organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

7-(Bi­phenyl-4-yl)-6-hy­dr­oxy­indan-1-one

aDepartment of Chemistry, Saint Mary's University, Halifax, NS, Canada
*Correspondence e-mail: kai.ylijoki@smu.ca

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 7 June 2019; accepted 2 July 2019; online 16 July 2019)

The title compound, C21H16O2, was isolated from the reaction of 1-(2-meth­oxy­eth­oxy)-1-vinyl­cyclo­propane, 4-ethynylbiphenyl, and CO in a [5 + 1 + 2 + 1] cyclo­addition reaction catalysed by [Rh(CO)2Cl]2. The crystals precipitated directly from the crude reaction mixture. A hydrogen-bonding framework between the hy­droxy and carbonyl groups of a symmetry-related neighbour connects the mol­ecules into chains running parallel to the crystallographic c axis. A minor non-merohedral twin component was included in the refinement.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The carbonyl group of the five-membered ring lies out of the indanone ring plane (defined by C1–C9), with a distance of 0.486 (5) Å between O2 and the least-squares plane, while the hydroxyl oxygen essentially lies in the plane [0.078 (5) Å between O1 and the least-squares plane]. The dihedral angle between the indanone ring plane and the plane of the aromatic ring directly bonded to C9 (C10–C15) is 49.6 (1)°, and that within the biphenyl group is smaller at 36.2 (2)°.

[Figure 1]
Figure 1
Mol­ecular structure of the title compound showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, hydrogen bonds are observed between the OH donor and the carbonyl acceptor of a symmetry-related mol­ecule, creating chains (Figs. 2[link] and 3[link]; Table 1[link]). The metrics for this inter­molecular bond are similar to those in the structurally related compound 6-hy­droxy-7-phenyl-1-indanone (refcode YANPIN in the CSD, Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; Wender et al., 2005[Wender, P. A., Gamber, G. G., Hubbard, R. D., Pham, S. M. & Zhang, L. (2005). J. Am. Chem. Soc. 127, 2836-2837.]), which crystallizes in the monoclinic space group P21/c with unit-cell dimensions a = 12.061 (1), b = 15.232 (1), c = 12.918 Å and β = 102.32°, with two mol­ecules in the asymmetric unit. When compared to the title compound, the carbonyl is more in plane with the indanone ring framework (0.230 and 0.161 Å deviations from the plane for the carbonyl O atoms of the two independent mol­ecules), the hydroxyl O atoms are again coplanar with the indanone (0.096 and 0.004 Å deviations), and the dihedral angle between the indanone and phenyl planes is larger (61.4 and 60.8°; Wender et al., 2005[Wender, P. A., Gamber, G. G., Hubbard, R. D., Pham, S. M. & Zhang, L. (2005). J. Am. Chem. Soc. 127, 2836-2837.]). The hydrogen-bonding framework is similar in both crystal structures.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.89 (2) 1.86 (2) 2.734 (4) 168 (5)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Diagram showing the inter­molecular hydrogen-bonding pattern. Ellipsoids are drawn at the 50% probability level. Hydrogen bonds are drawn as dashed black lines.
[Figure 3]
Figure 3
Packing diagram of the title compound viewed along the a axis. Ellipsoids are drawn at the 50% probability level.

Synthesis and crystallization

The title compound was prepared through a modification of the published procedure (Wender et al., 2005[Wender, P. A., Gamber, G. G., Hubbard, R. D., Pham, S. M. & Zhang, L. (2005). J. Am. Chem. Soc. 127, 2836-2837.]). An amount of 1-(2-meth­oxy­eth­oxy)-1-vinyl­cyclo­propane (17.1 mg, 0.1203 mmol) was dissolved in toluene-d8 (300 µL). The catalyst [Rh(CO)2Cl]2 (0.6 mg, 0.0015 mmol) was added, followed by 4-ethynylbiphenyl (10.7 mg, 0.0600 mmol) in toluene-d8 (300 µL). The solution was placed in an NMR tube and capped with a septum. The tube was removed from the glovebox and, via a needle, the headspace was purged with CO gas. The tube was heated at 60°C for 40 h in an oil bath. As the reaction proceeded, the product precipitated from solution as tiny pale yellow–brown crystals. The NMR spectroscopic data were in agreement with those previously reported.

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2[link]. One reflection ([\overline8] 1 3) showed poor agreement in the final refinement and was omitted in the last cycles. The routine TwinRotMax implemented in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) indicated that there was a minor twin component present in the crystal. The twin law, [[\overline{1}] 0 0, 0 [\overline{1}] 0, 0.668 0 1], was added to the refinement and the batch scale factor refined to 0.0034 (7). Inclusion of the twin law did improve the statistics of the refinement slightly.

Table 2
Experimental details

Crystal data
Chemical formula C21H16O2
Mr 300.34
Crystal system, space group Monoclinic, P21/c
Temperature (K) 125
a, b, c (Å) 9.384 (3), 11.032 (4), 14.827 (5)
β (°) 102.609 (4)
V3) 1498.0 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.23 × 0.20 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.508, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 14915, 2745, 1711
Rint 0.117
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.233, 1.08
No. of reflections 2745
No. of parameters 212
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.31
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b).

7-(Biphenyl-4-yl)-6-hydroxyindan-1-one top
Crystal data top
C21H16O2F(000) = 632
Mr = 300.34Dx = 1.332 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.384 (3) ÅCell parameters from 2589 reflections
b = 11.032 (4) Åθ = 2.2–24.7°
c = 14.827 (5) ŵ = 0.09 mm1
β = 102.609 (4)°T = 125 K
V = 1498.0 (9) Å3Plate, yellow
Z = 40.23 × 0.20 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
2745 independent reflections
Radiation source: sealed tube1711 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.117
φ and ω scansθmax = 25.4°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.508, Tmax = 0.745k = 1313
14915 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: mixed
wR(F2) = 0.233H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.1129P)2 + 1.384P]
where P = (Fo2 + 2Fc2)/3
2745 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.37 e Å3
1 restraintΔρmin = 0.31 e Å3
0 constraints
Special details top

Refinement. Refined as a 2-component twin. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms bonded to carbon were included at geometrically idealized positions and were not refined. The isotropic thermal parameters of the hydrogen atoms were fixed at 1.2Ueq of the parent carbon atom and 1.5Ueq for the hydrogen bonded to oxygen. A bond length restraint was applied to the hydroxyl group, O—H = 0.85 (2) Å, to keep its geometry reasonable.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1692 (3)0.6107 (2)0.01317 (18)0.0288 (7)
H10.172 (5)0.617 (4)0.0462 (15)0.043*
O20.2090 (3)0.8497 (3)0.33830 (19)0.0334 (8)
C10.1781 (4)0.7254 (3)0.0493 (3)0.0232 (9)
C20.1621 (5)0.8252 (3)0.0101 (3)0.0261 (10)
H20.1421190.8126620.0750410.031*
C30.1749 (5)0.9418 (4)0.0245 (3)0.0282 (10)
H30.1636421.0094270.0160590.034*
C40.2041 (4)0.9583 (3)0.1182 (3)0.0240 (9)
C50.2194 (5)1.0771 (4)0.1702 (3)0.0334 (11)
H5A0.1258391.1220540.1577940.040*
H5B0.2954711.1285780.1527230.040*
C60.2631 (6)1.0398 (4)0.2708 (3)0.0355 (11)
H6A0.2056841.0849210.3084270.043*
H6B0.3682441.0554690.2957780.043*
C70.2303 (5)0.9043 (4)0.2713 (3)0.0269 (10)
C80.2171 (4)0.8599 (3)0.1774 (3)0.0221 (9)
C90.2065 (4)0.7385 (3)0.1440 (3)0.0211 (9)
C100.2317 (4)0.6321 (3)0.2074 (3)0.0229 (9)
C110.1350 (5)0.5348 (3)0.1952 (3)0.0258 (9)
H110.0513400.5359980.1457620.031*
C120.1593 (5)0.4362 (3)0.2543 (3)0.0272 (10)
H120.0918980.3707580.2448350.033*
C130.2803 (4)0.4312 (3)0.3270 (3)0.0232 (9)
C140.3793 (5)0.5282 (3)0.3376 (3)0.0269 (10)
H140.4645940.5263890.3858790.032*
C150.3534 (5)0.6263 (3)0.2783 (3)0.0262 (10)
H150.4215100.6912270.2866790.031*
C160.3046 (4)0.3278 (3)0.3935 (3)0.0233 (9)
C170.4434 (5)0.2874 (4)0.4329 (3)0.0286 (10)
H170.5252440.3237020.4154710.034*
C180.4652 (5)0.1946 (4)0.4975 (3)0.0347 (11)
H180.5611780.1668130.5233970.042*
C190.3472 (5)0.1429 (4)0.5239 (3)0.0308 (10)
H190.3620120.0802240.5689520.037*
C200.2083 (5)0.1815 (3)0.4855 (3)0.0271 (10)
H200.1270520.1448380.5032480.033*
C210.1865 (5)0.2742 (3)0.4205 (3)0.0249 (9)
H210.0901670.3011500.3944040.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0458 (19)0.0126 (14)0.0283 (16)0.0004 (12)0.0085 (14)0.0015 (12)
O20.051 (2)0.0207 (16)0.0288 (17)0.0034 (14)0.0101 (14)0.0019 (13)
C10.025 (2)0.013 (2)0.032 (2)0.0017 (16)0.0078 (18)0.0009 (17)
C20.032 (2)0.018 (2)0.028 (2)0.0003 (17)0.0057 (18)0.0013 (17)
C30.036 (3)0.014 (2)0.036 (3)0.0034 (17)0.011 (2)0.0052 (18)
C40.028 (2)0.0111 (19)0.036 (2)0.0009 (16)0.0123 (18)0.0054 (17)
C50.049 (3)0.012 (2)0.039 (3)0.0012 (19)0.010 (2)0.0014 (18)
C60.056 (3)0.014 (2)0.039 (3)0.0050 (19)0.016 (2)0.0049 (18)
C70.028 (2)0.018 (2)0.033 (2)0.0050 (17)0.0031 (18)0.0036 (18)
C80.028 (2)0.0136 (19)0.025 (2)0.0016 (16)0.0064 (17)0.0025 (16)
C90.022 (2)0.0119 (19)0.029 (2)0.0003 (15)0.0060 (17)0.0005 (16)
C100.031 (2)0.0104 (19)0.027 (2)0.0003 (16)0.0073 (18)0.0016 (16)
C110.029 (2)0.019 (2)0.029 (2)0.0022 (17)0.0058 (18)0.0032 (17)
C120.033 (2)0.014 (2)0.034 (2)0.0028 (17)0.0072 (19)0.0009 (18)
C130.029 (2)0.0122 (19)0.029 (2)0.0008 (17)0.0084 (18)0.0007 (16)
C140.029 (2)0.016 (2)0.034 (2)0.0016 (17)0.0028 (18)0.0014 (17)
C150.029 (2)0.014 (2)0.035 (2)0.0010 (17)0.0074 (19)0.0029 (17)
C160.030 (2)0.0128 (19)0.027 (2)0.0001 (17)0.0055 (18)0.0013 (16)
C170.028 (2)0.015 (2)0.042 (3)0.0015 (17)0.007 (2)0.0038 (18)
C180.035 (3)0.018 (2)0.047 (3)0.0020 (19)0.002 (2)0.009 (2)
C190.043 (3)0.014 (2)0.034 (2)0.0013 (19)0.006 (2)0.0047 (18)
C200.036 (3)0.016 (2)0.030 (2)0.0026 (18)0.0095 (19)0.0010 (17)
C210.030 (2)0.013 (2)0.031 (2)0.0017 (17)0.0061 (18)0.0006 (17)
Geometric parameters (Å, º) top
O1—C11.369 (5)C10—C111.393 (5)
O1—H10.887 (19)C11—C121.384 (5)
O2—C71.214 (5)C11—H110.9500
C1—C91.380 (6)C12—C131.386 (5)
C1—C21.397 (5)C12—H120.9500
C2—C31.380 (6)C13—C141.403 (6)
C2—H20.9500C13—C161.492 (5)
C3—C41.369 (5)C14—C151.383 (5)
C3—H30.9500C14—H140.9500
C4—C81.384 (5)C15—H150.9500
C4—C51.512 (5)C16—C171.381 (6)
C5—C61.515 (6)C16—C211.391 (6)
C5—H5A0.9900C17—C181.386 (6)
C5—H5B0.9900C17—H170.9500
C6—C71.527 (6)C18—C191.377 (6)
C6—H6A0.9900C18—H180.9500
C6—H6B0.9900C19—C201.371 (6)
C7—C81.456 (6)C19—H190.9500
C8—C91.423 (5)C20—C211.389 (6)
C9—C101.490 (5)C20—H200.9500
C10—C151.374 (5)C21—H210.9500
C1—O1—H1108 (3)C15—C10—C9120.7 (3)
O1—C1—C9118.5 (3)C11—C10—C9121.1 (4)
O1—C1—C2119.5 (3)C12—C11—C10120.7 (4)
C9—C1—C2122.0 (4)C12—C11—H11119.6
C3—C2—C1120.7 (4)C10—C11—H11119.6
C3—C2—H2119.6C11—C12—C13121.2 (4)
C1—C2—H2119.6C11—C12—H12119.4
C4—C3—C2118.9 (4)C13—C12—H12119.4
C4—C3—H3120.5C12—C13—C14117.9 (4)
C2—C3—H3120.5C12—C13—C16121.7 (3)
C3—C4—C8120.6 (4)C14—C13—C16120.5 (4)
C3—C4—C5127.5 (4)C15—C14—C13120.4 (4)
C8—C4—C5111.8 (3)C15—C14—H14119.8
C4—C5—C6104.0 (3)C13—C14—H14119.8
C4—C5—H5A111.0C10—C15—C14121.6 (4)
C6—C5—H5A111.0C10—C15—H15119.2
C4—C5—H5B111.0C14—C15—H15119.2
C6—C5—H5B111.0C17—C16—C21118.6 (4)
H5A—C5—H5B109.0C17—C16—C13121.3 (4)
C5—C6—C7105.0 (3)C21—C16—C13120.0 (4)
C5—C6—H6A110.7C16—C17—C18120.9 (4)
C7—C6—H6A110.7C16—C17—H17119.5
C5—C6—H6B110.7C18—C17—H17119.5
C7—C6—H6B110.7C19—C18—C17119.8 (4)
H6A—C6—H6B108.8C19—C18—H18120.1
O2—C7—C8128.4 (4)C17—C18—H18120.1
O2—C7—C6123.9 (4)C20—C19—C18120.2 (4)
C8—C7—C6107.4 (3)C20—C19—H19119.9
C4—C8—C9121.9 (4)C18—C19—H19119.9
C4—C8—C7108.7 (3)C19—C20—C21120.0 (4)
C9—C8—C7129.3 (3)C19—C20—H20120.0
C1—C9—C8115.8 (3)C21—C20—H20120.0
C1—C9—C10121.9 (3)C20—C21—C16120.5 (4)
C8—C9—C10122.2 (3)C20—C21—H21119.8
C15—C10—C11118.2 (4)C16—C21—H21119.8
O1—C1—C2—C3178.1 (4)C1—C9—C10—C15127.8 (4)
C9—C1—C2—C30.3 (7)C8—C9—C10—C1549.1 (6)
C1—C2—C3—C40.2 (6)C1—C9—C10—C1150.5 (6)
C2—C3—C4—C81.5 (6)C8—C9—C10—C11132.6 (4)
C2—C3—C4—C5178.7 (4)C15—C10—C11—C121.5 (6)
C3—C4—C5—C6175.6 (4)C9—C10—C11—C12179.9 (4)
C8—C4—C5—C67.0 (5)C10—C11—C12—C130.1 (6)
C4—C5—C6—C714.8 (5)C11—C12—C13—C141.4 (6)
C5—C6—C7—O2157.0 (4)C11—C12—C13—C16177.5 (4)
C5—C6—C7—C818.0 (5)C12—C13—C14—C151.6 (6)
C3—C4—C8—C92.4 (6)C16—C13—C14—C15177.3 (4)
C5—C4—C8—C9180.0 (4)C11—C10—C15—C141.3 (6)
C3—C4—C8—C7173.2 (4)C9—C10—C15—C14179.7 (4)
C5—C4—C8—C74.4 (5)C13—C14—C15—C100.2 (6)
O2—C7—C8—C4160.6 (4)C12—C13—C16—C17146.5 (4)
C6—C7—C8—C414.0 (5)C14—C13—C16—C1734.6 (6)
O2—C7—C8—C914.6 (7)C12—C13—C16—C2136.8 (6)
C6—C7—C8—C9170.8 (4)C14—C13—C16—C21142.1 (4)
O1—C1—C9—C8178.9 (3)C21—C16—C17—C180.5 (6)
C2—C1—C9—C80.5 (6)C13—C16—C17—C18177.3 (4)
O1—C1—C9—C101.8 (6)C16—C17—C18—C190.9 (7)
C2—C1—C9—C10176.6 (4)C17—C18—C19—C201.1 (7)
C4—C8—C9—C11.9 (6)C18—C19—C20—C210.9 (6)
C7—C8—C9—C1172.8 (4)C19—C20—C21—C160.5 (6)
C4—C8—C9—C10175.2 (4)C17—C16—C21—C200.3 (6)
C7—C8—C9—C1010.1 (7)C13—C16—C21—C20177.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.89 (2)1.86 (2)2.734 (4)168 (5)
Symmetry code: (i) x, y+3/2, z1/2.
 

Funding information

Financial support from the Canada Foundation for Innovation (CFI), the Faculties of Science and Graduate Studies and Research of Saint Mary's University, and the Natural Sciences and Engineering Research Council of Canada (NSERC USRA to RNM) is gratefully acknowledged.

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWender, P. A., Gamber, G. G., Hubbard, R. D., Pham, S. M. & Zhang, L. (2005). J. Am. Chem. Soc. 127, 2836–2837.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds