metal-organic compounds
Polymeric poly[[decaaquabis(μ6-1,8-disulfonato-9H-carbazole-3,6-dicarboxylato)di-μ3-hydroxy-pentazinc] decahydrate]
aCollege of Materials Science and Engineering, Beijing University of Technology, No. 100, Pingleyuan, Chaoyang District, Beijing, People's Republic of China, and bBeijing Key Laboratory for Green Catalysis and Separation, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
*Correspondence e-mail: wangbin10304@gmail.com
The 5(C14H5NO10S2)2(OH)2(H2O)10]n comprises three ZnII atoms, one of which is located on a centre of inversion, a tetra-negative carboxylate ligand, one μ3-hydroxide and five water molecules, each of which is coordinated. The ZnII atom, lying on a centre of inversion, is coordinated by trans sulfoxide-O atoms and four water molecules in an octahedral geometry. Another ZnII atom is coordinated by two carboxylate-O atoms, one hydroxy-O, one sulfoxide-O and a water-O atom to define a distorted trigonal–bipyramidal geometry; a close Zn⋯O(carboxylate) interaction derived from an asymmetrically coordinating ligand (Zn—O = 1.95 and 3.07 Å) suggests a 5 + 1 coordination geometry. The third ZnII atom is coordinated in an octahedral fashion by two hydroxy-O atoms, one carboxylate-O, one sulfoxide-O and two water-O atoms, the latter being mutually cis. In all, the carboxylate ligand binds six ZnII ions leading to a three-dimensional architecture. In the crystal, all acidic donors form hydrogen bonds to oxygen acceptors to contribute to the stability of the three-dimensional architecture.
of the title MOF, [ZnKeywords: crystal structure; metal–organic framework; ZnII; hydrogen bonding.
CCDC reference: 1915135
Structure description
In recent years, metal–organic frameworks (MOF's) have attracted much attention because of their fascinating architectures as well as their great potential applications in the areas of gas adsorption (Suh et al., 2012), gas separation (Li et al., 2012), (Liu et al., 2014), sensing (Kreno et al., 2012), etc. In this context, the synthesis and structure of a new ZnII-based MOF, [Zn5(μ3-OH)2(1,8-disulfo-9H-carbazole-3,6-dicarboxylate)2(H2O)10]n, (I), is reported herein. This MOF was constructed by the solvothermal reaction between 1,8-disulfo-9H-carbazole-3,6-dicarboxylic acid and Zn(NO3)2 in the presence of HBF4, as a competing reagent, in dimethylformamide (DMF).
Single-crystal X-ray diffraction reveals that (I) crystallizes in the triclinic P. The Fig. 1, comprises comprises three ZnII atoms, one of which (Zn3) is located on a centre of inversion, a tetra-negative carboxylate ligand, one μ3-hydroxide and five water molecules; each water molecule is coordinated. The hydroxide bridges three Zn atoms. A pair of centrosymmetrically related Zn2 atoms is connected by two hydroxide bridges with each hydroxide also bridging a Zn1 atom. Additional links between the Zn1 and Zn2 atoms are provided by bidentate bridging carboxylate ligands and sulfoxide-oxygen atoms. The coordination geometry for the Zn1 atom is completed by oxygen atoms derived from an asymmetrically coordinating (Zn1—O3, O4 = 1.95 and 3.07 Å) carboxylate residue and a water molecule. If the weak interaction were ignored, the Zn1 atom would be considered five-coordinate, distorted trigonal–bipyramidal with the sulfoxide-oxygen and the water-oxygen atoms occupying axial positions. The distorted octahedral coordination geometry for the Zn2 atom is completed by two water molecules which occupy mutually cis positions. A distinct distorted octahedral geometry is found for the Zn3 atom. This atom lies on a centre of inversion and is coordinated by two sulfoxide-oxygen atoms and four water molecules; from symmetry the sulfoxide-oxygen atoms are trans.
The carboxylate ligand binds six ZnII ions with one carboxylate residue (O1, O2) bridging two ZnII atoms (Zn1 and Zn2) and the other (O15, O16) being connected to a single ZnII atom (Zn2). One of the sulfoxide-oxygen atoms (O8) connects to a single ZnII centre (Zn3) while the other (O14) bridges two ZnII atoms (Zn1 and Zn2). In this way a three-dimensional architecture is generated, Fig. 2.
As anticipated from the chemical composition, there are extensive hydrogen-bonding interactions in the crystal, which contribute to the stability of the three-dimensional architecture, Table 1. All acidic donors form hydrogen bonds to oxygen acceptors.
Synthesis and crystallization
1,8-Disulfo-9H-carbazole-3,6-dicarboxylic acid (10 mg), Zn(NO3)2 (20 mg), and HBF4 (4 drops) were ultrasonically dissolved in DMF (2 ml) in a 4 ml Pyrex vial and sealed. The reaction system was then heated at 80°C for 24 h in an oven. Colourless crystals of the title complex suitable for single-crystal X-ray analysis were obtained from the reaction vessel.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1915135
https://doi.org/10.1107/S2414314619006679/tk4056sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314619006679/tk4056Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314619006679/tk4056Isup3.cdx
Data collection: CrysAlis PRO (Rigaku OD, 2017); cell
CrysAlis PRO (Rigaku OD, 2017); data reduction: CrysAlis PRO (Rigaku OD, 2017); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Gruene et al., 2014); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[Zn5(C14H5NO10S2)2(OH)2(H2O)10] | Z = 1 |
Mr = 1363.64 | F(000) = 684 |
Triclinic, P1 | Dx = 2.253 Mg m−3 |
a = 7.3573 (3) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 11.2345 (5) Å | Cell parameters from 3065 reflections |
c = 12.9215 (5) Å | θ = 4.1–74.3° |
α = 74.215 (4)° | µ = 6.36 mm−1 |
β = 78.085 (4)° | T = 289 K |
γ = 85.178 (4)° | Prism, colourless |
V = 1005.17 (8) Å3 | 0.10 × 0.08 × 0.04 mm |
Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, AtlasS2 diffractometer | 3966 independent reflections |
Radiation source: micro-focus sealed X-ray tube | 3348 reflections with I > 2σ(I) |
Detector resolution: 10.3376 pixels mm-1 | Rint = 0.037 |
ω scans | θmax = 74.6°, θmin = 3.6° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2017) | h = −9→5 |
Tmin = 0.674, Tmax = 1.000 | k = −13→13 |
6682 measured reflections | l = −16→13 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.043 | H-atom parameters constrained |
wR(F2) = 0.129 | w = 1/[σ2(Fo2) + (0.0715P)2 + 0.7146P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
3966 reflections | Δρmax = 0.73 e Å−3 |
303 parameters | Δρmin = −0.82 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The H atoms bound to the O5, O6 and O10 atoms were located from difference Fourier maps and had O—H bond lengths in the vicinity of 0.96 Å, Table 1. The H atoms bound to the O4 and O11 atoms were included in their idealized positions at 0.87 Å; Uiso(water-H) = 1.5Ueq(water-O). The hydroxide-H (1.00 Å) and amine-H (0.88 Å) atoms were included in their idealized positions with Uiso(hydroxide-H) = 1.2Ueq(hydroxide-O) and Uiso(amine-H) = 1.2Ueq(amine-N), respectively. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 1.06687 (8) | 0.72625 (5) | 0.00084 (4) | 0.02631 (17) | |
Zn2 | 0.98180 (8) | 0.93578 (5) | 0.12468 (4) | 0.02273 (16) | |
Zn3 | 0.5000 | 0.0000 | 0.5000 | 0.0297 (2) | |
S1 | 0.88904 (14) | 0.18599 (9) | 0.43688 (8) | 0.0250 (2) | |
S2 | 0.56934 (13) | 0.19518 (9) | 0.89732 (8) | 0.0214 (2) | |
O1 | 0.9726 (4) | 0.6195 (3) | 0.1462 (2) | 0.0303 (7) | |
O2 | 0.8944 (4) | 0.7689 (3) | 0.2326 (2) | 0.0291 (7) | |
O3 | 0.9412 (4) | 0.8915 (3) | −0.0134 (2) | 0.0225 (6) | |
H3 | 0.8051 | 0.8818 | −0.0069 | 0.027* | |
O4 | 0.7293 (3) | 1.0051 (3) | 0.1876 (2) | 0.0276 (6) | |
H4A | 0.6418 | 0.9868 | 0.1588 | 0.041* | |
H4B | 0.7277 | 1.0855 | 0.1679 | 0.041* | |
O5 | 1.1075 (3) | 0.9847 (3) | 0.2343 (2) | 0.0385 (8) | |
H5A | 1.2378 | 0.9611 | 0.2212 | 0.058* | |
H5B | 1.0955 | 1.0728 | 0.2237 | 0.058* | |
O6 | 0.8903 (6) | 0.6684 (6) | −0.0892 (4) | 0.0745 (16) | |
H6A | 0.7701 | 0.7101 | −0.0773 | 0.112* | |
H6B | 0.9440 | 0.6955 | −0.1668 | 0.112* | |
O7 | 1.0117 (5) | 0.1789 (3) | 0.3367 (3) | 0.0460 (9) | |
O8 | 0.7056 (5) | 0.1419 (3) | 0.4474 (3) | 0.0455 (9) | |
O9 | 0.9671 (6) | 0.1283 (3) | 0.5341 (3) | 0.0492 (10) | |
O10 | 0.3873 (5) | 0.0789 (3) | 0.3613 (3) | 0.0379 (8) | |
H10A | 0.2901 | 0.1378 | 0.3779 | 0.057* | |
H10B | 0.4828 | 0.1215 | 0.3034 | 0.057* | |
O11 | 0.31752 (19) | 0.1047 (2) | 0.58355 (17) | 0.0359 (8) | |
H11A | 0.3019 | 0.0719 | 0.6543 | 0.054* | |
H11B | 0.2063 | 0.1035 | 0.5700 | 0.054* | |
O12 | 0.54981 (19) | 0.11779 (12) | 0.82671 (10) | 0.0304 (7) | |
O13 | 0.4211 (2) | 0.18488 (12) | 0.99171 (10) | 0.0323 (7) | |
O14 | 0.75275 (18) | 0.17111 (12) | 0.92851 (10) | 0.0253 (6) | |
O15 | 0.26713 (18) | 0.62313 (11) | 0.94248 (11) | 0.0356 (8) | |
O16 | 0.3823 (2) | 0.77209 (11) | 0.79901 (12) | 0.0471 (10) | |
N1 | 0.7207 (2) | 0.30507 (11) | 0.63530 (12) | 0.0236 (7) | |
H1 | 0.7368 | 0.2242 | 0.6561 | 0.028* | |
C1 | 0.9111 (5) | 0.6577 (4) | 0.2306 (3) | 0.0218 (8) | |
C2 | 0.8569 (5) | 0.5611 (3) | 0.3364 (3) | 0.0201 (8) | |
C3 | 0.8957 (5) | 0.4361 (4) | 0.3383 (3) | 0.0209 (8) | |
H3A | 0.9520 | 0.4147 | 0.2724 | 0.025* | |
C4 | 0.8535 (6) | 0.3441 (3) | 0.4338 (3) | 0.0205 (8) | |
C5 | 0.7718 (5) | 0.3775 (3) | 0.5303 (3) | 0.0201 (8) | |
C6 | 0.7261 (5) | 0.5026 (3) | 0.5283 (3) | 0.0186 (7) | |
C7 | 0.7709 (6) | 0.5942 (4) | 0.4308 (3) | 0.0233 (8) | |
H7 | 0.7426 | 0.6787 | 0.4290 | 0.028* | |
C8 | 0.6395 (6) | 0.5024 (4) | 0.6396 (3) | 0.0210 (8) | |
C9 | 0.6405 (5) | 0.3788 (4) | 0.7030 (3) | 0.0197 (8) | |
C10 | 0.5641 (5) | 0.3480 (3) | 0.8149 (3) | 0.0194 (7) | |
C11 | 0.4823 (6) | 0.4419 (4) | 0.8617 (3) | 0.0232 (8) | |
H11 | 0.4295 | 0.4227 | 0.9377 | 0.028* | |
C12 | 0.4767 (6) | 0.5649 (4) | 0.7983 (3) | 0.0245 (8) | |
C13 | 0.5567 (6) | 0.5963 (4) | 0.6876 (3) | 0.0240 (8) | |
H13 | 0.5553 | 0.6799 | 0.6453 | 0.029* | |
C14 | 0.3707 (6) | 0.6619 (4) | 0.8495 (3) | 0.0265 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0359 (3) | 0.0189 (3) | 0.0183 (3) | 0.0028 (2) | 0.0066 (2) | −0.0050 (2) |
Zn2 | 0.0299 (3) | 0.0173 (3) | 0.0177 (3) | 0.0015 (2) | 0.0006 (2) | −0.0036 (2) |
Zn3 | 0.0381 (5) | 0.0205 (4) | 0.0279 (4) | −0.0003 (3) | 0.0019 (3) | −0.0084 (3) |
S1 | 0.0335 (5) | 0.0142 (4) | 0.0261 (5) | 0.0018 (4) | 0.0006 (4) | −0.0088 (4) |
S2 | 0.0232 (5) | 0.0173 (4) | 0.0198 (5) | −0.0003 (3) | −0.0010 (4) | −0.0006 (3) |
O1 | 0.0453 (18) | 0.0229 (15) | 0.0173 (14) | −0.0038 (13) | 0.0070 (12) | −0.0053 (12) |
O2 | 0.0465 (18) | 0.0125 (13) | 0.0203 (14) | 0.0000 (12) | 0.0062 (13) | −0.0004 (11) |
O3 | 0.0238 (13) | 0.0195 (13) | 0.0212 (14) | 0.0006 (11) | −0.0008 (11) | −0.0032 (11) |
O4 | 0.0287 (15) | 0.0199 (14) | 0.0324 (16) | 0.0031 (11) | 0.0003 (12) | −0.0094 (12) |
O5 | 0.046 (2) | 0.0373 (18) | 0.0413 (19) | 0.0059 (15) | −0.0161 (16) | −0.0212 (16) |
O6 | 0.049 (2) | 0.128 (5) | 0.068 (3) | −0.002 (3) | −0.006 (2) | −0.067 (3) |
O7 | 0.061 (2) | 0.0268 (17) | 0.042 (2) | −0.0013 (16) | 0.0201 (17) | −0.0166 (15) |
O8 | 0.0417 (19) | 0.0243 (17) | 0.067 (3) | −0.0139 (14) | 0.0021 (18) | −0.0107 (17) |
O9 | 0.073 (3) | 0.0278 (18) | 0.050 (2) | 0.0151 (18) | −0.024 (2) | −0.0111 (16) |
O10 | 0.0384 (18) | 0.0402 (19) | 0.0323 (18) | 0.0020 (15) | −0.0001 (14) | −0.0104 (15) |
O11 | 0.0463 (19) | 0.0264 (16) | 0.0323 (17) | 0.0051 (14) | 0.0016 (14) | −0.0117 (14) |
O12 | 0.0344 (17) | 0.0204 (15) | 0.0368 (17) | −0.0019 (12) | −0.0084 (14) | −0.0066 (13) |
O13 | 0.0268 (15) | 0.0342 (17) | 0.0261 (16) | −0.0007 (13) | 0.0051 (12) | 0.0007 (13) |
O14 | 0.0258 (14) | 0.0206 (14) | 0.0281 (15) | 0.0018 (11) | −0.0038 (12) | −0.0056 (12) |
O15 | 0.0427 (18) | 0.0313 (17) | 0.0282 (16) | 0.0121 (14) | 0.0052 (14) | −0.0132 (14) |
O16 | 0.076 (3) | 0.0220 (16) | 0.0325 (18) | 0.0126 (16) | 0.0118 (17) | −0.0102 (14) |
N1 | 0.0336 (18) | 0.0126 (15) | 0.0187 (16) | 0.0036 (13) | 0.0039 (14) | −0.0022 (13) |
C1 | 0.0249 (19) | 0.0219 (19) | 0.0157 (18) | 0.0010 (15) | 0.0000 (15) | −0.0034 (15) |
C2 | 0.0243 (18) | 0.0138 (17) | 0.0172 (18) | −0.0015 (14) | 0.0014 (15) | 0.0006 (14) |
C3 | 0.0242 (19) | 0.0202 (19) | 0.0172 (18) | −0.0009 (15) | 0.0043 (14) | −0.0091 (15) |
C4 | 0.0269 (19) | 0.0153 (18) | 0.0210 (19) | 0.0017 (14) | −0.0015 (15) | −0.0105 (15) |
C5 | 0.0228 (18) | 0.0136 (17) | 0.0204 (19) | −0.0001 (14) | 0.0018 (15) | −0.0029 (14) |
C6 | 0.0226 (18) | 0.0143 (17) | 0.0178 (18) | −0.0025 (14) | 0.0005 (14) | −0.0051 (14) |
C7 | 0.034 (2) | 0.0146 (18) | 0.020 (2) | 0.0030 (15) | −0.0026 (16) | −0.0063 (15) |
C8 | 0.028 (2) | 0.0151 (18) | 0.0197 (19) | 0.0041 (15) | −0.0037 (15) | −0.0052 (15) |
C9 | 0.0211 (18) | 0.0173 (18) | 0.0181 (19) | 0.0007 (14) | 0.0007 (14) | −0.0042 (14) |
C10 | 0.0263 (19) | 0.0138 (17) | 0.0154 (18) | 0.0004 (14) | −0.0013 (14) | −0.0016 (14) |
C11 | 0.030 (2) | 0.024 (2) | 0.0141 (18) | 0.0059 (16) | −0.0011 (15) | −0.0064 (15) |
C12 | 0.030 (2) | 0.020 (2) | 0.023 (2) | 0.0072 (16) | −0.0041 (16) | −0.0087 (16) |
C13 | 0.032 (2) | 0.0180 (19) | 0.022 (2) | 0.0062 (16) | −0.0029 (16) | −0.0100 (16) |
C14 | 0.037 (2) | 0.026 (2) | 0.0175 (19) | 0.0120 (17) | −0.0044 (17) | −0.0115 (16) |
Zn1—O15i | 1.9523 (14) | O5—H5B | 0.9610 |
Zn1—O1 | 1.956 (3) | O6—H6A | 0.9687 |
Zn1—O3 | 1.983 (3) | O6—H6B | 0.9721 |
Zn1—O6 | 2.155 (4) | O10—H10A | 0.9642 |
Zn1—O14ii | 2.292 (3) | O10—H10B | 0.9623 |
Zn1—Zn2 | 3.1435 (8) | O11—H11A | 0.8742 |
Zn2—O4 | 2.048 (2) | O11—H11B | 0.8734 |
Zn2—O5 | 2.052 (2) | O14—Zn2ii | 2.2868 (13) |
Zn2—O3 | 2.061 (3) | O14—Zn1ii | 2.2922 (15) |
Zn2—O2 | 2.069 (3) | O15—C14 | 1.268 (4) |
Zn2—O3iii | 2.118 (3) | O15—Zn1v | 1.9522 (13) |
Zn2—O14ii | 2.2868 (15) | O16—C14 | 1.233 (5) |
Zn2—Zn2iii | 3.1170 (10) | N1—C5 | 1.373 (4) |
Zn3—O11 | 2.0438 (12) | N1—C9 | 1.378 (4) |
Zn3—O11iv | 2.0438 (12) | N1—H1 | 0.8800 |
Zn3—O10iv | 2.076 (3) | C1—C2 | 1.499 (5) |
Zn3—O10 | 2.077 (3) | C2—C7 | 1.384 (5) |
Zn3—O8iv | 2.164 (3) | C2—C3 | 1.404 (5) |
Zn3—O8 | 2.164 (3) | C3—C4 | 1.375 (5) |
S1—O7 | 1.434 (3) | C3—H3A | 0.9500 |
S1—O8 | 1.444 (4) | C4—C5 | 1.401 (5) |
S1—O9 | 1.456 (4) | C5—C6 | 1.413 (5) |
S1—C4 | 1.764 (4) | C6—C7 | 1.391 (5) |
S2—O13 | 1.4443 (15) | C6—C8 | 1.447 (5) |
S2—O12 | 1.4546 (17) | C7—H7 | 0.9500 |
S2—O14 | 1.4698 (16) | C8—C13 | 1.400 (5) |
S2—C10 | 1.759 (4) | C8—C9 | 1.407 (5) |
O1—C1 | 1.263 (5) | C9—C10 | 1.397 (5) |
O2—C1 | 1.252 (5) | C10—C11 | 1.390 (5) |
O3—Zn2iii | 2.118 (3) | C11—C12 | 1.404 (6) |
O3—H3 | 1.0000 | C11—H11 | 0.9500 |
O4—H4A | 0.8700 | C12—C13 | 1.389 (6) |
O4—H4B | 0.8695 | C12—C14 | 1.507 (5) |
O5—H5A | 0.9653 | C13—H13 | 0.9500 |
O15i—Zn1—O1 | 102.03 (10) | Zn1—O3—Zn2 | 102.04 (12) |
O15i—Zn1—O3 | 148.20 (10) | Zn1—O3—Zn2iii | 130.19 (14) |
O1—Zn1—O3 | 109.11 (12) | Zn2—O3—Zn2iii | 96.46 (12) |
O15i—Zn1—O6 | 88.49 (16) | Zn1—O3—H3 | 108.5 |
O1—Zn1—O6 | 98.54 (18) | Zn2—O3—H3 | 108.5 |
O3—Zn1—O6 | 93.05 (18) | Zn2iii—O3—H3 | 108.5 |
O15i—Zn1—O14ii | 96.53 (8) | Zn2—O4—H4A | 110.9 |
O1—Zn1—O14ii | 91.47 (10) | Zn2—O4—H4B | 110.3 |
O3—Zn1—O14ii | 76.75 (9) | H4A—O4—H4B | 103.3 |
O6—Zn1—O14ii | 167.65 (17) | Zn2—O5—H5A | 109.1 |
O15i—Zn1—Zn2 | 143.08 (10) | Zn2—O5—H5B | 109.3 |
O1—Zn1—Zn2 | 82.99 (9) | H5A—O5—H5B | 108.9 |
O3—Zn1—Zn2 | 39.88 (8) | Zn1—O6—H6A | 108.4 |
O6—Zn1—Zn2 | 127.35 (14) | Zn1—O6—H6B | 108.2 |
O14ii—Zn1—Zn2 | 46.57 (4) | H6A—O6—H6B | 107.8 |
O4—Zn2—O5 | 91.79 (9) | S1—O8—Zn3 | 153.0 (2) |
O4—Zn2—O3 | 104.80 (10) | Zn3—O10—H10A | 109.0 |
O5—Zn2—O3 | 161.66 (11) | Zn3—O10—H10B | 109.1 |
O4—Zn2—O2 | 85.16 (12) | H10A—O10—H10B | 108.9 |
O5—Zn2—O2 | 93.54 (14) | Zn3—O11—H11A | 111.1 |
O3—Zn2—O2 | 95.59 (12) | Zn3—O11—H11B | 110.4 |
O4—Zn2—O3iii | 92.72 (11) | H11A—O11—H11B | 103.0 |
O5—Zn2—O3iii | 87.98 (13) | S2—O14—Zn2ii | 135.38 (9) |
O3—Zn2—O3iii | 83.54 (12) | S2—O14—Zn1ii | 134.74 (8) |
O2—Zn2—O3iii | 177.43 (12) | Zn2ii—O14—Zn1ii | 86.71 (5) |
O4—Zn2—O14ii | 170.98 (10) | C14—O15—Zn1v | 121.9 (2) |
O5—Zn2—O14ii | 89.45 (9) | C5—N1—C9 | 109.4 (2) |
O3—Zn2—O14ii | 75.40 (10) | C5—N1—H1 | 125.3 |
O2—Zn2—O14ii | 85.85 (10) | C9—N1—H1 | 125.3 |
O3iii—Zn2—O14ii | 96.25 (9) | O2—C1—O1 | 125.2 (4) |
O4—Zn2—Zn2iii | 101.60 (8) | O2—C1—C2 | 118.0 (4) |
O5—Zn2—Zn2iii | 127.12 (11) | O1—C1—C2 | 116.8 (4) |
O3—Zn2—Zn2iii | 42.47 (8) | C7—C2—C3 | 120.4 (3) |
O2—Zn2—Zn2iii | 138.00 (9) | C7—C2—C1 | 120.8 (3) |
O3iii—Zn2—Zn2iii | 41.07 (8) | C3—C2—C1 | 118.8 (4) |
O14ii—Zn2—Zn2iii | 84.68 (4) | C4—C3—C2 | 121.2 (4) |
O4—Zn2—Zn1 | 128.73 (7) | C4—C3—H3A | 119.4 |
O5—Zn2—Zn1 | 133.03 (7) | C2—C3—H3A | 119.4 |
O3—Zn2—Zn1 | 38.08 (8) | C3—C4—C5 | 118.6 (3) |
O2—Zn2—Zn1 | 70.94 (8) | C3—C4—S1 | 122.0 (3) |
O3iii—Zn2—Zn1 | 109.46 (8) | C5—C4—S1 | 119.4 (3) |
O14ii—Zn2—Zn1 | 46.72 (7) | N1—C5—C4 | 130.1 (3) |
Zn2iii—Zn2—Zn1 | 72.90 (2) | N1—C5—C6 | 109.3 (3) |
O11—Zn3—O11iv | 180.00 (10) | C4—C5—C6 | 120.6 (3) |
O11—Zn3—O10iv | 90.50 (11) | C7—C6—C5 | 119.7 (4) |
O11iv—Zn3—O10iv | 89.50 (11) | C7—C6—C8 | 134.6 (4) |
O11—Zn3—O10 | 89.50 (11) | C5—C6—C8 | 105.7 (3) |
O11iv—Zn3—O10 | 90.50 (11) | C2—C7—C6 | 119.5 (4) |
O10iv—Zn3—O10 | 180.0 | C2—C7—H7 | 120.3 |
O11—Zn3—O8iv | 88.12 (12) | C6—C7—H7 | 120.3 |
O11iv—Zn3—O8iv | 91.88 (12) | C13—C8—C9 | 120.2 (4) |
O10iv—Zn3—O8iv | 90.07 (15) | C13—C8—C6 | 132.6 (4) |
O10—Zn3—O8iv | 89.93 (15) | C9—C8—C6 | 107.2 (3) |
O11—Zn3—O8 | 91.88 (12) | N1—C9—C10 | 130.6 (3) |
O11iv—Zn3—O8 | 88.12 (12) | N1—C9—C8 | 108.4 (3) |
O10iv—Zn3—O8 | 89.93 (15) | C10—C9—C8 | 120.9 (4) |
O10—Zn3—O8 | 90.07 (15) | C11—C10—C9 | 118.4 (3) |
O8iv—Zn3—O8 | 180.0 | C11—C10—S2 | 119.5 (3) |
O7—S1—O8 | 113.5 (2) | C9—C10—S2 | 122.1 (3) |
O7—S1—O9 | 113.3 (2) | C10—C11—C12 | 120.9 (4) |
O8—S1—O9 | 111.2 (3) | C10—C11—H11 | 119.6 |
O7—S1—C4 | 107.3 (2) | C12—C11—H11 | 119.6 |
O8—S1—C4 | 104.8 (2) | C13—C12—C11 | 120.9 (4) |
O9—S1—C4 | 106.1 (2) | C13—C12—C14 | 119.8 (4) |
O13—S2—O12 | 114.31 (12) | C11—C12—C14 | 119.2 (4) |
O13—S2—O14 | 111.87 (10) | C12—C13—C8 | 118.7 (4) |
O12—S2—O14 | 109.57 (9) | C12—C13—H13 | 120.7 |
O13—S2—C10 | 107.86 (14) | C8—C13—H13 | 120.7 |
O12—S2—C10 | 105.17 (14) | O16—C14—O15 | 123.6 (3) |
O14—S2—C10 | 107.63 (15) | O16—C14—C12 | 119.8 (4) |
C1—O1—Zn1 | 124.5 (3) | O15—C14—C12 | 116.5 (4) |
C1—O2—Zn2 | 135.7 (3) |
Symmetry codes: (i) x+1, y, z−1; (ii) −x+2, −y+1, −z+1; (iii) −x+2, −y+2, −z; (iv) −x+1, −y, −z+1; (v) x−1, y, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O13vi | 1.00 | 1.83 | 2.804 (5) | 163 |
O4—H4A···O12vi | 0.87 | 1.86 | 2.632 (4) | 147 |
O4—H4B···O16vii | 0.87 | 1.85 | 2.608 (3) | 145 |
O5—H5A···O12ii | 0.97 | 1.81 | 2.736 (3) | 160 |
O5—H5B···O7viii | 0.96 | 2.09 | 2.818 (4) | 131 |
O6—H6A···O13vi | 0.97 | 2.09 | 2.976 (5) | 151 |
O6—H6B···O7ix | 0.97 | 2.24 | 3.156 (7) | 157 |
O10—H10A···O7x | 0.96 | 2.20 | 2.941 (5) | 133 |
O10—H10B···O16vi | 0.96 | 1.72 | 2.666 (5) | 166 |
O11—H11A···O4vi | 0.87 | 1.96 | 2.837 (3) | 179 |
O11—H11B···O9x | 0.87 | 1.89 | 2.757 (5) | 171 |
N1—H1···O9 | 0.88 | 2.46 | 2.962 (4) | 117 |
N1—H1···O12 | 0.88 | 2.40 | 2.908 | 117 |
Symmetry codes: (ii) −x+2, −y+1, −z+1; (vi) −x+1, −y+1, −z+1; (vii) −x+1, −y+2, −z+1; (viii) x, y+1, z; (ix) −x+2, −y+1, −z; (x) x−1, y, z. |
Acknowledgements
The authors thank Beijing University of Technology for supporting this work.
Funding information
Funding for this research was provided by: China Postdoctoral Science Foundation (grant No. 2018M642556).
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Gruene, T., Hahn, H. W., Luebben, A. V., Meilleur, F. & Sheldrick, G. M. (2014). J. Appl. Cryst. 47, 462–466. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P. & Hupp, J. T. (2012). Chem. Rev. 112, 1105–1125. Web of Science CrossRef CAS PubMed Google Scholar
Li, J. R., Sculley, J. & Zhou, H.-C. (2012). Chem. Rev. 112, 869–932. Web of Science CrossRef CAS PubMed Google Scholar
Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L. & Su, C. Y. (2014). Chem. Soc. Rev. 43, 6011–6061. Web of Science CrossRef CAS PubMed Google Scholar
Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Oxford, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D. W. (2012). Chem. Rev. 112, 782–835. Web of Science CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.