organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 6′-cyano-7′-phenyl-1′,6′,7′,7a'-tetra­hydro-3′H-spiro­[indeno­[1,2-b]quinoxaline-11,5′-pyrrolo[1,2-c]thia­zole-6′-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Devanga Arts College, Aruppukottai 626 101, Tamilnadu, India, bDepartment of Physics, University College of Engineering, Anna University Constituent College, Konam 629 004, Nagercoil, Tamilnadu, India, and cDepartment of Physics, Thiagarajar College, Madurai 625 009, Tamilnadu, India
*Correspondence e-mail: vasan692000@yahoo.co.in

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 21 August 2018; accepted 12 September 2018; online 18 September 2018)

In the title compound, C22H22ClN4O2S, the angle between the mean planes of the indene ring and the quinoxaline ring system is 3.93 (11)°. The five-membered indene and thia­zole rings both adopt envelope conformations while the pyrrole ring adopts a twisted conformation. The two acceptor O atoms form a chelated three-centred hydrogen bond with a phenyl C atom.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Quinoxaline derivatives have attracted considerable attention due to their biological activities and use as anti-viral, anti-bacterial, anti-inflammatory, anti-protozaoal, anti cancer, anti depressant and anti-HIV agents. Drugs containing a quinoxaline core are under clinical trial for anti­cancer therapeutic purposes (Zhang et al., 2013[Zhang, Q., Zhai, S., Li, L., Li, X., Zhou, H., Liu, A., Su, G., Mu, Q., Du, Y. & Yan, B. (2013). Biochem. Pharmacol. 86, 351-360.]). Indeno­quinoxaline derivatives have found applications in dyes (Sehlstedt et al., 1998[Sehlstedt, U., Aich, P., Bergman, J., Vallberg, H., Nordén, B. & Gräslund, A. (1998). J. Mol. Biol. 278, 31-56.]) and as organic semiconductors (Gazit et al., 1996[Gazit, A., App, H., McMahon, G., Chen, J., Levitzki, A. & Bohmer, F. D. (1996). J. Med. Chem. 39, 2170-2177.]). Moreover, thia­zole derivatives are found to be anti­tuberculous, bacteriostatic and fungistatic agents (Shao et al., 2004[Shao, L., Jin, Z., Liu, J.-B., Zhou, X., Zhang, Q., Hu, Y. & Fang, J.-X. (2004). Acta Cryst. E60, o2517-o2519.]). A search in the CSD (version 5.39, update, May 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures of the title compound containing indene, quinoxaline pyrrolo and thia­zole with no filters gave seven hits: DEHFUU (Muthuselvi et al., 2017[Muthuselvi, C., Muthu, M., Athimoolam, S., Ravikumar, B., Pandiarajan, S. & Krishnakumar, R. V. (2017). IUCrData, 2, x171305.]), DOPYO,(Sivakumar et al., 2014[Sivakumar, N., Viswanathan, V., Rao, J. N. S., Raghunathan, R. & Velmurugan, D. (2014). Acta Cryst. E70, o1111-o1112.]), DUXPET (Malathi et al.,2015[Malathi, K., Kanchithalaivan, S., Kumar, R. R., Almansour, A. I., Kumar, R. S. & Arumugam, N. (2015). Tetrahedron Lett. 56, 6132-6135.]), FUQCAX (Hamzehloueian et al., 2015[Hamzehloueian, M., Sarrafi, Y. & Aghaei, Z. (2015). RSC Adv. 5, 76368-76376.]), NIKSOR (Suhitha et al., 2013a[Suhitha, S., Gunasekaran, K., Gavaskar, D., Raghunathan, R. & Velmurugan, D. (2013a). Acta Cryst. E69, m501.]), NIKSUK (Suhitha et al., 2013b[Suhitha, S., Gunasekaran, K., Sureshbabu, A. R., Raghunathan, R. & Velmurugan, D. (2013b). Acta Cryst. E69, m500.]) and RENZUI (Muthuselvi et al., 2018[Muthuselvi, C., Muthu, M., Athimoolam, S., Ravikumar, B., Pandiarajan, S. & Krishnakumar, R. V. (2018). IUCrData, 3, x180238.]). In view of the important biological activities of indeno­quinoxaline-pyrolo­thia­zole derivatives, the crystal structure of the title compound has been determined (Fig. 1[link]).

[Figure 1]
Figure 1
Displacement ellipsoid plot (50% probability level) of the title compound, showing the atom-labelling scheme. H atoms have been omitted for clarity.

The five-membered thia­zole ring (S1/C17/C16/N3/C18) adopts an envelope conformation on S1 with puckering parameters Q(2) = 0.473 (2) Å and φ(2) = 358.2 (2)°. The pyrrole ring (N3/C1/C19/C23/C16) adopts a twisted conformation on C19—C23 with puckering amplitude Q(2) = 0.443 (3) Å and φ(2) = 82.6 (3)°. The five-membered indene ring (C1–C5) adopts an envelope conformation on C1 with puckering parameters Q(2) = 0.076 (3) Å and φ(2) = 182 (2)°, but the six-membered rings of both indene and quinoxaline does not show any significant deviation from planarity. The mean planes of indene and quinoxaline make an angle 3.93 (11)°.

The mean plane through the quinoxaline ring system and the fused indene ring makes dihedral angles of 76.36 (6) and 54.94 (8)°, respectively, with the mean planes through the pyrrole and thia­zole rings.

In the crystal, pairs of C17—H117B⋯·N4i hydrogen bonds (Table 1[link]) connect mol­ecules into inversion dimers with an R22(14) motif while C21—H21B⋯·O1ii hydrogen bonds form an R22(10) graph-set motif. Together, these inter­actions lead to the formation of chains running along the c-axis direction (Fig. 2[link]). The O atoms O1 and O2 form a chelated three-centered hydrogen bond with the phenyl carbon atom C27, leading to a dimeric R22(18) motif. The C18—H18B⋯·N2iv hydrogen bond forms an R22(24) graph-set motif. This C—H⋯·N hydrogen bond and the chelated three-centered C—H⋯·O hydrogen bonds lead to the formation of a linear chain extending along the b-axis direction (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17B⋯N4i 0.97 2.65 3.560 (4) 156
C21—H21B⋯O1ii 0.97 2.89 3.399 (3) 114
C27—H27⋯O1iii 0.93 2.90 3.562 (4) 129
C27—H27⋯O2iii 0.93 2.87 3.798 (4) 174
C18—H18B⋯N2iv 0.97 2.66 3.609 (4) 166
Symmetry codes: (i) [-x+1, y, -z+{\script{3\over 2}}]; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y, -z+1.
[Figure 2]
Figure 2
Part of the crystal structure of the title compound, showing the formation of R22(10) and R22(14) graph-set motifs. Dashed lines indicate hydrogen bonds. The fused indeno-quinoxaline rings and H atoms not involved in the hydrogen bonding have been omitted for the sake of clarity.
[Figure 3]
Figure 3
Part of the crystal structure of the title compound, showing the formation of R22(18) and R22(24) graph-set motifs. Dashed lines indicate hydrogen bonds. The H atoms not involved in the hydrogen bonding have been omitted for the sake of clarity.

Synthesis and crystallization

Equimolar amounts of 11H-indeno­[1,2-b]quinoxalin-11-one and thia­zolidine-4-carb­oxy­lic acid were added to methanol (20 ml) and the mixture was refluxed in a water bath for 2 min. Then an equimolar amount of propyl (E)-2-cyano-3-(phen­yl) acrylate was added to the reaction mixture and refluxing was continued until the completion of the reaction (monitored using TLC) after 4 h. The precipitated solid was filtered and washed with methanol to obtain the title compound. Colourless needle-shaped crystals were obtained by the slow evaporation of a chloro­form solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C30H24N4O2S
Mr 504.59
Crystal system, space group Monoclinic, C2/c
Temperature (K) 273
a, b, c (Å) 18.6131 (13), 18.2243 (13), 15.8867 (11)
β (°) 110.757 (1)
V3) 5039.2 (6)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.16
Crystal size (mm) 0.30 × 0.16 × 0.12
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.95, 1.0
No. of measured, independent and observed [I > 2σ(I)] reflections 26271, 5092, 3836
Rint 0.028
(sin θ/λ)max−1) 0.622
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.186, 1.03
No. of reflections 5092
No. of parameters 335
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.52, −0.16
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLUTON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: PLUTON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Ethyl 6'-cyano-7'-phenyl-1',6',7',7a'-tetrahydro-3'H-spiro[indeno[1,2-b]quinoxaline-11,5'-pyrrolo[1,2-c]thiazole-6'-carboxylate top
Crystal data top
C30H24N4O2SF(000) = 2112
Mr = 504.59Dx = 1.330 Mg m3
Dm = 1.32 Mg m3
Dm measured by floatation method
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 18.6131 (13) ÅCell parameters from 6051 reflections
b = 18.2243 (13) Åθ = 1.5–26.5°
c = 15.8867 (11) ŵ = 0.16 mm1
β = 110.757 (1)°T = 273 K
V = 5039.2 (6) Å3Needle, colorless
Z = 80.30 × 0.16 × 0.12 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3836 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
φ and ω scansθmax = 26.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2323
Tmin = 0.95, Tmax = 1.0k = 2222
26271 measured reflectionsl = 1919
5092 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.186 w = 1/[σ2(Fo2) + (0.1079P)2 + 2.3737P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5092 reflectionsΔρmax = 0.52 e Å3
335 parametersΔρmin = 0.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.30934 (4)0.17536 (4)0.57840 (5)0.0739 (3)
O10.45967 (11)0.30451 (11)0.37194 (12)0.0762 (5)
O20.57726 (10)0.25504 (11)0.43424 (11)0.0723 (5)
N10.61674 (11)0.13563 (12)0.64087 (13)0.0621 (5)
N20.61166 (12)0.04137 (12)0.49401 (14)0.0666 (5)
N30.45872 (10)0.18686 (11)0.61438 (12)0.0598 (5)
N40.63289 (13)0.31402 (15)0.64698 (17)0.0825 (7)
C10.48811 (12)0.18165 (13)0.54051 (14)0.0548 (5)
C20.43822 (13)0.14707 (13)0.44885 (14)0.0563 (5)
C30.48151 (13)0.09497 (14)0.42181 (15)0.0612 (6)
C40.55572 (13)0.08615 (13)0.49236 (15)0.0578 (5)
C50.56009 (12)0.13355 (13)0.56520 (15)0.0562 (5)
C60.67664 (13)0.08905 (14)0.64557 (16)0.0629 (6)
C70.67404 (13)0.04323 (14)0.57230 (17)0.0622 (6)
C80.73716 (15)0.00236 (16)0.5810 (2)0.0765 (7)
H80.7364700.0324980.5335070.092*
C90.79906 (15)0.00253 (19)0.6585 (2)0.0869 (9)
H90.8406940.0326860.6636100.104*
C100.80104 (15)0.0418 (2)0.7304 (2)0.0900 (9)
H100.8436910.0405670.7833540.108*
C110.74084 (14)0.08723 (18)0.72407 (18)0.0806 (8)
H110.7429150.1169670.7724520.097*
C120.36429 (14)0.16269 (15)0.39147 (16)0.0650 (6)
H120.3344150.1964940.4082660.078*
C130.33503 (15)0.12760 (16)0.30874 (17)0.0719 (7)
H130.2854220.1382160.2701130.086*
C140.37851 (17)0.07725 (18)0.28311 (18)0.0810 (8)
H140.3580920.0546410.2271590.097*
C150.45188 (16)0.05996 (16)0.33932 (16)0.0716 (7)
H150.4809130.0254850.3222030.086*
C160.43303 (13)0.26156 (14)0.62393 (15)0.0613 (6)
H160.4696450.2836970.6785220.074*
C170.35336 (15)0.25831 (17)0.63304 (19)0.0755 (7)
H17A0.3227300.3005480.6043780.091*
H17B0.3585050.2576680.6959710.091*
C180.40462 (15)0.13219 (16)0.62071 (19)0.0725 (7)
H18A0.4171000.1167420.6826960.087*
H18B0.4058370.0895590.5846820.087*
C190.50524 (12)0.26528 (13)0.52728 (14)0.0559 (5)
C200.50988 (14)0.27817 (13)0.43387 (16)0.0595 (6)
C210.59318 (19)0.2614 (2)0.3500 (2)0.0898 (9)
H21A0.5691010.2212970.3097380.108*
H21B0.5728030.3072570.3199890.108*
C220.57810 (14)0.29091 (15)0.59573 (16)0.0628 (6)
C230.43634 (13)0.30320 (13)0.54228 (15)0.0579 (6)
H230.3904630.2888510.4914800.070*
C240.43508 (13)0.38595 (14)0.54682 (17)0.0635 (6)
C250.48189 (15)0.42620 (17)0.6192 (2)0.0792 (8)
H250.5171070.4022870.6682550.095*
C260.47659 (19)0.5021 (2)0.6190 (3)0.0985 (11)
H260.5089780.5290910.6672540.118*
C270.4239 (2)0.5372 (2)0.5480 (3)0.1001 (11)
H270.4202690.5880460.5484160.120*
C280.3769 (2)0.49888 (17)0.4773 (3)0.0904 (9)
H280.3409600.5233280.4293660.108*
C290.38218 (16)0.42342 (15)0.4762 (2)0.0731 (7)
H290.3496850.3973410.4271020.088*
C300.6754 (2)0.2591 (3)0.3728 (3)0.1403 (17)
H30A0.6989590.2967440.4159870.210*
H30B0.6875030.2668640.3195520.210*
H30C0.6944500.2119810.3980390.210*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0546 (4)0.1003 (6)0.0709 (4)0.0089 (3)0.0272 (3)0.0014 (3)
O10.0766 (12)0.0963 (13)0.0531 (9)0.0020 (10)0.0197 (9)0.0065 (9)
O20.0684 (10)0.0938 (13)0.0640 (10)0.0025 (9)0.0349 (8)0.0006 (9)
N10.0505 (10)0.0813 (14)0.0550 (11)0.0075 (9)0.0193 (9)0.0018 (9)
N20.0626 (12)0.0781 (14)0.0654 (12)0.0012 (10)0.0304 (10)0.0021 (10)
N30.0508 (10)0.0833 (14)0.0498 (10)0.0048 (9)0.0232 (8)0.0061 (9)
N40.0566 (13)0.1076 (19)0.0755 (14)0.0109 (12)0.0137 (11)0.0064 (13)
C10.0470 (11)0.0719 (15)0.0463 (11)0.0013 (10)0.0175 (9)0.0042 (10)
C20.0551 (12)0.0683 (14)0.0481 (11)0.0080 (10)0.0214 (10)0.0027 (10)
C30.0610 (13)0.0737 (15)0.0513 (12)0.0078 (11)0.0229 (10)0.0045 (11)
C40.0575 (13)0.0670 (14)0.0559 (12)0.0020 (10)0.0287 (10)0.0029 (10)
C50.0505 (12)0.0711 (15)0.0512 (12)0.0004 (10)0.0231 (10)0.0051 (10)
C60.0500 (12)0.0808 (16)0.0623 (13)0.0050 (11)0.0253 (11)0.0062 (12)
C70.0518 (12)0.0745 (15)0.0683 (14)0.0002 (11)0.0310 (11)0.0042 (12)
C80.0600 (15)0.0912 (19)0.0889 (18)0.0045 (13)0.0395 (14)0.0050 (15)
C90.0539 (15)0.110 (2)0.105 (2)0.0155 (15)0.0383 (15)0.0020 (18)
C100.0512 (14)0.133 (3)0.0815 (18)0.0188 (15)0.0178 (13)0.0002 (18)
C110.0555 (14)0.118 (2)0.0666 (15)0.0141 (14)0.0202 (12)0.0042 (15)
C120.0557 (13)0.0815 (17)0.0549 (13)0.0072 (12)0.0159 (11)0.0068 (11)
C130.0637 (15)0.0923 (19)0.0543 (13)0.0121 (13)0.0142 (12)0.0051 (13)
C140.0829 (19)0.104 (2)0.0505 (13)0.0182 (16)0.0165 (13)0.0042 (14)
C150.0804 (17)0.0837 (18)0.0555 (14)0.0095 (14)0.0299 (13)0.0073 (12)
C160.0507 (12)0.0833 (16)0.0500 (12)0.0045 (11)0.0179 (10)0.0080 (11)
C170.0632 (15)0.104 (2)0.0678 (15)0.0002 (14)0.0332 (12)0.0061 (14)
C180.0722 (16)0.0829 (18)0.0721 (15)0.0038 (13)0.0374 (13)0.0158 (13)
C190.0482 (11)0.0705 (15)0.0502 (12)0.0030 (10)0.0187 (9)0.0004 (10)
C200.0605 (13)0.0682 (15)0.0527 (12)0.0086 (11)0.0237 (11)0.0053 (11)
C210.097 (2)0.120 (3)0.0687 (17)0.0065 (18)0.0489 (16)0.0110 (16)
C220.0526 (13)0.0817 (17)0.0562 (13)0.0019 (12)0.0219 (11)0.0003 (12)
C230.0475 (11)0.0750 (15)0.0510 (12)0.0037 (10)0.0171 (9)0.0081 (10)
C240.0508 (12)0.0759 (16)0.0714 (15)0.0082 (11)0.0310 (11)0.0120 (12)
C250.0595 (14)0.090 (2)0.095 (2)0.0110 (13)0.0364 (14)0.0284 (16)
C260.0746 (19)0.104 (3)0.136 (3)0.0325 (18)0.061 (2)0.056 (2)
C270.099 (2)0.079 (2)0.153 (3)0.0158 (19)0.084 (3)0.020 (2)
C280.106 (2)0.0700 (19)0.117 (2)0.0009 (17)0.066 (2)0.0001 (18)
C290.0704 (16)0.0769 (18)0.0795 (17)0.0056 (13)0.0358 (14)0.0029 (14)
C300.109 (3)0.219 (5)0.122 (3)0.036 (3)0.078 (3)0.039 (3)
Geometric parameters (Å, º) top
S1—C171.791 (3)C13—H130.9300
S1—C181.836 (3)C14—C151.377 (4)
O1—C201.192 (3)C14—H140.9300
O2—C201.321 (3)C15—H150.9300
O2—C211.475 (3)C16—C231.523 (3)
N1—C51.288 (3)C16—C171.541 (3)
N1—C61.382 (3)C16—H160.9800
N2—C41.316 (3)C17—H17A0.9700
N2—C71.369 (3)C17—H17B0.9700
N3—C181.445 (3)C18—H18A0.9700
N3—C11.463 (3)C18—H18B0.9700
N3—C161.468 (3)C19—C221.481 (3)
N4—C221.137 (3)C19—C201.535 (3)
C1—C51.531 (3)C19—C231.548 (3)
C1—C21.556 (3)C21—C301.443 (5)
C1—C191.586 (3)C21—H21A0.9700
C2—C121.384 (3)C21—H21B0.9700
C2—C31.407 (3)C23—C241.510 (4)
C3—C151.384 (3)C23—H230.9800
C3—C41.447 (3)C24—C251.382 (4)
C4—C51.423 (3)C24—C291.383 (4)
C6—C111.389 (3)C25—C261.387 (5)
C6—C71.419 (4)C25—H250.9300
C7—C81.405 (3)C26—C271.363 (5)
C8—C91.356 (4)C26—H260.9300
C8—H80.9300C27—C281.348 (5)
C9—C101.388 (4)C27—H270.9300
C9—H90.9300C28—C291.379 (4)
C10—C111.368 (4)C28—H280.9300
C10—H100.9300C29—H290.9300
C11—H110.9300C30—H30A0.9600
C12—C131.388 (4)C30—H30B0.9600
C12—H120.9300C30—H30C0.9600
C13—C141.377 (4)
C17—S1—C1888.14 (13)C17—C16—H16108.9
C20—O2—C21117.8 (2)C16—C17—S1106.09 (18)
C5—N1—C6114.2 (2)C16—C17—H17A110.5
C4—N2—C7114.4 (2)S1—C17—H17A110.5
C18—N3—C1118.6 (2)C16—C17—H17B110.5
C18—N3—C16111.81 (18)S1—C17—H17B110.5
C1—N3—C16111.78 (18)H17A—C17—H17B108.7
N3—C1—C5111.94 (17)N3—C18—S1106.59 (18)
N3—C1—C2120.54 (18)N3—C18—H18A110.4
C5—C1—C2100.70 (18)S1—C18—H18A110.4
N3—C1—C19101.18 (18)N3—C18—H18B110.4
C5—C1—C19112.66 (17)S1—C18—H18B110.4
C2—C1—C19110.27 (17)H18A—C18—H18B108.6
C12—C2—C3118.7 (2)C22—C19—C20108.11 (18)
C12—C2—C1131.1 (2)C22—C19—C23109.83 (18)
C3—C2—C1110.03 (19)C20—C19—C23114.47 (19)
C15—C3—C2121.4 (2)C22—C19—C1112.36 (19)
C15—C3—C4129.3 (2)C20—C19—C1110.98 (18)
C2—C3—C4109.3 (2)C23—C19—C1101.08 (17)
N2—C4—C5122.9 (2)O1—C20—O2126.7 (2)
N2—C4—C3128.0 (2)O1—C20—C19124.3 (2)
C5—C4—C3109.0 (2)O2—C20—C19109.0 (2)
N1—C5—C4124.7 (2)C30—C21—O2107.8 (3)
N1—C5—C1125.1 (2)C30—C21—H21A110.1
C4—C5—C1110.28 (19)O2—C21—H21A110.1
N1—C6—C11119.0 (2)C30—C21—H21B110.1
N1—C6—C7121.6 (2)O2—C21—H21B110.1
C11—C6—C7119.4 (2)H21A—C21—H21B108.5
N2—C7—C8119.0 (2)N4—C22—C19176.6 (3)
N2—C7—C6122.1 (2)C24—C23—C16116.79 (19)
C8—C7—C6118.9 (2)C24—C23—C19118.75 (19)
C9—C8—C7120.2 (3)C16—C23—C19101.22 (18)
C9—C8—H8119.9C24—C23—H23106.4
C7—C8—H8119.9C16—C23—H23106.4
C8—C9—C10120.8 (3)C19—C23—H23106.4
C8—C9—H9119.6C25—C24—C29118.1 (3)
C10—C9—H9119.6C25—C24—C23123.6 (3)
C11—C10—C9120.6 (3)C29—C24—C23118.2 (2)
C11—C10—H10119.7C24—C25—C26120.3 (3)
C9—C10—H10119.7C24—C25—H25119.9
C10—C11—C6120.2 (3)C26—C25—H25119.9
C10—C11—H11119.9C27—C26—C25119.9 (3)
C6—C11—H11119.9C27—C26—H26120.0
C2—C12—C13119.6 (3)C25—C26—H26120.0
C2—C12—H12120.2C28—C27—C26120.7 (3)
C13—C12—H12120.2C28—C27—H27119.6
C14—C13—C12120.8 (3)C26—C27—H27119.6
C14—C13—H13119.6C27—C28—C29119.9 (4)
C12—C13—H13119.6C27—C28—H28120.0
C15—C14—C13120.8 (2)C29—C28—H28120.0
C15—C14—H14119.6C28—C29—C24121.0 (3)
C13—C14—H14119.6C28—C29—H29119.5
C14—C15—C3118.6 (3)C24—C29—H29119.5
C14—C15—H15120.7C21—C30—H30A109.5
C3—C15—H15120.7C21—C30—H30B109.5
N3—C16—C23105.12 (17)H30A—C30—H30B109.5
N3—C16—C17109.5 (2)C21—C30—H30C109.5
C23—C16—C17115.5 (2)H30A—C30—H30C109.5
N3—C16—H16108.9H30B—C30—H30C109.5
C23—C16—H16108.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···N4i0.972.653.560 (4)156
C21—H21B···O1ii0.972.893.399 (3)114
C27—H27···O1iii0.932.903.562 (4)129
C27—H27···O2iii0.932.873.798 (4)174
C18—H18B···N2iv0.972.663.609 (4)166
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1, y, z+1/2; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1.
 

Acknowledgements

The authors thank the Sophisticated Analytical Instrumental Facility (SAIF), Indian Institute of Technology, Chennai for the data collection, the Management of Devanaga Arts College, Aruppuokottai, for their encouragement and the Management of Thia­garajar College, Madurai, for their financial support in establishing the Cambridge Structural Database facility.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGazit, A., App, H., McMahon, G., Chen, J., Levitzki, A. & Bohmer, F. D. (1996). J. Med. Chem. 39, 2170–2177.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHamzehloueian, M., Sarrafi, Y. & Aghaei, Z. (2015). RSC Adv. 5, 76368–76376.  CrossRef Google Scholar
First citationMalathi, K., Kanchithalaivan, S., Kumar, R. R., Almansour, A. I., Kumar, R. S. & Arumugam, N. (2015). Tetrahedron Lett. 56, 6132–6135.  CrossRef Google Scholar
First citationMuthuselvi, C., Muthu, M., Athimoolam, S., Ravikumar, B., Pandiarajan, S. & Krishnakumar, R. V. (2017). IUCrData, 2, x171305.  Google Scholar
First citationMuthuselvi, C., Muthu, M., Athimoolam, S., Ravikumar, B., Pandiarajan, S. & Krishnakumar, R. V. (2018). IUCrData, 3, x180238.  Google Scholar
First citationSehlstedt, U., Aich, P., Bergman, J., Vallberg, H., Nordén, B. & Gräslund, A. (1998). J. Mol. Biol. 278, 31–56.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShao, L., Jin, Z., Liu, J.-B., Zhou, X., Zhang, Q., Hu, Y. & Fang, J.-X. (2004). Acta Cryst. E60, o2517–o2519.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSivakumar, N., Viswanathan, V., Rao, J. N. S., Raghunathan, R. & Velmurugan, D. (2014). Acta Cryst. E70, o1111–o1112.  CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuhitha, S., Gunasekaran, K., Gavaskar, D., Raghunathan, R. & Velmurugan, D. (2013a). Acta Cryst. E69, m501.  CrossRef IUCr Journals Google Scholar
First citationSuhitha, S., Gunasekaran, K., Sureshbabu, A. R., Raghunathan, R. & Velmurugan, D. (2013b). Acta Cryst. E69, m500.  CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Q., Zhai, S., Li, L., Li, X., Zhou, H., Liu, A., Su, G., Mu, Q., Du, Y. & Yan, B. (2013). Biochem. Pharmacol. 86, 351–360.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds