

IUCrData

ISSN 2414-3146

Received 21 August 2018 Accepted 12 September 2018

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic

Keywords: crystal structure; hydrogen bonding; graph-set; quinoxaline; thiazole.

CCDC reference: 1867229

Structural data: full structural data are available from iucrdata.iucr.org

Ethyl 6'-cyano-7'-phenyl-1',6',7',7a'-tetrahydro-3'Hspiro[indeno[1,2-b]quinoxaline-11,5'-pyrrolo-[1,2-c]thiazole-6'-carboxylate

C. Muthuselvi,^a S. Athimoolam,^b N. Srinivasan,^c* B. Ravikumar,^a S. Pandiarajan^a and R. V. Krishnakumar^c

^aDepartment of Physics, Devanga Arts College, Aruppukottai 626 101, Tamilnadu, India, ^bDepartment of Physics, University College of Engineering, Anna University Constituent College, Konam 629 004, Nagercoil, Tamilnadu, India, and ^cDepartment of Physics, Thiagarajar College, Madurai 625 009, Tamilnadu, India. *Correspondence e-mail: vasan692000@yahoo.co.in

In the title compound, $C_{22}H_{22}ClN_4O_2S$, the angle between the mean planes of the indene ring and the quinoxaline ring system is 3.93 (11)°. The five-membered indene and thiazole rings both adopt envelope conformations while the pyrrole ring adopts a twisted conformation. The two acceptor O atoms form a chelated three-centred hydrogen bond with a phenyl C atom.

Structure description

Quinoxaline derivatives have attracted considerable attention due to their biological activities and use as anti-viral, anti-bacterial, anti-inflammatory, anti-protozaoal, anti cancer, anti depressant and anti-HIV agents. Drugs containing a quinoxaline core are under clinical trial for anticancer therapeutic purposes (Zhang *et al.*, 2013). Indenoquinoxaline derivatives have found applications in dyes (Sehlstedt *et al.*, 1998) and as organic semiconductors (Gazit *et al.*, 1996). Moreover, thiazole derivatives are found to be antituberculous, bacteriostatic and fungistatic agents (Shao *et al.*, 2004). A search in the CSD (version 5.39, update, May 2018; Groom *et al.*, 2016) for structures of the title compound containing indene, quinoxaline pyrrolo and thiazole with no filters gave seven hits: DEHFUU (Muthuselvi *et al.*, 2017), DOPYO,(Sivakumar *et al.*, 2014), DUXPET (Malathi *et al.*, 2015), FUQCAX (Hamzehloueian *et al.*, 2015), NIKSOR (Suhitha *et al.*, 2013*a*) and RENZUI (Muthuselvi *et al.*, 2018). In view of the important biological activities of indenoquinoxaline-pyrolothiazole derivatives, the crystal structure of the title compound has been determined (Fig. 1).

Table 1				
Hydrogen-bond	geometry	(Å,	°).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C17-H17B\cdots N4^{i}$	0.97	2.65	3.560 (4)	156
$C21 - H21B \cdots O1^{ii}$	0.97	2.89	3.399 (3)	114
$C27-H27\cdots O1^{iii}$	0.93	2.90	3.562 (4)	129
$C27 - H27 \cdots O2^{iii}$	0.93	2.87	3.798 (4)	174
$C18-H18B\cdots N2^{iv}$	0.97	2.66	3.609 (4)	166

Symmetry codes: (i) $-x + 1, y, -z + \frac{3}{2}$; (ii) $-x + 1, y, -z + \frac{1}{2}$; (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 1, -y, -z + 1.

The five-membered thiazole ring (S1/C17/C16/N3/C18) adopts an envelope conformation on S1 with puckering parameters Q(2) = 0.473 (2) Å and $\varphi(2) = 358.2$ (2)°. The pyrrole ring (N3/C1/C19/C23/C16) adopts a twisted conformation on C19–C23 with puckering amplitude Q(2) = 0.443 (3) Å and $\varphi(2) = 82.6$ (3)°. The five-membered indene ring (C1–C5) adopts an envelope conformation on C1 with puckering parameters Q(2) = 0.076 (3) Å and $\varphi(2) = 182$ (2)°, but the six-membered rings of both indene and quinoxaline does not show any significant deviation from planarity. The mean planes of indene and quinoxaline make an angle 3.93 (11)°.

The mean plane through the quinoxaline ring system and the fused indene ring makes dihedral angles of 76.36 (6) and 54.94 (8)°, respectively, with the mean planes through the pyrrole and thiazole rings.

In the crystal, pairs of C17-H117B····N4ⁱ hydrogen bonds (Table 1) connect molecules into inversion dimers with an $R_2^2(14)$ motif while C21-H21B····O1ⁱⁱ hydrogen bonds form an $R_2^2(10)$ graph-set motif. Together, these interactions lead to

Figure 1

Displacement ellipsoid plot (50% probability level) of the title compound, showing the atom-labelling scheme. H atoms have been omitted for clarity.

Figure 2 Part of the gruste

Part of the crystal structure of the title compound, showing the formation of $R_2^2(10)$ and $R_2^2(14)$ graph-set motifs. Dashed lines indicate hydrogen bonds. The fused indeno-quinoxaline rings and H atoms not involved in the hydrogen bonding have been omitted for the sake of clarity.

the formation of chains running along the *c*-axis direction (Fig. 2). The O atoms O1 and O2 form a chelated threecentered hydrogen bond with the phenyl carbon atom C27, leading to a dimeric $R_2^2(18)$ motif. The C18-H18B····N2^{iv} hydrogen bond forms an $R_2^2(24)$ graph-set motif. This C-H····N hydrogen bond and the chelated three-centered C-H····O hydrogen bonds lead to the formation of a linear chain extending along the *b*-axis direction (Fig. 3).

Synthesis and crystallization

Equimolar amounts of 11*H*-indeno[1,2-*b*]quinoxalin-11-one and thiazolidine-4-carboxylic acid were added to methanol

Part of the crystal structure of the title compound, showing the formation of $R_2^2(18)$ and $R_2^2(24)$ graph-set motifs. Dashed lines indicate hydrogen bonds. The H atoms not involved in the hydrogen bonding have been omitted for the sake of clarity.

(20 ml) and the mixture was refluxed in a water bath for 2 min. Then an equimolar amount of propyl (E)-2-cyano-3-(phenyl) acrylate was added to the reaction mixture and refluxing was continued until the completion of the reaction (monitored using TLC) after 4 h. The precipitated solid was filtered and washed with methanol to obtain the title compound. Colourless needle-shaped crystals were obtained by the slow evaporation of a chloroform solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors thank the Sophisticated Analytical Instrumental Facility (SAIF), Indian Institute of Technology, Chennai for the data collection, the Management of Devanaga Arts College, Aruppuokottai, for their encouragement and the Management of Thiagarajar College, Madurai, for their financial support in establishing the Cambridge Structural Database facility.

References

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gazit, A., App, H., McMahon, G., Chen, J., Levitzki, A. & Bohmer, F. D. (1996). J. Med. Chem. **39**, 2170–2177.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hamzehloueian, M., Sarrafi, Y. & Aghaei, Z. (2015). RSC Adv. 5, 76368–76376.
- Malathi, K., Kanchithalaivan, S., Kumar, R. R., Almansour, A. I., Kumar, R. S. & Arumugam, N. (2015). *Tetrahedron Lett.* 56, 6132– 6135.
- Muthuselvi, C., Muthu, M., Athimoolam, S., Ravikumar, B., Pandiarajan, S. & Krishnakumar, R. V. (2017). *IUCrData*, **2**, x171305.
- Muthuselvi, C., Muthu, M., Athimoolam, S., Ravikumar, B., Pandiarajan, S. & Krishnakumar, R. V. (2018). *IUCrData*, **3**, x180238.
- Sehlstedt, U., Aich, P., Bergman, J., Vallberg, H., Nordén, B. & Gräslund, A. (1998). J. Mol. Biol. 278, 31–56.

Table 2	
Experimental details.	

Crystal data	
Chemical formula	$C_{30}H_{24}N_4O_2S$
Mr	504.59
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	273
a, b, c (Å)	18.6131 (13), 18.2243 (13), 15.8867 (11)
β(°)	110.757 (1)
$V(Å^3)$	5039.2 (6)
Z	8
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.16
Crystal size (mm)	$0.30\times0.16\times0.12$
Data collection	
Diffractometer	Bruker SMART APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2009)
T_{\min}, T_{\max}	0.95, 1.0
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	26271, 5092, 3836
R _{int}	0.028
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.622
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.064, 0.186, 1.03
No. of reflections	5092
No. of parameters	335
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} { m \AA}^{-3})$	0.52, -0.16

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXS2013 (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015), PLUTON (Spek, 2009) and publCIF (Westrip, 2010).

- Shao, L., Jin, Z., Liu, J.-B., Zhou, X., Zhang, Q., Hu, Y. & Fang, J.-X. (2004). Acta Cryst. E60, 02517–02519.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Sivakumar, N., Viswanathan, V., Rao, J. N. S., Raghunathan, R. & Velmurugan, D. (2014). Acta Cryst. E70, 01111–01112.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Suhitha, S., Gunasekaran, K., Gavaskar, D., Raghunathan, R. & Velmurugan, D. (2013*a*). *Acta Cryst.* E69, m501.
- Suhitha, S., Gunasekaran, K., Sureshbabu, A. R., Raghunathan, R. & Velmurugan, D. (2013b). *Acta Cryst.* E69, m500.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zhang, Q., Zhai, S., Li, L., Li, X., Zhou, H., Liu, A., Su, G., Mu, Q., Du, Y. & Yan, B. (2013). *Biochem. Pharmacol.* **86**, 351–360.

full crystallographic data

IUCrData (2018). **3**, x181286 [https://doi.org/10.1107/S2414314618012865]

Ethyl 6'-cyano-7'-phenyl-1',6',7',7a'-tetrahydro-3'*H*-spiro[indeno[1,2*b*]quinoxaline-11,5'-pyrrolo[1,2-c]thiazole-6'-carboxylate

C. Muthuselvi, S. Athimoolam, N. Srinivasan, B. Ravikumar, S. Pandiarajan and R. V. Krishnakumar

Ethyl 6'-cyano-7'-phenyl-1',6',7',7a'-tetrahydro-3'*H*-spiro[indeno[1,2-*b*]quinoxaline-11,5'-pyrrolo[1,2c]thiazole-6'-carboxylate

 $D_{\rm x} = 1.330 {\rm ~Mg} {\rm ~m}^{-3}$

 $\theta = 1.5 - 26.5^{\circ}$

 $\mu = 0.16 \text{ mm}^{-1}$

Needle, colorless

 $0.30 \times 0.16 \times 0.12 \text{ mm}$

T = 273 K

 $D_{\rm m} = 1.32 \ {\rm Mg \ m^{-3}}$

 $D_{\rm m}$ measured by floatation method

Cell parameters from 6051 reflections

Mo *K* α radiation, $\lambda = 0.71073$ Å

Crystal data

 $C_{30}H_{24}N_4O_2S$ $M_r = 504.59$ Monoclinic, C2/c a = 18.6131 (13) Å b = 18.2243 (13) Å c = 15.8867 (11) Å \beta = 110.757 (1)° V = 5039.2 (6) Å³ Z = 8 F(000) = 2112

Data collection

Bruker SMART APEXII CCD	5092 independent reflections
diffractometer	3836 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.028$
φ and ω scans	$\theta_{\rm max} = 26.3^\circ, \theta_{\rm min} = 2.2^\circ$
Absorption correction: multi-scan	$h = -23 \rightarrow 23$
(SADABS; Bruker, 2009)	$k = -22 \rightarrow 22$
$T_{\min} = 0.95, \ T_{\max} = 1.0$	$l = -19 \rightarrow 19$
26271 measured reflections	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.064$ $wR(F^2) = 0.186$ S = 1.035092 reflections 335 parameters 0 restraints Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1079P)^2 + 2.3737P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.52$ e Å⁻³ $\Delta\rho_{min} = -0.16$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.30934 (4)	0.17536 (4)	0.57840 (5)	0.0739 (3)	
01	0.45967 (11)	0.30451 (11)	0.37194 (12)	0.0762 (5)	
02	0.57726 (10)	0.25504 (11)	0.43424 (11)	0.0723 (5)	
N1	0.61674 (11)	0.13563 (12)	0.64087 (13)	0.0621 (5)	
N2	0.61166 (12)	0.04137 (12)	0.49401 (14)	0.0666 (5)	
N3	0.45872 (10)	0.18686 (11)	0.61438 (12)	0.0598 (5)	
N4	0.63289 (13)	0.31402 (15)	0.64698 (17)	0.0825 (7)	
C1	0.48811 (12)	0.18165 (13)	0.54051 (14)	0.0548 (5)	
C2	0.43822 (13)	0.14707 (13)	0.44885 (14)	0.0563 (5)	
C3	0.48151 (13)	0.09497 (14)	0.42181 (15)	0.0612 (6)	
C4	0.55572 (13)	0.08615 (13)	0.49236 (15)	0.0578 (5)	
C5	0.56009 (12)	0.13355 (13)	0.56520 (15)	0.0562 (5)	
C6	0.67664 (13)	0.08905 (14)	0.64557 (16)	0.0629 (6)	
C7	0.67404 (13)	0.04323 (14)	0.57230 (17)	0.0622 (6)	
C8	0.73716 (15)	-0.00236 (16)	0.5810(2)	0.0765 (7)	
H8	0.736470	-0.032498	0.533507	0.092*	
C9	0.79906 (15)	-0.00253 (19)	0.6585 (2)	0.0869 (9)	
H9	0.840694	-0.032686	0.663610	0.104*	
C10	0.80104 (15)	0.0418 (2)	0.7304 (2)	0.0900 (9)	
H10	0.843691	0.040567	0.783354	0.108*	
C11	0.74084 (14)	0.08723 (18)	0.72407 (18)	0.0806 (8)	
H11	0.742915	0.116967	0.772452	0.097*	
C12	0.36429 (14)	0.16269 (15)	0.39147 (16)	0.0650 (6)	
H12	0.334415	0.196494	0.408266	0.078*	
C13	0.33503 (15)	0.12760 (16)	0.30874 (17)	0.0719 (7)	
H13	0.285422	0.138216	0.270113	0.086*	
C14	0.37851 (17)	0.07725 (18)	0.28311 (18)	0.0810 (8)	
H14	0.358092	0.054641	0.227159	0.097*	
C15	0.45188 (16)	0.05996 (16)	0.33932 (16)	0.0716 (7)	
H15	0.480913	0.025485	0.322203	0.086*	
C16	0.43303 (13)	0.26156 (14)	0.62393 (15)	0.0613 (6)	
H16	0.469645	0.283697	0.678522	0.074*	
C17	0.35336 (15)	0.25831 (17)	0.63304 (19)	0.0755 (7)	
H17A	0.322730	0.300548	0.604378	0.091*	
H17B	0.358505	0.257668	0.695971	0.091*	
C18	0.40462 (15)	0.13219 (16)	0.62071 (19)	0.0725 (7)	
H18A	0.417100	0.116742	0.682696	0.087*	
H18B	0.405837	0.089559	0.584682	0.087*	
C19	0.50524 (12)	0.26528 (13)	0.52728 (14)	0.0559 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C20	0 50988 (14)	0 27817 (13)	0 43387 (16)	0 0595 (6)
C21	0.59318 (19)	0.2614 (2)	0.3500 (2)	0.0898 (9)
H21A	0.569101	0.221297	0.309738	0.108*
H21B	0.572803	0.307257	0.319989	0.108*
C22	0.57810 (14)	0.29091 (15)	0.59573 (16)	0.0628 (6)
C23	0.43634 (13)	0.30320 (13)	0.54228 (15)	0.0579 (6)
H23	0.390463	0.288851	0.491480	0.070*
C24	0.43508 (13)	0.38595 (14)	0.54682 (17)	0.0635 (6)
C25	0.48189 (15)	0.42620 (17)	0.6192 (2)	0.0792 (8)
H25	0.517107	0.402287	0.668255	0.095*
C26	0.47659 (19)	0.5021 (2)	0.6190 (3)	0.0985 (11)
H26	0.508978	0.529091	0.667254	0.118*
C27	0.4239 (2)	0.5372 (2)	0.5480 (3)	0.1001 (11)
H27	0.420269	0.588046	0.548416	0.120*
C28	0.3769 (2)	0.49888 (17)	0.4773 (3)	0.0904 (9)
H28	0.340960	0.523328	0.429366	0.108*
C29	0.38218 (16)	0.42342 (15)	0.4762 (2)	0.0731 (7)
H29	0.349685	0.397341	0.427102	0.088*
C30	0.6754 (2)	0.2591 (3)	0.3728 (3)	0.1403 (17)
H30A	0.698959	0.296744	0.415987	0.210*
H30B	0.687503	0.266864	0.319552	0.210*
H30C	0.694450	0.211981	0.398039	0.210*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0546 (4)	0.1003 (6)	0.0709 (4)	-0.0089 (3)	0.0272 (3)	0.0014 (3)
01	0.0766 (12)	0.0963 (13)	0.0531 (9)	0.0020 (10)	0.0197 (9)	0.0065 (9)
O2	0.0684 (10)	0.0938 (13)	0.0640 (10)	0.0025 (9)	0.0349 (8)	0.0006 (9)
N1	0.0505 (10)	0.0813 (14)	0.0550 (11)	0.0075 (9)	0.0193 (9)	0.0018 (9)
N2	0.0626 (12)	0.0781 (14)	0.0654 (12)	-0.0012 (10)	0.0304 (10)	-0.0021 (10)
N3	0.0508 (10)	0.0833 (14)	0.0498 (10)	0.0048 (9)	0.0232 (8)	0.0061 (9)
N4	0.0566 (13)	0.1076 (19)	0.0755 (14)	-0.0109 (12)	0.0137 (11)	-0.0064 (13)
C1	0.0470 (11)	0.0719 (15)	0.0463 (11)	0.0013 (10)	0.0175 (9)	0.0042 (10)
C2	0.0551 (12)	0.0683 (14)	0.0481 (11)	-0.0080 (10)	0.0214 (10)	0.0027 (10)
C3	0.0610 (13)	0.0737 (15)	0.0513 (12)	-0.0078 (11)	0.0229 (10)	0.0045 (11)
C4	0.0575 (13)	0.0670 (14)	0.0559 (12)	-0.0020 (10)	0.0287 (10)	0.0029 (10)
C5	0.0505 (12)	0.0711 (15)	0.0512 (12)	0.0004 (10)	0.0231 (10)	0.0051 (10)
C6	0.0500 (12)	0.0808 (16)	0.0623 (13)	0.0050 (11)	0.0253 (11)	0.0062 (12)
C7	0.0518 (12)	0.0745 (15)	0.0683 (14)	0.0002 (11)	0.0310 (11)	0.0042 (12)
C8	0.0600 (15)	0.0912 (19)	0.0889 (18)	0.0045 (13)	0.0395 (14)	-0.0050 (15)
C9	0.0539 (15)	0.110 (2)	0.105 (2)	0.0155 (15)	0.0383 (15)	0.0020 (18)
C10	0.0512 (14)	0.133 (3)	0.0815 (18)	0.0188 (15)	0.0178 (13)	0.0002 (18)
C11	0.0555 (14)	0.118 (2)	0.0666 (15)	0.0141 (14)	0.0202 (12)	-0.0042 (15)
C12	0.0557 (13)	0.0815 (17)	0.0549 (13)	-0.0072 (12)	0.0159 (11)	0.0068 (11)
C13	0.0637 (15)	0.0923 (19)	0.0543 (13)	-0.0121 (13)	0.0142 (12)	0.0051 (13)
C14	0.0829 (19)	0.104 (2)	0.0505 (13)	-0.0182 (16)	0.0165 (13)	-0.0042 (14)
C15	0.0804 (17)	0.0837 (18)	0.0555 (14)	-0.0095 (14)	0.0299 (13)	-0.0073 (12)

C16	0.0507 (12)	0.0833 (16)	0.0500 (12)	-0.0045 (11)	0.0179 (10)	-0.0080 (11)
C17	0.0632 (15)	0.104 (2)	0.0678 (15)	-0.0002 (14)	0.0332 (12)	-0.0061 (14)
C18	0.0722 (16)	0.0829 (18)	0.0721 (15)	0.0038 (13)	0.0374 (13)	0.0158 (13)
C19	0.0482 (11)	0.0705 (15)	0.0502 (12)	-0.0030 (10)	0.0187 (9)	-0.0004 (10)
C20	0.0605 (13)	0.0682 (15)	0.0527 (12)	-0.0086 (11)	0.0237 (11)	-0.0053 (11)
C21	0.097 (2)	0.120 (3)	0.0687 (17)	-0.0065 (18)	0.0489 (16)	-0.0110 (16)
C22	0.0526 (13)	0.0817 (17)	0.0562 (13)	-0.0019 (12)	0.0219 (11)	-0.0003 (12)
C23	0.0475 (11)	0.0750 (15)	0.0510 (12)	-0.0037 (10)	0.0171 (9)	-0.0081 (10)
C24	0.0508 (12)	0.0759 (16)	0.0714 (15)	-0.0082 (11)	0.0310 (11)	-0.0120 (12)
C25	0.0595 (14)	0.090 (2)	0.095 (2)	-0.0110 (13)	0.0364 (14)	-0.0284 (16)
C26	0.0746 (19)	0.104 (3)	0.136 (3)	-0.0325 (18)	0.061 (2)	-0.056 (2)
C27	0.099 (2)	0.079 (2)	0.153 (3)	-0.0158 (19)	0.084 (3)	-0.020 (2)
C28	0.106 (2)	0.0700 (19)	0.117 (2)	0.0009 (17)	0.066 (2)	-0.0001 (18)
C29	0.0704 (16)	0.0769 (18)	0.0795 (17)	-0.0056 (13)	0.0358 (14)	-0.0029 (14)
C30	0.109 (3)	0.219 (5)	0.122 (3)	-0.036 (3)	0.078 (3)	-0.039 (3)

Geometric parameters (Å, °)

S1—C17	1.791 (3)	C13—H13	0.9300	
S1-C18	1.836 (3)	C14—C15	1.377 (4)	
O1—C20	1.192 (3)	C14—H14	0.9300	
O2—C20	1.321 (3)	C15—H15	0.9300	
O2—C21	1.475 (3)	C16—C23	1.523 (3)	
N1—C5	1.288 (3)	C16—C17	1.541 (3)	
N1—C6	1.382 (3)	C16—H16	0.9800	
N2—C4	1.316 (3)	C17—H17A	0.9700	
N2—C7	1.369 (3)	C17—H17B	0.9700	
N3—C18	1.445 (3)	C18—H18A	0.9700	
N3—C1	1.463 (3)	C18—H18B	0.9700	
N3—C16	1.468 (3)	C19—C22	1.481 (3)	
N4—C22	1.137 (3)	C19—C20	1.535 (3)	
C1—C5	1.531 (3)	C19—C23	1.548 (3)	
C1—C2	1.556 (3)	C21—C30	1.443 (5)	
C1—C19	1.586 (3)	C21—H21A	0.9700	
C2—C12	1.384 (3)	C21—H21B	0.9700	
С2—С3	1.407 (3)	C23—C24	1.510 (4)	
C3—C15	1.384 (3)	C23—H23	0.9800	
C3—C4	1.447 (3)	C24—C25	1.382 (4)	
C4—C5	1.423 (3)	C24—C29	1.383 (4)	
C6—C11	1.389 (3)	C25—C26	1.387 (5)	
С6—С7	1.419 (4)	C25—H25	0.9300	
С7—С8	1.405 (3)	C26—C27	1.363 (5)	
С8—С9	1.356 (4)	C26—H26	0.9300	
С8—Н8	0.9300	C27—C28	1.348 (5)	
C9—C10	1.388 (4)	С27—Н27	0.9300	
С9—Н9	0.9300	C28—C29	1.379 (4)	
C10-C11	1.368 (4)	C28—H28	0.9300	
C10—H10	0.9300	С29—Н29	0.9300	

data reports

C11—H11	0.9300	С30—Н30А	0.9600
C12—C13	1.388 (4)	C30—H30B	0.9600
C12—H12	0.9300	С30—Н30С	0.9600
C13—C14	1.377 (4)		
C17—S1—C18	88.14 (13)	C17—C16—H16	108.9
C20—O2—C21	117.8 (2)	C16—C17—S1	106.09 (18)
C5—N1—C6	114.2 (2)	С16—С17—Н17А	110.5
C4—N2—C7	114.4 (2)	S1—C17—H17A	110.5
C18—N3—C1	118.6 (2)	C16—C17—H17B	110.5
C18—N3—C16	111.81 (18)	S1—C17—H17B	110.5
C1 - N3 - C16	111.78 (18)	H17A—C17—H17B	108.7
N3-C1-C5	111.94 (17)	N3-C18-S1	106.59 (18)
N3-C1-C2	120.54 (18)	N3—C18—H18A	110.4
C5-C1-C2	100.70 (18)	S1—C18—H18A	110.4
$N_3 - C_1 - C_{19}$	101.18 (18)	N3-C18-H18B	110.4
C_{5} C_{1} C_{19}	112 66 (17)	S1-C18-H18B	110.4
C_{2} C_{1} C_{1} C_{1}	112.00(17) 110.27(17)	H18A - C18 - H18B	108.6
$C_{12} - C_{2} - C_{3}$	118.7(2)	C^{22} C^{19} C^{20}	108.11 (18)
$C_{12} = C_{2} = C_{1}$	1311(2)	$C_{22} = C_{19} = C_{23}$	100.11(10) 109.83(18)
C_{3} C_{2} C_{1}	110.03(19)	$C_{22} = C_{19} = C_{23}$	114 47 (19)
C_{15} C_{2} C_{15} C_{2} C_{2}	1214(2)	$C_{22} = C_{19} = C_{13}$	112 36 (19)
$C_{15} = C_{3} = C_{4}$	121.4(2) 129.3(2)	$C_{22} = C_{19} = C_{1}$	112.30(19) 110.98(18)
C_{2} C_{3} C_{4}	129.3(2) 109.3(2)	C_{23} C_{19} C_{1}	101.08(17)
$N_2 C_4 C_5$	109.5(2) 122.9(2)	01 - 020 - 02	101.00(17) 1267(2)
$N_2 = C_4 = C_3$	122.9(2) 128.0(2)	01 - 020 - 02	120.7(2) 124.3(2)
112 - C4 - C3	128.0(2) 1000(2)	$O_{1}^{2} = C_{20}^{2} = C_{10}^{10}$	124.3(2)
C_{3}	109.0(2) 124.7(2)	$C_{2}^{$	109.0(2) 107.8(3)
N1_C5_C1	124.7(2) 125.1(2)	$C_{30} = C_{21} = 0_2$	107.8 (3)
$N_1 = C_2 = C_1$	123.1(2) 110.28(10)	$C_{20} = C_{21} = H_{21A}$	110.1
C4 - C3 - C1	110.28(19) 110.0(2)	$C_2 = C_2 $	110.1
N1-C6-C7	119.0(2)	C_{20} C_{21} H_{21B}	110.1
$NI = C_0 = C_7$	121.0(2)	$U_2 = U_2 $	110.1
CII = CO = C/	119.4 (2)	$H_2 IA = C_2 I = H_2 IB$	108.3
$N_2 - C_7 - C_8$	119.0(2)	N4-C22-C19	1/0.0(3)
$N_2 - C_7 - C_6$	122.1(2)	$C_{24} = C_{23} = C_{10}$	110.79 (19)
$C_{8} - C_{7} - C_{6}$	118.9 (2)	$C_{24} = C_{23} = C_{19}$	118.75 (19)
$C_9 = C_8 = C_7$	120.2 (3)	C16 - C23 - C19	101.22 (18)
C9—C8—H8	119.9	C24—C23—H23	106.4
C/-C8-H8	119.9	C16—C23—H23	106.4
C8—C9—C10	120.8 (3)	С19—С23—Н23	106.4
C8—C9—H9	119.6	C25—C24—C29	118.1 (3)
С10—С9—Н9	119.6	C25—C24—C23	123.6 (3)
C11—C10—C9	120.6 (3)	C29—C24—C23	118.2 (2)
C11—C10—H10	119.7	C24—C25—C26	120.3 (3)
C9—C10—H10	119.7	С24—С25—Н25	119.9
C10—C11—C6	120.2 (3)	C26—C25—H25	119.9
C10—C11—H11	119.9	C27—C26—C25	119.9 (3)
C6—C11—H11	119.9	С27—С26—Н26	120.0

119.6 (3)	С25—С26—Н26	120.0
120.2	C28—C27—C26	120.7 (3)
120.2	С28—С27—Н27	119.6
120.8 (3)	С26—С27—Н27	119.6
119.6	C27—C28—C29	119.9 (4)
119.6	С27—С28—Н28	120.0
120.8 (2)	С29—С28—Н28	120.0
119.6	C28—C29—C24	121.0 (3)
119.6	С28—С29—Н29	119.5
118.6 (3)	С24—С29—Н29	119.5
120.7	С21—С30—Н30А	109.5
120.7	С21—С30—Н30В	109.5
105.12 (17)	H30A—C30—H30B	109.5
109.5 (2)	С21—С30—Н30С	109.5
115.5 (2)	H30A—C30—H30C	109.5
108.9	H30B—C30—H30C	109.5
108.9		
	119.6 (3) 120.2 120.2 120.8 (3) 119.6 119.6 120.8 (2) 119.6 119.6 119.6 119.6 119.6 119.6 119.7 120.7 120.7 105.12 (17) 109.5 (2) 115.5 (2) 108.9 108.9	119.6 (3) $C25-C26-H26$ 120.2 $C28-C27-C26$ 120.2 $C28-C27-H27$ $120.8 (3)$ $C26-C27-H27$ 119.6 $C27-C28-C29$ 119.6 $C27-C28-H28$ $120.8 (2)$ $C29-C28-H28$ $120.8 (2)$ $C29-C28-H28$ 119.6 $C28-C29-C24$ 119.6 $C28-C29-H29$ $118.6 (3)$ $C24-C29-H29$ 120.7 $C21-C30-H30A$ 120.7 $C21-C30-H30B$ $105.12 (17)$ $H30A-C30-H30B$ $109.5 (2)$ $C21-C30-H30C$ $115.5 (2)$ $H30A-C30-H30C$ 108.9 $H30B-C30-H30C$ 108.9 $H30B-C30-H30C$

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H…A
C17—H17 <i>B</i> ···N4 ⁱ	0.97	2.65	3.560 (4)	156
C21—H21 <i>B</i> ···O1 ⁱⁱ	0.97	2.89	3.399 (3)	114
C27—H27…O1 ⁱⁱⁱ	0.93	2.90	3.562 (4)	129
С27—Н27…О2 ^{ііі}	0.93	2.87	3.798 (4)	174
C18—H18 <i>B</i> ····N2 ^{iv}	0.97	2.66	3.609 (4)	166

Symmetry codes: (i) -x+1, y, -z+3/2; (ii) -x+1, y, -z+1/2; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y, -z+1.