metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Polymeric poly[[deca­aquabis(μ6-1,8-di­sulfonato-9H-carbazole-3,6-di­carboxylato)di-μ3-hy­droxy-pentazinc] decahydrate]

CROSSMARK_Color_square_no_text.svg

aCollege of Materials Science and Engineering, Beijing University of Technology, No. 100, Pingleyuan, Chaoyang District, Beijing, People's Republic of China, and bBeijing Key Laboratory for Green Catalysis and Separation, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
*Correspondence e-mail: wangbin10304@gmail.com

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 13 March 2019; accepted 9 May 2019; online 14 May 2019)

The asymmetric unit of the title MOF, [Zn5(C14H5NO10S2)2(OH)2(H2O)10]n comprises three ZnII atoms, one of which is located on a centre of inversion, a tetra-negative carboxyl­ate ligand, one μ3-hydroxide and five water mol­ecules, each of which is coordinated. The ZnII atom, lying on a centre of inversion, is coordinated by trans sulfoxide-O atoms and four water mol­ecules in an octa­hedral geometry. Another ZnII atom is coordinated by two carboxyl­ate-O atoms, one hy­droxy-O, one sulfoxide-O and a water-O atom to define a distorted trigonal–bipyramidal geometry; a close Zn⋯O(carboxyl­ate) inter­action derived from an asymmetrically coordinating ligand (Zn—O = 1.95 and 3.07 Å) suggests a 5 + 1 coordination geometry. The third ZnII atom is coordinated in an octa­hedral fashion by two hy­droxy-O atoms, one carboxyl­ate-O, one sulfoxide-O and two water-O atoms, the latter being mutually cis. In all, the carboxyl­ate ligand binds six ZnII ions leading to a three-dimensional architecture. In the crystal, all acidic donors form hydrogen bonds to oxygen acceptors to contribute to the stability of the three-dimensional architecture.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In recent years, metal–organic frameworks (MOF's) have attracted much attention because of their fascinating architectures as well as their great potential applications in the areas of gas adsorption (Suh et al., 2012[Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D. W. (2012). Chem. Rev. 112, 782-835.]), gas separation (Li et al., 2012[Li, J. R., Sculley, J. & Zhou, H.-C. (2012). Chem. Rev. 112, 869-932.]), heterogeneous catalysis (Liu et al., 2014[Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L. & Su, C. Y. (2014). Chem. Soc. Rev. 43, 6011-6061.]), sensing (Kreno et al., 2012[Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P. & Hupp, J. T. (2012). Chem. Rev. 112, 1105-1125.]), etc. In this context, the synthesis and structure of a new ZnII-based MOF, [Zn5(μ3-OH)2(1,8-disulfo-9H-carbazole-3,6-di­carboxyl­ate)2(H2O)10]n, (I), is reported herein. This MOF was constructed by the solvothermal reaction between 1,8-disulfo-9H-carbazole-3,6-di­carb­oxy­lic acid and Zn(NO3)2 in the presence of HBF4, as a competing reagent, in di­methyl­formamide (DMF).

Single-crystal X-ray diffraction reveals that (I) crystallizes in the triclinic space group P[\overline{1}]. The asymmetric unit, Fig. 1[link], comprises comprises three ZnII atoms, one of which (Zn3) is located on a centre of inversion, a tetra-negative carboxyl­ate ligand, one μ3-hydroxide and five water mol­ecules; each water mol­ecule is coordinated. The hydroxide bridges three Zn atoms. A pair of centrosymmetrically related Zn2 atoms is connected by two hydroxide bridges with each hydroxide also bridging a Zn1 atom. Additional links between the Zn1 and Zn2 atoms are provided by bidentate bridging carboxyl­ate ligands and sulfoxide-oxygen atoms. The coordination geometry for the Zn1 atom is completed by oxygen atoms derived from an asymmetrically coordinating (Zn1—O3, O4 = 1.95 and 3.07 Å) carboxyl­ate residue and a water mol­ecule. If the weak inter­action were ignored, the Zn1 atom would be considered five-coordinate, distorted trigonal–bipyramidal with the sulfoxide-oxygen and the water-oxygen atoms occupying axial positions. The distorted octa­hedral coordination geometry for the Zn2 atom is completed by two water mol­ecules which occupy mutually cis positions. A distinct distorted octa­hedral geometry is found for the Zn3 atom. This atom lies on a centre of inversion and is coordinated by two sulfoxide-oxygen atoms and four water mol­ecules; from symmetry the sulfoxide-oxygen atoms are trans.

[Figure 1]
Figure 1
A view of the asymmetric unit of (I), showing the atom numbering, with displacement ellipsoids drawn at the 50% probability level.

The carboxyl­ate ligand binds six ZnII ions with one carboxyl­ate residue (O1, O2) bridging two ZnII atoms (Zn1 and Zn2) and the other (O15, O16) being connected to a single ZnII atom (Zn2). One of the sulfoxide-oxygen atoms (O8) connects to a single ZnII centre (Zn3) while the other (O14) bridges two ZnII atoms (Zn1 and Zn2). In this way a three-dimensional architecture is generated, Fig. 2[link].

[Figure 2]
Figure 2
A view of the three-dimensional structure of (I); H atoms have been omitted for reasons of clarity.

As anti­cipated from the chemical composition, there are extensive hydrogen-bonding inter­actions in the crystal, which contribute to the stability of the three-dimensional architecture, Table 1[link]. All acidic donors form hydrogen bonds to oxygen acceptors.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O13i 1.00 1.83 2.804 (5) 163
O4—H4A⋯O12i 0.87 1.86 2.632 (4) 147
O4—H4B⋯O16ii 0.87 1.85 2.608 (3) 145
O5—H5A⋯O12iii 0.97 1.81 2.736 (3) 160
O5—H5B⋯O7iv 0.96 2.09 2.818 (4) 131
O6—H6A⋯O13i 0.97 2.09 2.976 (5) 151
O6—H6B⋯O7v 0.97 2.24 3.156 (7) 157
O10—H10A⋯O7vi 0.96 2.20 2.941 (5) 133
O10—H10B⋯O16i 0.96 1.72 2.666 (5) 166
O11—H11A⋯O4i 0.87 1.96 2.837 (3) 179
O11—H11B⋯O9vi 0.87 1.89 2.757 (5) 171
N1—H1⋯O9 0.88 2.46 2.962 (4) 117
N1—H1⋯O12 0.88 2.40 2.908 117
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+1; (iii) -x+2, -y+1, -z+1; (iv) x, y+1, z; (v) -x+2, -y+1, -z; (vi) x-1, y, z.

Synthesis and crystallization

1,8-Disulfo-9H-carbazole-3,6-di­carb­oxy­lic acid (10 mg), Zn(NO3)2 (20 mg), and HBF4 (4 drops) were ultrasonically dissolved in DMF (2 ml) in a 4 ml Pyrex vial and sealed. The reaction system was then heated at 80°C for 24 h in an oven. Colourless crystals of the title complex suitable for single-crystal X-ray analysis were obtained from the reaction vessel.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Zn5(C14H5NO10S2)2(OH)2(H2O)10]
Mr 1363.64
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 289
a, b, c (Å) 7.3573 (3), 11.2345 (5), 12.9215 (5)
α, β, γ (°) 74.215 (4), 78.085 (4), 85.178 (4)
V3) 1005.17 (8)
Z 1
Radiation type Cu Kα
μ (mm−1) 6.36
Crystal size (mm) 0.10 × 0.08 × 0.04
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, AtlasS2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Oxford, England.])
Tmin, Tmax 0.674, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6682, 3966, 3348
Rint 0.037
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.129, 1.08
No. of reflections 3966
No. of parameters 303
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.73, −0.82
Computer programs: CrysAlis PRO (Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Oxford, England.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Gruene et al., 2014[Gruene, T., Hahn, H. W., Luebben, A. V., Meilleur, F. & Sheldrick, G. M. (2014). J. Appl. Cryst. 47, 462-466.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2017); cell refinement: CrysAlis PRO (Rigaku OD, 2017); data reduction: CrysAlis PRO (Rigaku OD, 2017); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Gruene et al., 2014); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[[decaaquabis(µ6-1,8-disulfonato-9H-carbazole-3,6-dicarboxylato)di-µ3-hydroxy-pentazinc] decahydrate] top
Crystal data top
[Zn5(C14H5NO10S2)2(OH)2(H2O)10]Z = 1
Mr = 1363.64F(000) = 684
Triclinic, P1Dx = 2.253 Mg m3
a = 7.3573 (3) ÅCu Kα radiation, λ = 1.54184 Å
b = 11.2345 (5) ÅCell parameters from 3065 reflections
c = 12.9215 (5) Åθ = 4.1–74.3°
α = 74.215 (4)°µ = 6.36 mm1
β = 78.085 (4)°T = 289 K
γ = 85.178 (4)°Prism, colourless
V = 1005.17 (8) Å30.10 × 0.08 × 0.04 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, AtlasS2
diffractometer
3966 independent reflections
Radiation source: micro-focus sealed X-ray tube3348 reflections with I > 2σ(I)
Detector resolution: 10.3376 pixels mm-1Rint = 0.037
ω scansθmax = 74.6°, θmin = 3.6°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2017)
h = 95
Tmin = 0.674, Tmax = 1.000k = 1313
6682 measured reflectionsl = 1613
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0715P)2 + 0.7146P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3966 reflectionsΔρmax = 0.73 e Å3
303 parametersΔρmin = 0.82 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The H atoms bound to the O5, O6 and O10 atoms were located from difference Fourier maps and had O—H bond lengths in the vicinity of 0.96 Å, Table 1. The H atoms bound to the O4 and O11 atoms were included in their idealized positions at 0.87 Å; Uiso(water-H) = 1.5Ueq(water-O). The hydroxide-H (1.00 Å) and amine-H (0.88 Å) atoms were included in their idealized positions with Uiso(hydroxide-H) = 1.2Ueq(hydroxide-O) and Uiso(amine-H) = 1.2Ueq(amine-N), respectively.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn11.06687 (8)0.72625 (5)0.00084 (4)0.02631 (17)
Zn20.98180 (8)0.93578 (5)0.12468 (4)0.02273 (16)
Zn30.50000.00000.50000.0297 (2)
S10.88904 (14)0.18599 (9)0.43688 (8)0.0250 (2)
S20.56934 (13)0.19518 (9)0.89732 (8)0.0214 (2)
O10.9726 (4)0.6195 (3)0.1462 (2)0.0303 (7)
O20.8944 (4)0.7689 (3)0.2326 (2)0.0291 (7)
O30.9412 (4)0.8915 (3)0.0134 (2)0.0225 (6)
H30.80510.88180.00690.027*
O40.7293 (3)1.0051 (3)0.1876 (2)0.0276 (6)
H4A0.64180.98680.15880.041*
H4B0.72771.08550.16790.041*
O51.1075 (3)0.9847 (3)0.2343 (2)0.0385 (8)
H5A1.23780.96110.22120.058*
H5B1.09551.07280.22370.058*
O60.8903 (6)0.6684 (6)0.0892 (4)0.0745 (16)
H6A0.77010.71010.07730.112*
H6B0.94400.69550.16680.112*
O71.0117 (5)0.1789 (3)0.3367 (3)0.0460 (9)
O80.7056 (5)0.1419 (3)0.4474 (3)0.0455 (9)
O90.9671 (6)0.1283 (3)0.5341 (3)0.0492 (10)
O100.3873 (5)0.0789 (3)0.3613 (3)0.0379 (8)
H10A0.29010.13780.37790.057*
H10B0.48280.12150.30340.057*
O110.31752 (19)0.1047 (2)0.58355 (17)0.0359 (8)
H11A0.30190.07190.65430.054*
H11B0.20630.10350.57000.054*
O120.54981 (19)0.11779 (12)0.82671 (10)0.0304 (7)
O130.4211 (2)0.18488 (12)0.99171 (10)0.0323 (7)
O140.75275 (18)0.17111 (12)0.92851 (10)0.0253 (6)
O150.26713 (18)0.62313 (11)0.94248 (11)0.0356 (8)
O160.3823 (2)0.77209 (11)0.79901 (12)0.0471 (10)
N10.7207 (2)0.30507 (11)0.63530 (12)0.0236 (7)
H10.73680.22420.65610.028*
C10.9111 (5)0.6577 (4)0.2306 (3)0.0218 (8)
C20.8569 (5)0.5611 (3)0.3364 (3)0.0201 (8)
C30.8957 (5)0.4361 (4)0.3383 (3)0.0209 (8)
H3A0.95200.41470.27240.025*
C40.8535 (6)0.3441 (3)0.4338 (3)0.0205 (8)
C50.7718 (5)0.3775 (3)0.5303 (3)0.0201 (8)
C60.7261 (5)0.5026 (3)0.5283 (3)0.0186 (7)
C70.7709 (6)0.5942 (4)0.4308 (3)0.0233 (8)
H70.74260.67870.42900.028*
C80.6395 (6)0.5024 (4)0.6396 (3)0.0210 (8)
C90.6405 (5)0.3788 (4)0.7030 (3)0.0197 (8)
C100.5641 (5)0.3480 (3)0.8149 (3)0.0194 (7)
C110.4823 (6)0.4419 (4)0.8617 (3)0.0232 (8)
H110.42950.42270.93770.028*
C120.4767 (6)0.5649 (4)0.7983 (3)0.0245 (8)
C130.5567 (6)0.5963 (4)0.6876 (3)0.0240 (8)
H130.55530.67990.64530.029*
C140.3707 (6)0.6619 (4)0.8495 (3)0.0265 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0359 (3)0.0189 (3)0.0183 (3)0.0028 (2)0.0066 (2)0.0050 (2)
Zn20.0299 (3)0.0173 (3)0.0177 (3)0.0015 (2)0.0006 (2)0.0036 (2)
Zn30.0381 (5)0.0205 (4)0.0279 (4)0.0003 (3)0.0019 (3)0.0084 (3)
S10.0335 (5)0.0142 (4)0.0261 (5)0.0018 (4)0.0006 (4)0.0088 (4)
S20.0232 (5)0.0173 (4)0.0198 (5)0.0003 (3)0.0010 (4)0.0006 (3)
O10.0453 (18)0.0229 (15)0.0173 (14)0.0038 (13)0.0070 (12)0.0053 (12)
O20.0465 (18)0.0125 (13)0.0203 (14)0.0000 (12)0.0062 (13)0.0004 (11)
O30.0238 (13)0.0195 (13)0.0212 (14)0.0006 (11)0.0008 (11)0.0032 (11)
O40.0287 (15)0.0199 (14)0.0324 (16)0.0031 (11)0.0003 (12)0.0094 (12)
O50.046 (2)0.0373 (18)0.0413 (19)0.0059 (15)0.0161 (16)0.0212 (16)
O60.049 (2)0.128 (5)0.068 (3)0.002 (3)0.006 (2)0.067 (3)
O70.061 (2)0.0268 (17)0.042 (2)0.0013 (16)0.0201 (17)0.0166 (15)
O80.0417 (19)0.0243 (17)0.067 (3)0.0139 (14)0.0021 (18)0.0107 (17)
O90.073 (3)0.0278 (18)0.050 (2)0.0151 (18)0.024 (2)0.0111 (16)
O100.0384 (18)0.0402 (19)0.0323 (18)0.0020 (15)0.0001 (14)0.0104 (15)
O110.0463 (19)0.0264 (16)0.0323 (17)0.0051 (14)0.0016 (14)0.0117 (14)
O120.0344 (17)0.0204 (15)0.0368 (17)0.0019 (12)0.0084 (14)0.0066 (13)
O130.0268 (15)0.0342 (17)0.0261 (16)0.0007 (13)0.0051 (12)0.0007 (13)
O140.0258 (14)0.0206 (14)0.0281 (15)0.0018 (11)0.0038 (12)0.0056 (12)
O150.0427 (18)0.0313 (17)0.0282 (16)0.0121 (14)0.0052 (14)0.0132 (14)
O160.076 (3)0.0220 (16)0.0325 (18)0.0126 (16)0.0118 (17)0.0102 (14)
N10.0336 (18)0.0126 (15)0.0187 (16)0.0036 (13)0.0039 (14)0.0022 (13)
C10.0249 (19)0.0219 (19)0.0157 (18)0.0010 (15)0.0000 (15)0.0034 (15)
C20.0243 (18)0.0138 (17)0.0172 (18)0.0015 (14)0.0014 (15)0.0006 (14)
C30.0242 (19)0.0202 (19)0.0172 (18)0.0009 (15)0.0043 (14)0.0091 (15)
C40.0269 (19)0.0153 (18)0.0210 (19)0.0017 (14)0.0015 (15)0.0105 (15)
C50.0228 (18)0.0136 (17)0.0204 (19)0.0001 (14)0.0018 (15)0.0029 (14)
C60.0226 (18)0.0143 (17)0.0178 (18)0.0025 (14)0.0005 (14)0.0051 (14)
C70.034 (2)0.0146 (18)0.020 (2)0.0030 (15)0.0026 (16)0.0063 (15)
C80.028 (2)0.0151 (18)0.0197 (19)0.0041 (15)0.0037 (15)0.0052 (15)
C90.0211 (18)0.0173 (18)0.0181 (19)0.0007 (14)0.0007 (14)0.0042 (14)
C100.0263 (19)0.0138 (17)0.0154 (18)0.0004 (14)0.0013 (14)0.0016 (14)
C110.030 (2)0.024 (2)0.0141 (18)0.0059 (16)0.0011 (15)0.0064 (15)
C120.030 (2)0.020 (2)0.023 (2)0.0072 (16)0.0041 (16)0.0087 (16)
C130.032 (2)0.0180 (19)0.022 (2)0.0062 (16)0.0029 (16)0.0100 (16)
C140.037 (2)0.026 (2)0.0175 (19)0.0120 (17)0.0044 (17)0.0115 (16)
Geometric parameters (Å, º) top
Zn1—O15i1.9523 (14)O5—H5B0.9610
Zn1—O11.956 (3)O6—H6A0.9687
Zn1—O31.983 (3)O6—H6B0.9721
Zn1—O62.155 (4)O10—H10A0.9642
Zn1—O14ii2.292 (3)O10—H10B0.9623
Zn1—Zn23.1435 (8)O11—H11A0.8742
Zn2—O42.048 (2)O11—H11B0.8734
Zn2—O52.052 (2)O14—Zn2ii2.2868 (13)
Zn2—O32.061 (3)O14—Zn1ii2.2922 (15)
Zn2—O22.069 (3)O15—C141.268 (4)
Zn2—O3iii2.118 (3)O15—Zn1v1.9522 (13)
Zn2—O14ii2.2868 (15)O16—C141.233 (5)
Zn2—Zn2iii3.1170 (10)N1—C51.373 (4)
Zn3—O112.0438 (12)N1—C91.378 (4)
Zn3—O11iv2.0438 (12)N1—H10.8800
Zn3—O10iv2.076 (3)C1—C21.499 (5)
Zn3—O102.077 (3)C2—C71.384 (5)
Zn3—O8iv2.164 (3)C2—C31.404 (5)
Zn3—O82.164 (3)C3—C41.375 (5)
S1—O71.434 (3)C3—H3A0.9500
S1—O81.444 (4)C4—C51.401 (5)
S1—O91.456 (4)C5—C61.413 (5)
S1—C41.764 (4)C6—C71.391 (5)
S2—O131.4443 (15)C6—C81.447 (5)
S2—O121.4546 (17)C7—H70.9500
S2—O141.4698 (16)C8—C131.400 (5)
S2—C101.759 (4)C8—C91.407 (5)
O1—C11.263 (5)C9—C101.397 (5)
O2—C11.252 (5)C10—C111.390 (5)
O3—Zn2iii2.118 (3)C11—C121.404 (6)
O3—H31.0000C11—H110.9500
O4—H4A0.8700C12—C131.389 (6)
O4—H4B0.8695C12—C141.507 (5)
O5—H5A0.9653C13—H130.9500
O15i—Zn1—O1102.03 (10)Zn1—O3—Zn2102.04 (12)
O15i—Zn1—O3148.20 (10)Zn1—O3—Zn2iii130.19 (14)
O1—Zn1—O3109.11 (12)Zn2—O3—Zn2iii96.46 (12)
O15i—Zn1—O688.49 (16)Zn1—O3—H3108.5
O1—Zn1—O698.54 (18)Zn2—O3—H3108.5
O3—Zn1—O693.05 (18)Zn2iii—O3—H3108.5
O15i—Zn1—O14ii96.53 (8)Zn2—O4—H4A110.9
O1—Zn1—O14ii91.47 (10)Zn2—O4—H4B110.3
O3—Zn1—O14ii76.75 (9)H4A—O4—H4B103.3
O6—Zn1—O14ii167.65 (17)Zn2—O5—H5A109.1
O15i—Zn1—Zn2143.08 (10)Zn2—O5—H5B109.3
O1—Zn1—Zn282.99 (9)H5A—O5—H5B108.9
O3—Zn1—Zn239.88 (8)Zn1—O6—H6A108.4
O6—Zn1—Zn2127.35 (14)Zn1—O6—H6B108.2
O14ii—Zn1—Zn246.57 (4)H6A—O6—H6B107.8
O4—Zn2—O591.79 (9)S1—O8—Zn3153.0 (2)
O4—Zn2—O3104.80 (10)Zn3—O10—H10A109.0
O5—Zn2—O3161.66 (11)Zn3—O10—H10B109.1
O4—Zn2—O285.16 (12)H10A—O10—H10B108.9
O5—Zn2—O293.54 (14)Zn3—O11—H11A111.1
O3—Zn2—O295.59 (12)Zn3—O11—H11B110.4
O4—Zn2—O3iii92.72 (11)H11A—O11—H11B103.0
O5—Zn2—O3iii87.98 (13)S2—O14—Zn2ii135.38 (9)
O3—Zn2—O3iii83.54 (12)S2—O14—Zn1ii134.74 (8)
O2—Zn2—O3iii177.43 (12)Zn2ii—O14—Zn1ii86.71 (5)
O4—Zn2—O14ii170.98 (10)C14—O15—Zn1v121.9 (2)
O5—Zn2—O14ii89.45 (9)C5—N1—C9109.4 (2)
O3—Zn2—O14ii75.40 (10)C5—N1—H1125.3
O2—Zn2—O14ii85.85 (10)C9—N1—H1125.3
O3iii—Zn2—O14ii96.25 (9)O2—C1—O1125.2 (4)
O4—Zn2—Zn2iii101.60 (8)O2—C1—C2118.0 (4)
O5—Zn2—Zn2iii127.12 (11)O1—C1—C2116.8 (4)
O3—Zn2—Zn2iii42.47 (8)C7—C2—C3120.4 (3)
O2—Zn2—Zn2iii138.00 (9)C7—C2—C1120.8 (3)
O3iii—Zn2—Zn2iii41.07 (8)C3—C2—C1118.8 (4)
O14ii—Zn2—Zn2iii84.68 (4)C4—C3—C2121.2 (4)
O4—Zn2—Zn1128.73 (7)C4—C3—H3A119.4
O5—Zn2—Zn1133.03 (7)C2—C3—H3A119.4
O3—Zn2—Zn138.08 (8)C3—C4—C5118.6 (3)
O2—Zn2—Zn170.94 (8)C3—C4—S1122.0 (3)
O3iii—Zn2—Zn1109.46 (8)C5—C4—S1119.4 (3)
O14ii—Zn2—Zn146.72 (7)N1—C5—C4130.1 (3)
Zn2iii—Zn2—Zn172.90 (2)N1—C5—C6109.3 (3)
O11—Zn3—O11iv180.00 (10)C4—C5—C6120.6 (3)
O11—Zn3—O10iv90.50 (11)C7—C6—C5119.7 (4)
O11iv—Zn3—O10iv89.50 (11)C7—C6—C8134.6 (4)
O11—Zn3—O1089.50 (11)C5—C6—C8105.7 (3)
O11iv—Zn3—O1090.50 (11)C2—C7—C6119.5 (4)
O10iv—Zn3—O10180.0C2—C7—H7120.3
O11—Zn3—O8iv88.12 (12)C6—C7—H7120.3
O11iv—Zn3—O8iv91.88 (12)C13—C8—C9120.2 (4)
O10iv—Zn3—O8iv90.07 (15)C13—C8—C6132.6 (4)
O10—Zn3—O8iv89.93 (15)C9—C8—C6107.2 (3)
O11—Zn3—O891.88 (12)N1—C9—C10130.6 (3)
O11iv—Zn3—O888.12 (12)N1—C9—C8108.4 (3)
O10iv—Zn3—O889.93 (15)C10—C9—C8120.9 (4)
O10—Zn3—O890.07 (15)C11—C10—C9118.4 (3)
O8iv—Zn3—O8180.0C11—C10—S2119.5 (3)
O7—S1—O8113.5 (2)C9—C10—S2122.1 (3)
O7—S1—O9113.3 (2)C10—C11—C12120.9 (4)
O8—S1—O9111.2 (3)C10—C11—H11119.6
O7—S1—C4107.3 (2)C12—C11—H11119.6
O8—S1—C4104.8 (2)C13—C12—C11120.9 (4)
O9—S1—C4106.1 (2)C13—C12—C14119.8 (4)
O13—S2—O12114.31 (12)C11—C12—C14119.2 (4)
O13—S2—O14111.87 (10)C12—C13—C8118.7 (4)
O12—S2—O14109.57 (9)C12—C13—H13120.7
O13—S2—C10107.86 (14)C8—C13—H13120.7
O12—S2—C10105.17 (14)O16—C14—O15123.6 (3)
O14—S2—C10107.63 (15)O16—C14—C12119.8 (4)
C1—O1—Zn1124.5 (3)O15—C14—C12116.5 (4)
C1—O2—Zn2135.7 (3)
Symmetry codes: (i) x+1, y, z1; (ii) x+2, y+1, z+1; (iii) x+2, y+2, z; (iv) x+1, y, z+1; (v) x1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O13vi1.001.832.804 (5)163
O4—H4A···O12vi0.871.862.632 (4)147
O4—H4B···O16vii0.871.852.608 (3)145
O5—H5A···O12ii0.971.812.736 (3)160
O5—H5B···O7viii0.962.092.818 (4)131
O6—H6A···O13vi0.972.092.976 (5)151
O6—H6B···O7ix0.972.243.156 (7)157
O10—H10A···O7x0.962.202.941 (5)133
O10—H10B···O16vi0.961.722.666 (5)166
O11—H11A···O4vi0.871.962.837 (3)179
O11—H11B···O9x0.871.892.757 (5)171
N1—H1···O90.882.462.962 (4)117
N1—H1···O120.882.402.908117
Symmetry codes: (ii) x+2, y+1, z+1; (vi) x+1, y+1, z+1; (vii) x+1, y+2, z+1; (viii) x, y+1, z; (ix) x+2, y+1, z; (x) x1, y, z.
 

Acknowledgements

The authors thank Beijing University of Technology for supporting this work.

Funding information

Funding for this research was provided by: China Postdoctoral Science Foundation (grant No. 2018M642556).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationGruene, T., Hahn, H. W., Luebben, A. V., Meilleur, F. & Sheldrick, G. M. (2014). J. Appl. Cryst. 47, 462–466.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P. & Hupp, J. T. (2012). Chem. Rev. 112, 1105–1125.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, J. R., Sculley, J. & Zhou, H.-C. (2012). Chem. Rev. 112, 869–932.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLiu, J., Chen, L., Cui, H., Zhang, J., Zhang, L. & Su, C. Y. (2014). Chem. Soc. Rev. 43, 6011–6061.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Oxford, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuh, M. P., Park, H. J., Prasad, T. K. & Lim, D. W. (2012). Chem. Rev. 112, 782–835.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds