organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-(Cyclo­heptyl­­idene)thio­semicarbazide

aDepartment of Physics, University of Jammu, Jammu Tawi 180 006, India, and bDepartment of Chemistry, Shivaji University, Kolhapur 416 004, Maharashtra, India
*Correspondence e-mail: rkant.ju@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 8 August 2019; accepted 17 August 2019; online 23 August 2019)

The asymmetric unit of the title compound, C8H15N3S, contains two independent mol­ecules. In both mol­ecules, the seven-membered cyclo­heptane ring adopts a chair conformation. An intra­molecular N—H⋯N hydrogen bond is observed in both mol­ecules, forming S(5) graph-set motifs. In the crystal, the two independent mol­ecules are connected through N—H⋯S hydrogen bonds, forming dimers which are in turn further connected by N—H⋯S hydrogen bonds into chains along [010].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Thio­semicarbazones constitute an important class of N,S-donor ligands and their coordination chemistry was initially explored in the early 1960 s (Gingras et al., 1961[Gingras, B. A., Somorjai, R. L. & Bayley, C. H. (1961). Can. J. Chem. 39, 973-985.]; Ali & Livingstone, 1974[Ali, M. A. & Livingstone, S. E. (1974). Coord. Chem. Rev. 13, 101-132.]; Lobana et al., 2009[Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.]). Thio­carbazones and their metal complexes have received considerable research inter­est owing to their medicinal properties, such as anti­fungal (Arjmand et al., 2007[Arjmand, F., Mohani, B. & Ahmad, S. (2007). Eur. J. Med. Chem. 40, 1103-1110.]), anti­cancer (Sharma et al., 2006[Sharma, R., Agarwal, S. K., Rawat, S. & Nagar, M. (2006). Transition Met. Chem. 31, 201-206.]), anti­bacterial (Singh et al., 2008[Singh, K., Barwa, M. S. & Tyagi, P. (2008). Eur. J. Med. Chem. 42, 394-402.]), anti­viral (Padmanabhan et al., 2017[Padmanabhan, P., Khaleefathullah, S., Kaveri, K., Palani, G., Ramanathan, G., Thennarasu, S. & Sivagnanam, U. T. (2017). J. Med. Virol. 89, 546-552.]) and anti­malarial (Oliveira et al., 2008[Oliveira, R. B. de, deSouza-Fagundes, E. M., Soares, R. P., Andrade, A. A., Krettli, A. U. & Zani, C. L. (2008). Eur. J. Med. Chem. 43, 1983-1988.]). Based on these observations, we report herein the synthesis and crystal structure of the title compound.

The asymmetric unit of the crystal structure contains two independent mol­ecules (Fig. 1[link]). All bond lengths are within normal ranges (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Prpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) and are comparable with a related structure (Akkurt et al., 2014[Akkurt, M., Mohamed, S. K., Mague, J. T., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o359.]). The cyclo­heptane ring adopts a chair conformation in both mol­ecules (Duax & Norton, 1975[Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.]), with the best mirror plane passing through atom C6A and bis­ecting the C2A—C3A bond in mol­ecule A [asymmetry parameter ΔCs(6A) = 2.07], whereas in mol­ecule B, the mirror plane passes through atom C5B and bis­ects the C2B—C8B bond [asymmetry parameter ΔCs(5B) = 11.11]. Intra­molecular N—H⋯N hydrogen bonds are observed in both mol­ecules (Table 1[link]), forming an S(5) graph-set motif. In the crystal, pairs of mol­ecules form dimers (Fig. 2[link]) through N—H⋯S hydrogen bonds, forming an R22(8) graph-set motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). These dimers are further connected by N—H⋯S hydrogen bonds, forming chains along [010] (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A1⋯N3A 0.86 2.22 2.5943 (2) 106
N1B—H1B1⋯N3B 0.86 2.22 2.5904 (2) 106
N1A—H1A2⋯S1Bi 0.86 2.64 3.4642 (2) 160
N1B—H1B2⋯S1Aii 0.86 2.53 3.3499 (2) 161
N2B—H2B⋯S1Aiii 0.86 2.87 3.6254 (2) 147
Symmetry codes: (i) x, y, z-1; (ii) x, y, z+1; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
Part of the crystal structure, with hydrogen bonds shown as dotted lines.

Synthesis and crystallization

A mixture of cyclo­hepta­none (1 mmol) and thio­semicarbazide (1 mmol) in aqueous ethanol (50:50 v/v, 5 ml) was stirred at room temperature for 2 h until completion of the reaction monitored by thin-layer chromatography. The solid product obtained was isolated by simple filtration and X-ray-quality crystals were grown from a solution in ethanol. The desired 1-(cyclo­heptyl­idene)thio­semicarbazide was characterized by NMR and mass spectral data.

IR (KBr): 3380, 3286, 2987, 1586, 1454, 1085 cm−1. 1 H NMR (CDCl3, 300 MHz): δ 1.68 (d, 5H), 1.77 (s, 3H), 2.48–2.37 (m, 4H), 7.27 (s, 1H), 8.4 (s, 2H). MS(EI): (m/z) 185.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically and were treated as riding on their parent C or N atoms, with C—H = 0.97 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N).

Table 2
Experimental details

Crystal data
Chemical formula C8H15N3S
Mr 185.29
Crystal system, space group Monoclinic, P21/n
Temperature (K) 298
a, b, c (Å) 12.7584 (8), 11.7060 (7), 13.3452 (8)
β (°) 92.273 (2)
V3) 1991.5 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.28
Crystal size (mm) 0.30 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker Xcalibur Sapphire3
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.699, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 33823, 3912, 3464
Rint 0.024
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.091, 1.06
No. of reflections 3912
No. of parameters 217
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.26
Computer programs: APEX2 (Bruker 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker 2004); cell refinement: SAINT (Bruker 2004); data reduction: SAINT (Bruker 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

1-(Cycloheptylidene)thiosemicarbazide top
Crystal data top
C8H15N3SF(000) = 800
Mr = 185.29Dx = 1.236 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.7584 (8) ÅCell parameters from 2990 reflections
b = 11.7060 (7) Åθ = 3.9–27.0°
c = 13.3452 (8) ŵ = 0.28 mm1
β = 92.273 (2)°T = 298 K
V = 1991.5 (2) Å3Block, white
Z = 80.30 × 0.20 × 0.20 mm
Data collection top
Bruker Xcalibur Sapphire3
diffractometer
3912 independent reflections
Radiation source: fine-focus sealed tube3464 reflections with I > 2σ(I)
Detector resolution: 6.1049 pixels mm-1Rint = 0.024
ω scansθmax = 26.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1515
Tmin = 0.699, Tmax = 0.746k = 1414
33823 measured reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.039P)2 + 0.6361P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3912 reflectionsΔρmax = 0.18 e Å3
217 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.36226 (4)0.06485 (3)0.43363 (3)0.05590 (14)
S1B0.32888 (3)0.37480 (3)1.23730 (3)0.05222 (13)
N3A0.47697 (9)0.25310 (10)0.65467 (9)0.0424 (3)
N2B0.23843 (10)0.27542 (10)1.07986 (9)0.0447 (3)
H2B0.2315430.3424911.0541420.054*
N2A0.44552 (10)0.15830 (10)0.59824 (8)0.0432 (3)
H2A0.4556470.0902250.6208290.052*
N1A0.38303 (12)0.28310 (11)0.48068 (10)0.0567 (4)
H1A10.4023060.3374640.5206580.068*
H1A20.3534460.2986990.4232860.068*
N3B0.19979 (10)0.18009 (10)1.02925 (9)0.0459 (3)
C7B0.12387 (13)0.30010 (14)0.77541 (11)0.0513 (4)
H7B10.0547750.2664910.7652090.062*
H7B20.1207710.3772240.7488740.062*
N1B0.30030 (12)0.15393 (11)1.20019 (10)0.0569 (4)
H1B10.2783090.0987241.1623870.068*
H1B20.3309000.1395851.2573870.068*
C1A0.39882 (11)0.17595 (12)0.50737 (10)0.0399 (3)
C2B0.15849 (11)0.19368 (12)0.94109 (10)0.0410 (3)
C3B0.11911 (14)0.08565 (13)0.89161 (12)0.0533 (4)
H3B10.0499440.0995770.8612640.064*
H3B20.1122770.0271420.9424040.064*
C4A0.57595 (16)0.11539 (15)0.89648 (12)0.0619 (5)
H4A10.5869400.0359460.9147090.074*
H4A20.6439740.1525000.8992570.074*
C8A0.54954 (14)0.34168 (14)0.79911 (12)0.0549 (4)
H8A10.5427560.4064310.7539650.066*
H8A20.6229960.3350770.8199600.066*
C7A0.48644 (15)0.36587 (16)0.89122 (13)0.0659 (5)
H7A10.4920160.4466330.9067770.079*
H7A20.4131890.3496410.8748490.079*
C2A0.51753 (11)0.23580 (12)0.74279 (10)0.0395 (3)
C1B0.28711 (11)0.26050 (12)1.17047 (10)0.0402 (3)
C5B0.17991 (16)0.10414 (16)0.71256 (14)0.0659 (5)
H5B10.1092310.0925530.6849590.079*
H5B20.2276710.0695860.6665940.079*
C4B0.19057 (15)0.04172 (15)0.81164 (14)0.0630 (5)
H4B10.2627250.0476820.8368360.076*
H4B20.1756570.0385760.8001300.076*
C8B0.15023 (12)0.30606 (12)0.88766 (11)0.0443 (3)
H8B10.2163970.3460830.8976530.053*
H8B20.0968170.3514090.9187600.053*
C3A0.53213 (14)0.11999 (13)0.78878 (11)0.0506 (4)
H3A10.5785690.0765770.7473540.061*
H3A20.4647270.0815360.7861330.061*
C6B0.20140 (15)0.23161 (16)0.71647 (13)0.0619 (5)
H6B10.2712080.2436950.7460250.074*
H6B20.2008630.2607530.6484050.074*
C5A0.50865 (18)0.17020 (17)0.97414 (13)0.0726 (5)
H5A10.5263100.1360751.0388620.087*
H5A20.4357720.1523000.9575810.087*
C6A0.51947 (16)0.29866 (17)0.98366 (13)0.0650 (5)
H6A10.4778720.3240161.0387390.078*
H6A20.5921960.3164711.0010020.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0894 (3)0.0358 (2)0.0411 (2)0.00783 (18)0.01484 (19)0.00011 (15)
S1B0.0670 (3)0.0429 (2)0.0457 (2)0.00184 (17)0.01074 (18)0.00288 (16)
N3A0.0522 (7)0.0365 (6)0.0382 (6)0.0023 (5)0.0011 (5)0.0036 (5)
N2B0.0599 (7)0.0347 (6)0.0388 (6)0.0003 (5)0.0047 (5)0.0003 (5)
N2A0.0606 (7)0.0334 (6)0.0351 (6)0.0012 (5)0.0041 (5)0.0021 (5)
N1A0.0874 (10)0.0363 (6)0.0451 (7)0.0066 (6)0.0151 (7)0.0027 (5)
N3B0.0592 (7)0.0351 (6)0.0429 (6)0.0019 (5)0.0027 (5)0.0015 (5)
C7B0.0589 (9)0.0437 (8)0.0503 (8)0.0043 (7)0.0118 (7)0.0072 (7)
N1B0.0825 (10)0.0411 (7)0.0458 (7)0.0054 (7)0.0131 (7)0.0013 (6)
C1A0.0468 (7)0.0375 (7)0.0355 (7)0.0004 (6)0.0023 (5)0.0010 (5)
C2B0.0468 (7)0.0352 (7)0.0411 (7)0.0018 (6)0.0018 (6)0.0016 (6)
C3B0.0709 (10)0.0354 (7)0.0530 (9)0.0098 (7)0.0072 (8)0.0003 (7)
C4A0.0868 (12)0.0516 (9)0.0463 (9)0.0098 (9)0.0095 (8)0.0046 (7)
C8A0.0733 (11)0.0415 (8)0.0488 (8)0.0128 (7)0.0122 (8)0.0004 (7)
C7A0.0771 (12)0.0584 (10)0.0608 (10)0.0140 (9)0.0154 (9)0.0240 (8)
C2A0.0417 (7)0.0388 (7)0.0380 (7)0.0023 (6)0.0020 (5)0.0028 (6)
C1B0.0425 (7)0.0407 (7)0.0376 (7)0.0034 (6)0.0035 (5)0.0002 (6)
C5B0.0755 (12)0.0659 (11)0.0566 (10)0.0118 (9)0.0078 (9)0.0245 (9)
C4B0.0680 (11)0.0459 (9)0.0738 (11)0.0080 (8)0.0148 (9)0.0209 (8)
C8B0.0537 (8)0.0343 (7)0.0449 (8)0.0003 (6)0.0017 (6)0.0022 (6)
C3A0.0690 (10)0.0407 (8)0.0417 (8)0.0039 (7)0.0029 (7)0.0030 (6)
C6B0.0734 (11)0.0675 (11)0.0453 (8)0.0214 (9)0.0077 (8)0.0101 (8)
C5A0.0998 (15)0.0739 (13)0.0446 (9)0.0177 (11)0.0110 (9)0.0009 (9)
C6A0.0768 (12)0.0725 (12)0.0460 (9)0.0025 (9)0.0047 (8)0.0177 (8)
Geometric parameters (Å, º) top
S1A—C1A1.6855 (14)C4A—H4A10.9700
S1B—C1B1.6828 (14)C4A—H4A20.9700
N3A—C2A1.2820 (18)C8A—C2A1.4978 (19)
N3A—N2A1.3913 (16)C8A—C7A1.522 (3)
N2B—C1B1.3486 (18)C8A—H8A10.9700
N2B—N3B1.3850 (16)C8A—H8A20.9700
N2B—H2B0.8600C7A—C6A1.509 (3)
N2A—C1A1.3456 (17)C7A—H7A10.9700
N2A—H2A0.8600C7A—H7A20.9700
N1A—C1A1.3173 (18)C2A—C3A1.497 (2)
N1A—H1A10.8600C5B—C4B1.512 (3)
N1A—H1A20.8600C5B—C6B1.518 (3)
N3B—C2B1.2798 (18)C5B—H5B10.9700
C7B—C6B1.517 (2)C5B—H5B20.9700
C7B—C8B1.524 (2)C4B—H4B10.9700
C7B—H7B10.9700C4B—H4B20.9700
C7B—H7B20.9700C8B—H8B10.9700
N1B—C1B1.3178 (19)C8B—H8B20.9700
N1B—H1B10.8600C3A—H3A10.9700
N1B—H1B20.8600C3A—H3A20.9700
C2B—C8B1.4981 (19)C6B—H6B10.9700
C2B—C3B1.5038 (19)C6B—H6B20.9700
C3B—C4B1.521 (2)C5A—C6A1.515 (3)
C3B—H3B10.9700C5A—H5A10.9700
C3B—H3B20.9700C5A—H5A20.9700
C4A—C5A1.515 (3)C6A—H6A10.9700
C4A—C3A1.522 (2)C6A—H6A20.9700
C2A—N3A—N2A117.89 (12)H7A1—C7A—H7A2107.5
C1B—N2B—N3B118.37 (12)N3A—C2A—C3A123.94 (12)
C1B—N2B—H2B120.8N3A—C2A—C8A114.94 (13)
N3B—N2B—H2B120.8C3A—C2A—C8A121.12 (12)
C1A—N2A—N3A118.25 (11)N1B—C1B—N2B116.18 (13)
C1A—N2A—H2A120.9N1B—C1B—S1B124.00 (11)
N3A—N2A—H2A120.9N2B—C1B—S1B119.81 (11)
C1A—N1A—H1A1120.0C4B—C5B—C6B115.80 (14)
C1A—N1A—H1A2120.0C4B—C5B—H5B1108.3
H1A1—N1A—H1A2120.0C6B—C5B—H5B1108.3
C2B—N3B—N2B118.27 (12)C4B—C5B—H5B2108.3
C6B—C7B—C8B114.26 (13)C6B—C5B—H5B2108.3
C6B—C7B—H7B1108.7H5B1—C5B—H5B2107.4
C8B—C7B—H7B1108.7C5B—C4B—C3B114.50 (14)
C6B—C7B—H7B2108.7C5B—C4B—H4B1108.6
C8B—C7B—H7B2108.7C3B—C4B—H4B1108.6
H7B1—C7B—H7B2107.6C5B—C4B—H4B2108.6
C1B—N1B—H1B1120.0C3B—C4B—H4B2108.6
C1B—N1B—H1B2120.0H4B1—C4B—H4B2107.6
H1B1—N1B—H1B2120.0C2B—C8B—C7B115.87 (12)
N1A—C1A—N2A116.57 (12)C2B—C8B—H8B1108.3
N1A—C1A—S1A122.76 (11)C7B—C8B—H8B1108.3
N2A—C1A—S1A120.67 (10)C2B—C8B—H8B2108.3
N3B—C2B—C8B124.43 (13)C7B—C8B—H8B2108.3
N3B—C2B—C3B114.67 (13)H8B1—C8B—H8B2107.4
C8B—C2B—C3B120.89 (12)C2A—C3A—C4A117.02 (13)
C2B—C3B—C4B113.17 (14)C2A—C3A—H3A1108.0
C2B—C3B—H3B1108.9C4A—C3A—H3A1108.0
C4B—C3B—H3B1108.9C2A—C3A—H3A2108.0
C2B—C3B—H3B2108.9C4A—C3A—H3A2108.0
C4B—C3B—H3B2108.9H3A1—C3A—H3A2107.3
H3B1—C3B—H3B2107.8C7B—C6B—C5B114.63 (15)
C5A—C4A—C3A115.73 (16)C7B—C6B—H6B1108.6
C5A—C4A—H4A1108.3C5B—C6B—H6B1108.6
C3A—C4A—H4A1108.3C7B—C6B—H6B2108.6
C5A—C4A—H4A2108.3C5B—C6B—H6B2108.6
C3A—C4A—H4A2108.3H6B1—C6B—H6B2107.6
H4A1—C4A—H4A2107.4C4A—C5A—C6A115.19 (16)
C2A—C8A—C7A114.62 (14)C4A—C5A—H5A1108.5
C2A—C8A—H8A1108.6C6A—C5A—H5A1108.5
C7A—C8A—H8A1108.6C4A—C5A—H5A2108.5
C2A—C8A—H8A2108.6C6A—C5A—H5A2108.5
C7A—C8A—H8A2108.6H5A1—C5A—H5A2107.5
H8A1—C8A—H8A2107.6C7A—C6A—C5A115.30 (15)
C6A—C7A—C8A115.06 (15)C7A—C6A—H6A1108.5
C6A—C7A—H7A1108.5C5A—C6A—H6A1108.5
C8A—C7A—H7A1108.5C7A—C6A—H6A2108.5
C6A—C7A—H7A2108.5C5A—C6A—H6A2108.5
C8A—C7A—H7A2108.5H6A1—C6A—H6A2107.5
C2A—N3A—N2A—C1A177.23 (13)N3B—N2B—C1B—S1B176.43 (10)
C1B—N2B—N3B—C2B176.42 (13)C6B—C5B—C4B—C3B58.8 (2)
N3A—N2A—C1A—N1A2.5 (2)C2B—C3B—C4B—C5B78.37 (18)
N3A—N2A—C1A—S1A178.06 (10)N3B—C2B—C8B—C7B165.36 (14)
N2B—N3B—C2B—C8B0.9 (2)C3B—C2B—C8B—C7B13.4 (2)
N2B—N3B—C2B—C3B179.74 (13)C6B—C7B—C8B—C2B58.26 (18)
N3B—C2B—C3B—C4B104.03 (16)N3A—C2A—C3A—C4A176.63 (15)
C8B—C2B—C3B—C4B74.84 (18)C8A—C2A—C3A—C4A2.8 (2)
C2A—C8A—C7A—C6A80.50 (19)C5A—C4A—C3A—C2A62.9 (2)
N2A—N3A—C2A—C3A0.6 (2)C8B—C7B—C6B—C5B85.86 (19)
N2A—N3A—C2A—C8A179.98 (12)C4B—C5B—C6B—C7B65.3 (2)
C7A—C8A—C2A—N3A113.48 (16)C3A—C4A—C5A—C6A82.1 (2)
C7A—C8A—C2A—C3A66.0 (2)C8A—C7A—C6A—C5A62.0 (2)
N3B—N2B—C1B—N1B4.7 (2)C4A—C5A—C6A—C7A62.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A1···N3A0.862.222.5943 (2)106
N1B—H1B1···N3B0.862.222.5904 (2)106
N1A—H1A2···S1Bi0.862.643.4642 (2)160
N1B—H1B2···S1Aii0.862.533.3499 (2)161
N2B—H2B···S1Aiii0.862.873.6254 (2)147
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1; (iii) x+1/2, y+1/2, z+3/2.
 

Funding information

Funding for this research was provided by: Department of Science and Technology, New Dehli (grant No. EMR/2014/000467, to RK).

References

First citationAkkurt, M., Mohamed, S. K., Mague, J. T., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o359.  CSD CrossRef IUCr Journals Google Scholar
First citationAli, M. A. & Livingstone, S. E. (1974). Coord. Chem. Rev. 13, 101–132.  CrossRef CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Prpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArjmand, F., Mohani, B. & Ahmad, S. (2007). Eur. J. Med. Chem. 40, 1103–1110.  CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGingras, B. A., Somorjai, R. L. & Bayley, C. H. (1961). Can. J. Chem. 39, 973–985.  CrossRef CAS Web of Science Google Scholar
First citationLobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.  Web of Science CrossRef CAS Google Scholar
First citationOliveira, R. B. de, deSouza-Fagundes, E. M., Soares, R. P., Andrade, A. A., Krettli, A. U. & Zani, C. L. (2008). Eur. J. Med. Chem. 43, 1983–1988.  PubMed Google Scholar
First citationPadmanabhan, P., Khaleefathullah, S., Kaveri, K., Palani, G., Ramanathan, G., Thennarasu, S. & Sivagnanam, U. T. (2017). J. Med. Virol. 89, 546–552.  CrossRef CAS PubMed Google Scholar
First citationSharma, R., Agarwal, S. K., Rawat, S. & Nagar, M. (2006). Transition Met. Chem. 31, 201–206.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, K., Barwa, M. S. & Tyagi, P. (2008). Eur. J. Med. Chem. 42, 394–402.  CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds