metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(2-{[2-(Di­methyl­amino)­eth­yl]imino­meth­yl}benzene­thiol­ato-κ3N,N′,S)(4-meth­­oxy­benzene­thiol­ato-κS)nickel(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Wichita State University, 1845 Fairmount, Wichita, KS 67260, USA
*Correspondence e-mail: david.eichhorn@wichita.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 2 August 2018; accepted 17 August 2018; online 24 August 2018)

In the title compound, [Ni(C11H15N2S)(C7H7OS)] or [Ni(NNImS)(4-OCH3PhS)] (NNImS = 2-{[2-(di­methyl­amino)­eth­yl]imino­meth­yl}benzene­thiol­ato), the NiII cation is coordinated by a tridentate NNImS ligand and a monodentate thiol­ate ligand giving an N2S2 coordination set defining an almost square-planar environment. The Ni—Namine bond in the coordination plane is approximately 0.1 Å longer than the Ni—Nimine bond.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In recent years, complexes comprising an NiN2S2 moiety have attracted considerable inter­est as synthetic mimics of the NiSOD active site (Shearer & Zhao, 2006[Shearer, J. & Zhao, N. (2006). Inorg. Chem. 45, 9637-9639.]; Fiedler & Brunold, 2007[Fiedler, A. T. & Brunold, T. C. (2007). Inorg. Chem. 46, 8511-8523.]; Jenkins et al., 2009[Jenkins, R. M., Singleton, M. L., Almaraz, E., Reibenspies, J. H. & Darensbourg, M. Y. (2009). Inorg. Chem. 48, 7280-7293.]; Gale et al., 2009[Gale, E. M., Patra, A. K. & Harrop, T. C. (2009). Inorg. Chem. 48, 5620-5622.], 2010[Gale, E. M., Narendrapurapu, B. S., Simmonett, A. C., Schaefer, H. F. & Harrop, T. C. (2010). Inorg. Chem. 49, 7080-7096.]; Mathrubootham et al., 2010[Mathrubootham, V., Thomas, J., Staples, R., McCraken, J., Shearer, J. & Hegg, E. L. (2010). Inorg. Chem. 49, 5393-5406.]; Senaratne et al., 2018[Senaratne, N. K., Mwania, T. M., Moore, C. E. & Eichhorn, D. M. (2018). Inorg. Chim. Acta, 476, 27-37.]). We have prepared a series of NiII complexes containing the tridentate NNImS ligand (NNImS = {2-{[2-(di­methyl­amino)­eth­yl]imino­meth­yl}benzene­thiol­ato}) with amine, imine, and thiol­ate donors, and various monodentate thiol­ate ligands (Senaratne et al., 2018[Senaratne, N. K., Mwania, T. M., Moore, C. E. & Eichhorn, D. M. (2018). Inorg. Chim. Acta, 476, 27-37.]). The title compound represents another in this series.

In the crystal, the mol­ecule (Fig. 1[link]) sits on general positions in the ortho­rhom­bic space group Pna21. The NNImS ligand is essentially coplanar with the coordination sphere, with an 11.84 (17)° dihedral angle between the least-squares plane of the phenyl ring and the average plane of the N3S donors. The thiol­ate substituent protrudes from the coordin­ation plane, with an Ni—S—C angle of 109.04 (15)°. The Ni—N and Ni—S bond lengths (Table 1[link]) are very similar to those in the previously reported members of this series. No significant inter­molecular inter­actions are evident in the crystal structure (Fig. 2[link]). There is a potential C—H⋯π inter­action between the para C atom of the NNimS phenyl ring and the phenyl ring (C12–C17) of the monodentate ligand (C8⋯centroid 3.64 Å, C8—H8⋯centroid 156°).

Table 1
Selected geometric parameters (Å, °)

Ni1—S1 2.1383 (11) Ni1—N2 1.888 (3)
Ni1—S2 2.2272 (12) Ni1—N1 2.016 (3)
       
S1—Ni1—S2 85.25 (5) N1—Ni1—S1 177.11 (12)
N2—Ni1—S1 95.97 (11) N1—Ni1—S2 92.58 (11)
N2—Ni1—S2 173.07 (12) C11—S1—Ni1 111.67 (14)
N2—Ni1—N1 86.41 (16) C12—S2—Ni1 109.04 (15)
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2]
Figure 2
Packing diagram showing the C—H⋯π inter­action as a red line.

Synthesis and crystallization

Ni(NNImS)Cl was synthesized as previously reported (Zimmerman et al., 2011[Zimmerman, J. R., Smucker, B. W., Dain, R. P., Van Stipdonk, M. J. & Eichhorn, D. M. (2011). Inorg. Chim. Acta, 373, 54-61.]). Under nitro­gen, NaOH (0.265 g, 7.00 mmol) was added to a solution of 4-meth­oxy­thio­phenol (0.820 mL 7.00 mmol) in 10 mL methanol. After stirring for 5 min, the resulting yellow Na(4-OCH3PhS) solution was added to a solution of [Ni(NNImS)Cl] (1.06 g, 3.50 mmol) in 30 ml of CH2Cl2. After stirring for 24 h the solution was filtered and the solvent was removed by rotary evaporation yielding 1.07 g (68.6%) of the desired title compound as a dark-brown solid. X-ray quality crystals were grown by vapor diffusion of hexa­nes into a CH2Cl2 solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. In the final refinement, ten reflections were omitted because they were obstructed by the beam stop.

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C11H15N2S)(C7H7OS)]
Mr 405.20
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 150
a, b, c (Å) 17.625 (3), 8.8348 (16), 11.677 (2)
V3) 1818.3 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.30
Crystal size (mm) 0.63 × 0.32 × 0.19
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Numerical (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.669, 0.831
No. of measured, independent and observed [I > 2σ(I)] reflections 58307, 3969, 3439
Rint 0.047
(sin θ/λ)max−1) 0.642
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.078, 1.07
No. of reflections 3969
No. of parameters 220
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.53, −0.21
Absolute structure Flack x determined using 1487 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.008 (5)
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2013 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(2-{[2-(Dimethylamino)ethyl]iminomethyl}benzenethiolato-\ κ3N,N',S}(4-methoxybenzenethiolato-\ κS)nickel(II) top
Crystal data top
[Ni(C11H15N2S)(C7H7OS)]Dx = 1.480 Mg m3
Mr = 405.20Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 9817 reflections
a = 17.625 (3) Åθ = 3.3–24.9°
b = 8.8348 (16) ŵ = 1.30 mm1
c = 11.677 (2) ÅT = 150 K
V = 1818.3 (6) Å3Block, dark brown
Z = 40.63 × 0.32 × 0.19 mm
F(000) = 848
Data collection top
Bruker APEXII CCD
diffractometer
3969 independent reflections
Radiation source: sealed X-ray tube3439 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 5.6 pixels mm-1θmax = 27.2°, θmin = 3.7°
φ and ω scansh = 2222
Absorption correction: numerical
(SADABS; Bruker, 2013)
k = 1111
Tmin = 0.669, Tmax = 0.831l = 1415
58307 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0391P)2 + 0.4445P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.078(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.53 e Å3
3969 reflectionsΔρmin = 0.21 e Å3
220 parametersAbsolute structure: Flack x determined using 1487 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.008 (5)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.31015 (3)0.79896 (5)0.67113 (5)0.04074 (14)
S10.34725 (6)0.60772 (12)0.57387 (8)0.0477 (3)
S20.25283 (6)0.87128 (13)0.51019 (9)0.0507 (3)
O10.47643 (19)1.1565 (4)0.1956 (3)0.0694 (9)
N20.3471 (2)0.7292 (4)0.8134 (3)0.0487 (8)
C90.4990 (3)0.2846 (5)0.6419 (4)0.0605 (13)
H90.52270.20640.59910.073*
C150.4217 (3)1.0920 (5)0.2640 (4)0.0516 (10)
N10.2763 (2)0.9859 (4)0.7559 (3)0.0551 (9)
C100.4461 (3)0.3780 (5)0.5902 (4)0.0557 (11)
H100.43370.36240.51190.067*
C160.3500 (3)1.0535 (5)0.2292 (4)0.0529 (10)
H160.33421.07430.15300.063*
C80.5175 (3)0.3052 (5)0.7571 (5)0.0671 (14)
H80.55440.24270.79270.080*
C110.4104 (2)0.4958 (4)0.6511 (4)0.0452 (9)
C170.3007 (2)0.9844 (5)0.3052 (4)0.0473 (10)
H170.25160.95660.27910.057*
C180.4536 (3)1.2082 (6)0.0876 (4)0.0690 (14)
H18A0.43411.12310.04260.104*
H18B0.49711.25330.04800.104*
H18C0.41371.28450.09670.104*
C140.4432 (3)1.0639 (5)0.3757 (4)0.0542 (10)
H140.49251.09200.40060.065*
C70.4821 (3)0.4157 (5)0.8175 (4)0.0634 (13)
H70.49430.42830.89620.076*
C50.3928 (3)0.6212 (5)0.8410 (4)0.0529 (10)
H50.40460.61300.92020.064*
C60.4278 (2)0.5124 (5)0.7679 (4)0.0491 (9)
C120.3202 (2)0.9538 (5)0.4186 (4)0.0441 (9)
C40.3142 (3)0.8191 (6)0.9091 (4)0.0694 (15)
H4A0.34580.80890.97880.083*
H4B0.26220.78400.92680.083*
C10.3012 (4)1.1295 (6)0.7016 (6)0.098 (2)
H1A0.35581.12480.68610.147*
H1B0.29061.21430.75330.147*
H1C0.27371.14420.62950.147*
C130.3937 (3)0.9950 (5)0.4524 (4)0.0532 (11)
H130.40990.97560.52860.064*
C30.3131 (3)0.9795 (7)0.8693 (5)0.0723 (16)
H3A0.28471.04290.92450.087*
H3B0.36561.01880.86390.087*
C20.1937 (3)0.9892 (9)0.7675 (5)0.0809 (17)
H2A0.17040.99430.69130.121*
H2B0.17871.07830.81210.121*
H2C0.17650.89730.80670.121*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0428 (3)0.0447 (3)0.0347 (2)0.00039 (19)0.0018 (2)0.0028 (2)
S10.0554 (7)0.0521 (6)0.0356 (5)0.0060 (5)0.0032 (4)0.0056 (4)
S20.0458 (6)0.0612 (6)0.0450 (5)0.0018 (5)0.0011 (4)0.0041 (5)
O10.0545 (19)0.089 (2)0.064 (2)0.0138 (18)0.0003 (15)0.0129 (18)
N20.057 (2)0.054 (2)0.0354 (17)0.0019 (18)0.0011 (15)0.0055 (15)
C90.059 (3)0.047 (2)0.076 (4)0.007 (2)0.005 (2)0.001 (2)
C150.054 (3)0.049 (2)0.052 (2)0.003 (2)0.004 (2)0.0017 (18)
N10.054 (2)0.060 (2)0.050 (2)0.0098 (19)0.0007 (17)0.0142 (17)
C100.060 (3)0.050 (2)0.056 (3)0.001 (2)0.004 (2)0.000 (2)
C160.056 (3)0.057 (3)0.045 (2)0.000 (2)0.0070 (19)0.0035 (19)
C80.067 (3)0.052 (3)0.083 (4)0.001 (2)0.016 (3)0.010 (2)
C110.044 (2)0.0406 (19)0.051 (2)0.0051 (16)0.0015 (17)0.0006 (18)
C170.045 (2)0.049 (2)0.047 (2)0.0055 (18)0.0063 (17)0.0013 (19)
C180.063 (3)0.090 (4)0.054 (3)0.001 (3)0.004 (2)0.015 (3)
C140.043 (2)0.064 (3)0.055 (2)0.006 (2)0.0051 (19)0.003 (2)
C70.079 (4)0.054 (3)0.058 (3)0.004 (2)0.017 (2)0.009 (2)
C50.064 (3)0.056 (3)0.039 (2)0.003 (2)0.0086 (19)0.0036 (18)
C60.054 (3)0.046 (2)0.048 (2)0.006 (2)0.0068 (19)0.0034 (18)
C120.047 (3)0.038 (2)0.047 (2)0.0042 (17)0.0009 (18)0.0012 (17)
C40.091 (4)0.083 (4)0.034 (2)0.006 (3)0.002 (2)0.013 (2)
C10.153 (7)0.048 (3)0.094 (5)0.004 (3)0.023 (4)0.011 (3)
C130.055 (3)0.063 (3)0.042 (2)0.003 (2)0.0054 (18)0.0016 (19)
C30.071 (4)0.085 (4)0.061 (3)0.011 (3)0.003 (2)0.031 (3)
C20.056 (3)0.121 (5)0.065 (3)0.021 (3)0.003 (2)0.028 (3)
Geometric parameters (Å, º) top
Ni1—S12.1383 (11)C17—H170.9500
Ni1—S22.2272 (12)C17—C121.394 (6)
Ni1—N21.888 (3)C18—H18A0.9800
Ni1—N12.016 (3)C18—H18B0.9800
S1—C111.740 (4)C18—H18C0.9800
S2—C121.756 (5)C14—H140.9500
O1—C151.376 (5)C14—C131.389 (6)
O1—C181.400 (6)C7—H70.9500
N2—C51.289 (6)C7—C61.407 (6)
N2—C41.488 (6)C5—H50.9500
C9—H90.9500C5—C61.427 (6)
C9—C101.383 (7)C12—C131.403 (6)
C9—C81.396 (8)C4—H4A0.9900
C15—C161.370 (6)C4—H4B0.9900
C15—C141.381 (6)C4—C31.492 (8)
N1—C11.484 (7)C1—H1A0.9800
N1—C31.475 (7)C1—H1B0.9800
N1—C21.463 (6)C1—H1C0.9800
C10—H100.9500C13—H130.9500
C10—C111.409 (6)C3—H3A0.9900
C16—H160.9500C3—H3B0.9900
C16—C171.385 (6)C2—H2A0.9800
C8—H80.9500C2—H2B0.9800
C8—C71.357 (7)C2—H2C0.9800
C11—C61.405 (6)
S1—Ni1—S285.25 (5)H18B—C18—H18C109.5
N2—Ni1—S195.97 (11)C15—C14—H14119.5
N2—Ni1—S2173.07 (12)C15—C14—C13121.0 (4)
N2—Ni1—N186.41 (16)C13—C14—H14119.5
N1—Ni1—S1177.11 (12)C8—C7—H7118.8
N1—Ni1—S292.58 (11)C8—C7—C6122.4 (5)
C11—S1—Ni1111.67 (14)C6—C7—H7118.8
C12—S2—Ni1109.04 (15)N2—C5—H5115.9
C15—O1—C18117.2 (4)N2—C5—C6128.3 (4)
C5—N2—Ni1132.6 (3)C6—C5—H5115.9
C5—N2—C4116.8 (4)C11—C6—C7119.0 (4)
C4—N2—Ni1110.6 (3)C11—C6—C5123.8 (4)
C10—C9—H9120.0C7—C6—C5117.1 (4)
C10—C9—C8120.0 (5)C17—C12—S2119.5 (3)
C8—C9—H9120.0C17—C12—C13116.4 (4)
O1—C15—C14115.5 (4)C13—C12—S2124.1 (3)
C16—C15—O1125.2 (4)N2—C4—H4A110.5
C16—C15—C14119.2 (4)N2—C4—H4B110.5
C1—N1—Ni1113.7 (3)N2—C4—C3106.1 (4)
C3—N1—Ni1106.2 (3)H4A—C4—H4B108.7
C3—N1—C1106.6 (5)C3—C4—H4A110.5
C2—N1—Ni1110.9 (3)C3—C4—H4B110.5
C2—N1—C1108.5 (5)N1—C1—H1A109.5
C2—N1—C3110.9 (4)N1—C1—H1B109.5
C9—C10—H10119.3N1—C1—H1C109.5
C9—C10—C11121.4 (4)H1A—C1—H1B109.5
C11—C10—H10119.3H1A—C1—H1C109.5
C15—C16—H16120.1H1B—C1—H1C109.5
C15—C16—C17119.9 (4)C14—C13—C12120.8 (4)
C17—C16—H16120.1C14—C13—H13119.6
C9—C8—H8120.4C12—C13—H13119.6
C7—C8—C9119.2 (5)N1—C3—C4108.8 (4)
C7—C8—H8120.4N1—C3—H3A109.9
C10—C11—S1116.3 (3)N1—C3—H3B109.9
C6—C11—S1125.7 (3)C4—C3—H3A109.9
C6—C11—C10118.0 (4)C4—C3—H3B109.9
C16—C17—H17118.7H3A—C3—H3B108.3
C16—C17—C12122.7 (4)N1—C2—H2A109.5
C12—C17—H17118.7N1—C2—H2B109.5
O1—C18—H18A109.5N1—C2—H2C109.5
O1—C18—H18B109.5H2A—C2—H2B109.5
O1—C18—H18C109.5H2A—C2—H2C109.5
H18A—C18—H18B109.5H2B—C2—H2C109.5
H18A—C18—H18C109.5
 

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFiedler, A. T. & Brunold, T. C. (2007). Inorg. Chem. 46, 8511–8523.  CrossRef Google Scholar
First citationGale, E. M., Narendrapurapu, B. S., Simmonett, A. C., Schaefer, H. F. & Harrop, T. C. (2010). Inorg. Chem. 49, 7080–7096.  CrossRef Google Scholar
First citationGale, E. M., Patra, A. K. & Harrop, T. C. (2009). Inorg. Chem. 48, 5620–5622.  CrossRef Google Scholar
First citationJenkins, R. M., Singleton, M. L., Almaraz, E., Reibenspies, J. H. & Darensbourg, M. Y. (2009). Inorg. Chem. 48, 7280–7293.  CrossRef Google Scholar
First citationMathrubootham, V., Thomas, J., Staples, R., McCraken, J., Shearer, J. & Hegg, E. L. (2010). Inorg. Chem. 49, 5393–5406.  CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSenaratne, N. K., Mwania, T. M., Moore, C. E. & Eichhorn, D. M. (2018). Inorg. Chim. Acta, 476, 27–37.  CrossRef Google Scholar
First citationShearer, J. & Zhao, N. (2006). Inorg. Chem. 45, 9637–9639.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZimmerman, J. R., Smucker, B. W., Dain, R. P., Van Stipdonk, M. J. & Eichhorn, D. M. (2011). Inorg. Chim. Acta, 373, 54–61.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds