inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Redetermination of ammonium metavanadate

CROSSMARK_Color_square_no_text.svg

aFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico, and bInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 18 July 2018; accepted 26 July 2018; online 10 August 2018)

The crystal structure of ammonium metavanadate, NH4VO3, a compound widely used as a starting material for the synthesis of vanadium and polyoxidovanadate compounds, had been determined twice using single-crystal X-ray data [Syneček & Hanic (1954[Syneček, V. & Hanic, F. (1954). Czech. J. Phys. 4, 120-129.]). Czech. J. Phys. 4, 120–129 (Weissenberg data); Hawthorne & Calvo (1977[Hawthorne, F. C. & Calvo, C. (1977). J. Solid State Chem. 22, 157-170.]). J. Solid State Chem. 22, 157–170 (four-circle diffractometer data)]. Its structure is now redetermined at higher resolution using Ag Kα radiation, and the result is compared with the former refinements. Structural data for the polymeric [VO3] chain remain unchanged, while more accurate parameters are obtained for the ammonium cation, improving the description of hydrogen-bonding inter­actions in the crystal structure.

3D view (loading...)
[Scheme 3D1]

Structure description

Ammonium metavanadate, NH4VO3 [IUPAC name: ammonium trioxidovanadate(V)], is a widely used compound at the laboratory scale, for example for the preparation of V2O5, polyoxidovanadates, catalysts, or as an analytical reagent. Its crystal structure has been known for a long time. The first study (Lukesh, 1950[Lukesh, J. S. (1950). Acta Cryst. 3, 476-477.]) reported the correct space group, Pbcm, and a hypothetical arrangement for the [VO4] tetra­hedra that turned out to be correct as revealed by subsequent studies. Weissenberg data allowed the determination of the atomic coordinates for all non-H atoms (Syneček & Hanic, 1954[Syneček, V. & Hanic, F. (1954). Czech. J. Phys. 4, 120-129.]), and a least-squares refinement using the same experimental intensities was published subsequently (Evans, 1960[Evans, H. T. (1960). Z. Kristallogr. 114, 257-277.]).

The crystal structure of NH4VO3 is quite simple (Fig. 1[link]). Vertice-sharing [VO4] tetra­hedra form infinite [VO3] chains along [001], and given that the crystal lattice is ortho­rhom­bic, all chains are parallel; NH4+ cations are situated in the voids between these chains. Both the tetra­hedral anionic and cationic groups are sited on mirror planes parallel to (001) in space group Pbcm, and thus have point group symmetry Cs. Finally, the polymeric character of the vanadate anion stems from the special position of the O atom positioned away from the mirror plane. This atom (O3) lies on the twofold rotation axis parallel to [100].

[Figure 1]
Figure 1
Part of the crystal structure of ammonium metavanadate, viewed approximately down [100], using a polyhedral representation for the vanadate chains and spheres of arbitrary radii for ammonium cations (Boudias & Monceau, 1998[Boudias, C. & Monceau, D. (1998). CaRIne Crystallography. Divergent S. A., Compiègne, France.]). The inset shows non-H atoms with displacement ellipsoids at the 80% probability level. The V1′ and O3′ sites are generated by the symmetry operations x, [{1\over 2}] − y, −z and x, y, [{1\over 2}] − z, respectively.

The most precise structure report of NH4VO3 up to date is probably that by Smrčok et al. (2009[Smrčok, Ľ., Bitschnau, B. & Filinchuk, Y. (2009). Cryst. Res. Technol. 44, 978-984.]), based on laboratory/synchrotron temperature-variable X-ray powder diffraction data combined with solid state DFT calculations. However, these authors commented that they made `unsuccessful attempts to grow a single-crystal suitable for single-crystal neutron diffraction'. Indeed, only one single-crystal study based on four-circle diffractometer data may be retrieved from the literature (Hawthorne & Calvo, 1977[Hawthorne, F. C. & Calvo, C. (1977). J. Solid State Chem. 22, 157-170.]). This long-standing X-ray study reported the structure at a standard resolution, d = 0.84 Å, and, as mentioned by Smrčok et al. (2009[Smrčok, Ľ., Bitschnau, B. & Filinchuk, Y. (2009). Cryst. Res. Technol. 44, 978-984.]), `the positions [of the hydrogen atoms] are not sufficiently accurate to be directly used in calculations of vibrational spectra'.

We now have redetermined the crystal structure of NH4VO3, using room-temperature X-ray diffraction data collected at 0.61 Å resolution. As expected, the bond lengths and angles for the vanadate chain are identical, within experimental uncertainties, to those obtained from the 1977 and 2009 articles (see comparison in Table 1[link]). However, differences occur for the ammonium moiety. Our data allowed us to rationalize the distortion of the tetra­hedral coordination sphere for the cation. The short N1—H3 bond length, 0.77 (2) Å, compared to the long N1—H1 and N1—H2 bonds, 0.85 (2) Å, results from the involvement of the latter in strong hydrogen bonds, while the former gives much weaker and bifurcated hydrogen bonds (Table 2[link]). In the same way, the largest H—N—H angle, 116 (4)°, involves H atoms participating in weak hydrogen bonds, while the acute angle of 104 (2)° is H1—N—H2, where H1 and H2 are engaged in stronger hydrogen bonds. The framework of hydrogen bonds is, however, essentially identical in the three structure determinations. Each cation in the crystal inter­acts with four symmetry-related [VO4] tetra­hedra, forming two strong and two weak hydrogen bonds (Table 2[link]). Weak contacts with H3 as donor form R22(6) ring motifs with the vanadate chains. Such rings connect the cation with two vertices of a [VO4] tetra­hedron, and the same donor groups are connected to the neighbouring vanadate chain in the crystal, forming larger R22(10) ring motifs (Fig. 2[link]). Strong contacts with H1/H2 as donors also connect neighbouring chains. The strength of the hydrogen bonds is reflected in the displacement parameters for the ammonium H atoms: H3 refines with the highest displacement parameter, Uiso = 0.069 (6) Å2, because it is not stabilized on its site through a strong inter­action with the vanadate chain. Smrčok et al. (2009[Smrčok, Ľ., Bitschnau, B. & Filinchuk, Y. (2009). Cryst. Res. Technol. 44, 978-984.]) included in their description two additional very bent contacts. However, the N—H⋯O angles are then below 110°, and these contacts should thus contribute to the crystal stabilization with an energy approaching 0 kJ mol−1 (Wood et al., 2009[Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.]).

Table 1
Bond lengths (Å) and angles (°) in NH4VO3 determined in this work compared to those reported in previous studies

The labelling scheme for atomic sites is identical in the three studies.

  1977 studya 2009 studyb This work
Vanadate anion      
V1—O1 1.640 (4) 1.655 1.6388 (10)
V1—O2 1.647 (4) 1.679 1.6538 (9)
V1—O3 (×2) 1.803 (1) 1.808 1.8021 (3)
O1—V1—O2 107.3 (1) 107.2 107.40 (5)
O1—V1—O3 (×2) 109.7 (1) 109.0 109.75 (3)
O2—V1—O3 (×2) 111.1 (1) 112.1 111.08 (2)
O3—V1—O3 107.9 (1) 107.2 107.77 (3)
Ammonium cation      
N1—H1 0.82 (8) 1.05 0.85 (2)
N1—H2 0.94 (8) 1.05 0.85 (2)
N1—H3 (×2) 0.97 (5) 1.04 0.77 (2)
H1—N1—H2 111 (6) 112 104 (2)
H1—N1—H3 (×2) 106 (3) 109 111.7 (15)
H2—N1—H3 (×2) 107 (3) 110 105.8 (15)
H3—N1—H3 119 (5) 108 116 (4)
References: (a) Hawthorne & Calvo (1977[Hawthorne, F. C. & Calvo, C. (1977). J. Solid State Chem. 22, 157-170.]); (b) Smrčok et al. (2009[Smrčok, Ľ., Bitschnau, B. & Filinchuk, Y. (2009). Cryst. Res. Technol. 44, 978-984.]), with DFT-optimized parameters rounded to the precision of the experimentally determined values.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.85 (2) 2.09 (3) 2.9400 (16) 172 (2)
N1—H2⋯O2ii 0.85 (2) 1.99 (2) 2.8364 (15) 171 (2)
N1—H3⋯O3 0.77 (2) 2.48 (2) 2.9690 (12) 122.9 (17)
N1—H3⋯O1iii 0.77 (2) 2.49 (2) 3.2141 (7) 156 (2)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Part of the crystal structure of ammonium metavanadate, showing hydrogen bonds as dashed lines. Four vanadate chains are represented with different colours, and the asymmetric unit is indicated with black labels. Hydrogen bonds are labelled (1)–(4), corresponding to entries in Table 2[link], and the supra­molecular rings linking the anions and cations in the crystal are coloured yellow. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]; (ii) −x + 2, y + [{1\over 2}], −z + [{1\over 2}]; (iii) x + 1, −y + [{1\over 2}], −z.]

Synthesis and crystallization

Warning! Ammonium metavanadate is a haza­rdous material classified with health code 4 in the NFPA 704 standard system: very short exposure could cause death or major residual injury. The single crystal used in the present study was harvested as a recrystallized unreacted material from the crude reaction in which we attempted to obtain a VIV derivative of tris(metforminium)2+ deca­vanadate (Treviño et al., 2015[Treviño, S., Sánchez-Lara, E., Sarmiento-Ortega, V. E., Sánchez-Lombardo, I., Flores-Hernández, J. Á., Pérez-Benítez, A., Brambila-Colombres, E. & González-Vergara, E. (2015). J. Inorg. Biochem. 147, 85-92.]), using acetyl­salicylic acid both as a source of protons and as a reducing agent. Typically, metformin hydro­chloride (0.850 g), aspirin (0.5 g) and NH4VO3 (0.5 g) were stirred at room temperature for one hour, and the remaining solids were filtered off by gravity. Good-quality single crystals of the main product (orange crystals; Sánchez-Lombardo et al., 2014[Sánchez-Lombardo, I., Sánchez-Lara, E., Pérez-Benítez, A., Mendoza, Á., Bernès, S. & González-Vergara, E. (2014). Eur. J. Inorg. Chem. pp. 4581-4588.]) and NH4VO3 (colourless crystals) were obtained by fractional crystallization, allowing the solvent to evaporate under ambient conditions.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The three H atoms in the asymmetric unit were refined with free coordinates and free isotropic displacement parameters.

Table 3
Experimental details

Crystal data
Chemical formula NH4+·VO3
Mr 116.98
Crystal system, space group Orthorhombic, Pbcm
Temperature (K) 295
a, b, c (Å) 4.9045 (3), 11.7945 (5), 5.8231 (2)
V3) 336.84 (3)
Z 4
Radiation type Ag Kα, λ = 0.56083 Å
μ (mm−1) 1.41
Crystal size (mm) 0.32 × 0.09 × 0.09
 
Data collection
Diffractometer Stoe Stadivari
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2018[Stoe & Cie (2018). X-AREA. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.295, 0.656
No. of measured, independent and observed [I > 2σ(I)] reflections 17208, 846, 754
Rint 0.027
(sin θ/λ)max−1) 0.823
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.014, 0.042, 1.13
No. of reflections 846
No. of parameters 40
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.33, −0.35
Computer programs: X-AREA (Stoe & Cie, 2018[Stoe & Cie (2018). X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and CaRIne Crystallography (Boudias & Monceau, 1998[Boudias, C. & Monceau, D. (1998). CaRIne Crystallography. Divergent S. A., Compiègne, France.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2018); cell refinement: X-AREA (Stoe & Cie, 2018); data reduction: X-AREA (Stoe & Cie, 2018); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008) and CaRIne Crystallography (Boudias & Monceau, 1998); software used to prepare material for publication: publCIF (Westrip, 2010).

Hydroxy(dioxido)vanadium ammoniate top
Crystal data top
NH4+·VO3Dx = 2.307 Mg m3
Mr = 116.98Ag Kα radiation, λ = 0.56083 Å
Orthorhombic, PbcmCell parameters from 39692 reflections
a = 4.9045 (3) Åθ = 2.7–33.0°
b = 11.7945 (5) ŵ = 1.41 mm1
c = 5.8231 (2) ÅT = 295 K
V = 336.84 (3) Å3Prism, colourless
Z = 40.32 × 0.09 × 0.09 mm
F(000) = 232
Data collection top
Stoe Stadivari
diffractometer
846 independent reflections
Radiation source: Sealed X-ray tube, Axo Astix-f Microfocus source754 reflections with I > 2σ(I)
Graded multilayer mirror monochromatorRint = 0.027
Detector resolution: 5.81 pixels mm-1θmax = 27.5°, θmin = 3.3°
ω scansh = 88
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2018)
k = 1919
Tmin = 0.295, Tmax = 0.656l = 98
17208 measured reflections
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.014All H-atom parameters refined
wR(F2) = 0.042 w = 1/[σ2(Fo2) + (0.0248P)2 + 0.023P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
846 reflectionsΔρmax = 0.33 e Å3
40 parametersΔρmin = 0.35 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9355 (2)0.41286 (10)0.2500000.0254 (2)
H10.796 (5)0.4562 (18)0.2500000.047 (6)*
H21.071 (4)0.4581 (16)0.2500000.023 (5)*
H30.947 (3)0.379 (2)0.137 (4)0.069 (6)*
V10.46440 (4)0.17437 (2)0.2500000.01270 (5)
O10.1305 (2)0.16927 (8)0.2500000.02460 (18)
O20.57698 (19)0.04220 (7)0.2500000.02260 (17)
O30.58198 (18)0.2500000.0000000.02029 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0219 (5)0.0176 (4)0.0366 (6)0.0022 (4)0.0000.000
V10.01423 (9)0.01304 (8)0.01082 (7)0.00023 (6)0.0000.000
O10.0158 (4)0.0255 (4)0.0324 (5)0.0002 (3)0.0000.000
O20.0227 (4)0.0160 (4)0.0291 (4)0.0031 (3)0.0000.000
O30.0235 (4)0.0236 (4)0.0139 (3)0.0000.0000.0050 (3)
Geometric parameters (Å, º) top
N1—H10.85 (2)V1—O11.6388 (10)
N1—H20.85 (2)V1—O21.6538 (9)
N1—H30.77 (2)V1—O31.8021 (3)
N1—H3i0.77 (2)V1—O3i1.8021 (3)
H1—N1—H2104 (2)O1—V1—O3109.75 (3)
H1—N1—H3111.7 (15)O2—V1—O3111.08 (2)
H2—N1—H3105.8 (15)O1—V1—O3i109.75 (3)
H1—N1—H3i111.7 (15)O2—V1—O3i111.08 (2)
H2—N1—H3i105.8 (15)O3—V1—O3i107.77 (3)
H3—N1—H3i116 (4)V1—O3—V1ii142.68 (5)
O1—V1—O2107.40 (5)
O1—V1—O3—V1ii1.91 (3)O3i—V1—O3—V1ii117.57 (3)
O2—V1—O3—V1ii120.53 (3)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2iii0.85 (2)2.09 (3)2.9400 (16)172 (2)
N1—H2···O2iv0.85 (2)1.99 (2)2.8364 (15)171 (2)
N1—H3···O30.77 (2)2.48 (2)2.9690 (12)122.9 (17)
N1—H3···O1v0.77 (2)2.49 (2)3.2141 (7)156 (2)
Symmetry codes: (iii) x+1, y+1/2, z+1/2; (iv) x+2, y+1/2, z+1/2; (v) x+1, y+1/2, z1/2.
Bond lengths (Å) and angles (°) in NH4VO3 determined in this work compared to those reported in previous studies top
The labelling scheme for atomic sites is identical in the three studies.
1977 studya2009 studybThis work
Vanadate anion
V1—O11.640 (4)1.6551.6388 (10)
V1—O21.647 (4)1.6791.6538 (9)
V1—O3 (×2)1.803 (1)1.8081.8021 (3)
O1—V1—O2107.3 (1)107.2107.40 (5)
O1—V1—O3 (×2)109.7 (1)109.0109.75 (3)
O2—V1—O3 (×2)111.1 (1)112.1111.08 (2)
O3—V1—O3107.9 (1)107.2107.77 (3)
Ammonium cation
N1—H10.82 (8)1.050.85 (2)
N1—H20.94 (8)1.050.85 (2)
N1—H3 (×2)0.97 (5)1.040.77 (2)
H1—N1—H2111 (6)112104 (2)
H1—N1—H3 (×2)106 (3)109111.7 (15)
H2—N1—H3 (×2)107 (3)110105.8 (15)
H3—N1—H3119 (5)108116 (4)
References: (a) Hawthorne & Calvo (1977); (b) Smrčok et al. (2009), with DFT-optimized parameters rounded to the precision of the experimentally determined values.
 

Funding information

Funding for this research was provided by: Benemérita Universidad Autónoma de Puebla (grant No. 100500599-VIEP2018; grant No. 100142933-VIEP2018); Consejo Nacional de Ciencia y Tecnología (grant No. 268178).

References

First citationBoudias, C. & Monceau, D. (1998). CaRIne Crystallography. Divergent S. A., Compiègne, France.  Google Scholar
First citationEvans, H. T. (1960). Z. Kristallogr. 114, 257–277.  CrossRef CAS Google Scholar
First citationHawthorne, F. C. & Calvo, C. (1977). J. Solid State Chem. 22, 157–170.  CrossRef Web of Science Google Scholar
First citationLukesh, J. S. (1950). Acta Cryst. 3, 476–477.  CrossRef IUCr Journals Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSánchez-Lombardo, I., Sánchez-Lara, E., Pérez-Benítez, A., Mendoza, Á., Bernès, S. & González-Vergara, E. (2014). Eur. J. Inorg. Chem. pp. 4581–4588.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmrčok, Ľ., Bitschnau, B. & Filinchuk, Y. (2009). Cryst. Res. Technol. 44, 978–984.  Google Scholar
First citationStoe & Cie (2018). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSyneček, V. & Hanic, F. (1954). Czech. J. Phys. 4, 120–129.  Google Scholar
First citationTreviño, S., Sánchez-Lara, E., Sarmiento-Ortega, V. E., Sánchez-Lombardo, I., Flores-Hernández, J. Á., Pérez-Benítez, A., Brambila-Colombres, E. & González-Vergara, E. (2015). J. Inorg. Biochem. 147, 85–92.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds