8—N10.5 (8)N1—C6—O1—C71.0 (9)
C7—C8—C9—C100.1 (11)C5—C6—O1—C7178.7 (7)
N1—C8—C9—C10179.2 (8)
 

Acknowledgements

Thanks are due to Minerva Monroy, Gustavo Huerta Vargas, Rene Sebastian Joo Cisneros, and Claudia Olivia Oliva Colunga for their technical assistance.

Funding information

The authors thank PAPIIT-DGAPA-UNAM (IN 217318) and CONACyT (251437) for their financial support of this work.

References

First citationAgilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBoyd, G. V. (2002). Houben-Weyl Methods of Molecular Transformations. In Science of Synthesis, Vol. 11, edited by E. Schaumann, p. 481. Stuttgart: Thieme.  Google Scholar
First citationDubar, F., Khalife, J., Brocard, J., Dive, D. & Biot, C. (2008). Molecules, 13, 2900–2907.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJaouen, G., Vessières, A. & Top, S. (2015). Chem. Soc. Rev. 44, 8802–8817.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKlimova, E. I., Berestneva, T. K., Ortega, S. H., Iturbide, D. M., Márquez, A. G. & García, M. M. (2005). J. Organomet. Chem. 690, 3333–3339.  Web of Science CSD CrossRef CAS Google Scholar
First citationKlimova, E. I., KlimovaBerestneva, T., Ramirez, L., Cinquantini, A., Corsini, M., Zanello, P., Hernández-Ortega, M. & García, M. (2003). Eur. J. Org. Chem. pp. 4265–4272.  Web of Science CSD CrossRef Google Scholar
First citationKlimova, E. I., Sanchez García, J. J., Klimova, T., Apan, T. R., Vázquez López, E. A., Flores-Álamo, M. & Martínez García, M. (2012). J. Organomet. Chem. 708–709, 37–45.  Web of Science CSD CrossRef CAS Google Scholar
First citationLarik, F. A., Saeed, A., Fattah, T. A., Muqadar, U. & Channar, P. A. (2017). Appl. Organomet. Chem. 31, e3664.  Web of Science CrossRef Google Scholar
First citationLiu, Y., Xu, J., Zhang, J., Xu, X. & Jin, Z. (2017). Org. Lett. 19, 5709–5712.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSánchez García, J. J., Flores-Álamo, M., Martínez-Klimova, E., Ramírez Apan, T. & Klimova, E. I. (2018). J. Organomet. Chem. 867, 312–322.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, S., Veeraswamy, G., Bhattarai, D., Goo, J., Lee, K. & Choi, Y. (2015). Asia. J. Org. Chem. 4, 1338–1361.  Web of Science CrossRef CAS Google Scholar
First citationSu, S., Li, J., Sun, M., Zhao, H., Chen, Y. & Li, J. (2018). Chem. Commun. 54, 9611–9614.  Web of Science CSD CrossRef CAS Google Scholar
First citationTogni, A. & Hayashi, T. (1995). Ferrocenes. Weinheim: VCH.  Google Scholar
First citationTop, S., Vessières, A., Leclercq, G., Quivy, J., Tang, J., Vaissermann, J., Huché, M. & Jaouen, G. (2003). Chem. Eur. J. 9, 5223–5236.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Liu, J., Macho, J. M., Jiang, X., Xie, D., Jiang, F., Liu, W. & Fu, L. (2017). Eur. J. Med. Chem. 126, 7–14.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds