organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Z)-3-[(3,5-Di­chloro­anilino)methyl­­idene]-5-(4-methyl­phen­yl)furan-2(3H)-one

CROSSMARK_Color_square_no_text.svg

aInstitute of Chemistry, N.G. Chernyshevsky National Research Saratov State University, Ulitsa Astrakhanskaya, 83, Saratov 410012, Russian Federation, and bInstitute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russian Federation
*Correspondence e-mail: grinev@ibppm.ru

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 24 August 2018; accepted 28 August 2018; online 31 August 2018)

The crystal structure of the title compound, C18H13Cl2NO2, at 120 K has triclinic (P[\overline{1}]) symmetry. The mol­ecule demonstrates non-planarity in the solid state and a Z configuration for the exocyclic C=C bond. The Z form is stabilized by the presence of an intra­molecular N—H⋯O hydrogen bond with an O⋯H inter­atomic distance of 2.18 (2) Å.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Enamine derivatives of furan-2(3H)-ones have a push–pull character and may be of inter­est for the creation of mol­ecular switches (Osipov et al., 2017[Osipov, A. K., Anis'kov, A. A., Grinev, V. S. & Yegorova, A. Yu. (2017). Magn. Reson. Chem. 55, 730-737.]). The title mol­ecule is non-planar (Fig. 1[link]) with the p-tolyl substituent rotated about the mean plane of the furan­one ring by approximately −10° [C18—C17—C6—O1 torsion angle = −9.68 (19)°]. The C4=C7 bond adopts the Z configuration. The benzene ring of the 3,5-di­chloro­phenyl substituent is also out of the plane of the mol­ecule [the dihedral angle between the mean planes of the furan­one and 3,5-di­chloro­phenyl rings is 14.74 (7)°], which is a consequence of the repulsion of hydrogen atoms H16 of the aromatic substituent and H7 of enamine fragment (the inter­atomic distance is 2.12 Å, which is less than the sum of van der Waals radii of 2.38 Å). An additional stabilization factor of the mol­ecule in the Z-configuration is the intra­molecular hydrogen bond with an O3⋯H8 inter­atomic distance of 2.18 (2) Å (Table 1[link], Fig. 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8⋯O3 0.89 (2) 2.18 (2) 2.8553 (16) 132.2 (19)
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom labelling and displacement ellipsoids drawn at the 50% probability level.

Mol­ecules in the crystal are oriented in a head-to-tail fashion (Fig. 2[link]). The inter­planar distances between identically oriented mol­ecules are more than 7 Å. The shortest inter­centroid distance in the crystal is between the furan­one and 3,5-di­chloro­phenyl rings [Cg1⋯Cg2i = 3.5817 (9) Å; symmetry code: (i) −x + 1, −y + 1, −z + 1; Cg1 and Cg2 are the centroids of the furan­one and 3,5-di­chloro­phenyl rings, respectively].

[Figure 2]
Figure 2
The crystal packing of the title compound, viewed down the a axis.

Synthesis and crystallization

The synthesis of title compound was performed according to the method described by Osipov et al. (2017[Osipov, A. K., Anis'kov, A. A., Grinev, V. S. & Yegorova, A. Yu. (2017). Magn. Reson. Chem. 55, 730-737.]). Briefly, about 7 ml of benzene, 1.78 g (12.02 mmol) of triethyl orthoformate, 0.40 g (1.67 mmol) of 5-(p-tol­yl)furan-2(3H)-one and 0.27 g (1.67 mmol) of 3,5-di­chloro­aniline were placed into a round-bottom flask equipped with a Liebig reflux condenser, and the reaction mixture was refluxed for 2 h. The precipitate of 3-[(3,5-di­chloro­anilino)methyl­idene]-5-(4-methyl­phen­yl)furan-2(3H)-one was filtered off, washed with benzene and then with chloro­form, dried, and recrystallized from DMF. Yield 0.45 g (78%), yellow crystals. A suitable single-crystal for X-ray analysis was obtained by slow cooling of a saturated solution of the title compound in benzene.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C18H13Cl2NO2
Mr 346.19
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 120
a, b, c (Å) 7.4005 (8), 10.4272 (11), 10.5704 (11)
α, β, γ (°) 86.076 (2), 72.382 (2), 81.325 (2)
V3) 768.30 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.43
Crystal size (mm) 0.6 × 0.1 × 0.1
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.670, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 14989, 3956, 3576
Rint 0.019
(sin θ/λ)max−1) 0.676
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.102, 1.05
No. of reflections 3956
No. of parameters 213
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.65, −0.26
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

(Z)-3-[(3,5-Dichloroanilino)methylidene]-5-(4-methylphenyl)furan-2(3H)-one top
Crystal data top
C18H13Cl2NO2Z = 2
Mr = 346.19F(000) = 356
Triclinic, P1Dx = 1.496 Mg m3
a = 7.4005 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.4272 (11) ÅCell parameters from 9480 reflections
c = 10.5704 (11) Åθ = 2.8–33.6°
α = 86.076 (2)°µ = 0.43 mm1
β = 72.382 (2)°T = 120 K
γ = 81.325 (2)°Needle, metallic orangish yellow
V = 768.30 (14) Å30.6 × 0.1 × 0.1 mm
Data collection top
Bruker APEXII CCD
diffractometer
3576 reflections with I > 2σ(I)
φ and ω scansRint = 0.019
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
θmax = 28.7°, θmin = 2.0°
Tmin = 0.670, Tmax = 0.747h = 99
14989 measured reflectionsk = 1414
3956 independent reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0584P)2 + 0.3381P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3956 reflectionsΔρmax = 0.65 e Å3
213 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure was solved by the internal phasing method and refined by the least-squares method in the anisotropic full-matrix approximation in accordance with F2hkl. The hydrogen atom of NH group in the compound was localized from a difference electron density map and refined in the isotropic approximation.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl120.73598 (6)0.17894 (4)0.95054 (4)0.03192 (11)
Cl150.28370 (5)0.00476 (4)0.70818 (4)0.03283 (11)
O10.85703 (14)0.63696 (9)0.18548 (9)0.0221 (2)
O30.87688 (16)0.58521 (10)0.39293 (10)0.0284 (2)
N80.71111 (18)0.35501 (11)0.49406 (12)0.0236 (2)
H80.782 (3)0.412 (2)0.506 (2)0.041 (5)*
C20.8260 (2)0.56018 (12)0.29926 (13)0.0218 (3)
C40.72893 (19)0.45467 (13)0.28098 (13)0.0220 (3)
C50.70627 (19)0.47396 (13)0.15031 (13)0.0220 (3)
H50.6482610.4205240.1091560.026*
C60.78279 (18)0.58216 (12)0.09699 (13)0.0192 (2)
C70.6746 (2)0.36063 (13)0.37583 (13)0.0232 (3)
H70.6080280.2962800.3578580.028*
C90.64593 (19)0.26777 (12)0.59953 (13)0.0213 (3)
C100.7183 (2)0.26434 (13)0.70751 (13)0.0232 (3)
H100.8109770.3180450.7081040.028*
C110.65202 (19)0.18079 (13)0.81396 (13)0.0215 (3)
C130.51978 (18)0.09828 (12)0.81629 (12)0.0213 (3)
H130.4779600.0404650.8892710.026*
C140.45206 (19)0.10446 (13)0.70717 (13)0.0217 (3)
C160.51059 (19)0.18805 (13)0.59919 (13)0.0222 (3)
H160.4595330.1909150.5265410.027*
C170.80132 (18)0.65033 (12)0.02995 (12)0.0190 (2)
C180.86162 (18)0.77317 (12)0.05282 (13)0.0198 (2)
H180.8912370.8130260.0152550.024*
C190.87821 (18)0.83680 (12)0.17475 (13)0.0206 (2)
H190.9184670.9202940.1886070.025*
C200.83712 (19)0.78098 (13)0.27751 (13)0.0213 (3)
C210.7763 (2)0.65877 (13)0.25387 (14)0.0237 (3)
H210.7467550.6191390.3221000.028*
C220.75842 (19)0.59414 (13)0.13209 (13)0.0222 (3)
H220.7166870.5110950.1180710.027*
C230.8603 (2)0.85101 (14)0.41077 (14)0.0274 (3)
H23A0.7486540.9167030.4052380.041*
H23B0.8709260.7884380.4786040.041*
H23C0.9761780.8931780.4346160.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl120.0422 (2)0.0348 (2)0.02564 (18)0.01046 (15)0.01803 (15)0.00003 (14)
Cl150.0342 (2)0.0421 (2)0.02820 (19)0.01988 (16)0.01268 (15)0.00627 (14)
O10.0303 (5)0.0196 (4)0.0175 (4)0.0055 (4)0.0081 (4)0.0014 (3)
O30.0406 (6)0.0261 (5)0.0205 (5)0.0074 (4)0.0107 (4)0.0007 (4)
N80.0277 (6)0.0219 (5)0.0211 (5)0.0065 (4)0.0061 (5)0.0020 (4)
C20.0254 (6)0.0195 (6)0.0180 (6)0.0012 (5)0.0041 (5)0.0004 (4)
C40.0220 (6)0.0205 (6)0.0217 (6)0.0014 (5)0.0047 (5)0.0008 (5)
C50.0217 (6)0.0214 (6)0.0232 (6)0.0039 (5)0.0070 (5)0.0019 (5)
C60.0188 (6)0.0189 (6)0.0195 (6)0.0010 (4)0.0057 (5)0.0013 (4)
C70.0242 (6)0.0223 (6)0.0224 (6)0.0037 (5)0.0061 (5)0.0014 (5)
C90.0224 (6)0.0191 (6)0.0191 (6)0.0004 (5)0.0029 (5)0.0002 (4)
C100.0250 (6)0.0212 (6)0.0230 (6)0.0044 (5)0.0059 (5)0.0008 (5)
C110.0250 (6)0.0217 (6)0.0178 (6)0.0014 (5)0.0070 (5)0.0017 (5)
C130.0236 (6)0.0220 (6)0.0168 (6)0.0020 (5)0.0049 (5)0.0014 (5)
C140.0202 (6)0.0243 (6)0.0204 (6)0.0042 (5)0.0053 (5)0.0000 (5)
C160.0220 (6)0.0264 (6)0.0178 (6)0.0015 (5)0.0068 (5)0.0012 (5)
C170.0174 (5)0.0191 (6)0.0191 (6)0.0003 (4)0.0043 (4)0.0001 (4)
C180.0201 (6)0.0206 (6)0.0194 (6)0.0023 (5)0.0067 (5)0.0012 (4)
C190.0207 (6)0.0190 (6)0.0219 (6)0.0024 (5)0.0062 (5)0.0011 (5)
C200.0193 (6)0.0235 (6)0.0196 (6)0.0023 (5)0.0061 (5)0.0004 (5)
C210.0254 (6)0.0248 (6)0.0230 (6)0.0009 (5)0.0108 (5)0.0042 (5)
C220.0226 (6)0.0201 (6)0.0249 (6)0.0030 (5)0.0084 (5)0.0022 (5)
C230.0317 (7)0.0290 (7)0.0198 (6)0.0020 (6)0.0083 (5)0.0010 (5)
Geometric parameters (Å, º) top
Cl12—C111.7338 (14)C11—C131.3911 (19)
Cl15—C141.7362 (14)C13—H130.9500
O1—C21.3771 (15)C13—C141.3841 (18)
O1—C61.4079 (15)C14—C161.3887 (18)
O3—C21.2171 (17)C16—H160.9500
N8—H80.89 (2)C17—C181.4010 (17)
N8—C71.3521 (18)C17—C221.4000 (18)
N8—C91.4040 (17)C18—H180.9500
C2—C41.4543 (19)C18—C191.3886 (17)
C4—C51.4381 (18)C19—H190.9500
C4—C71.3671 (18)C19—C201.3968 (18)
C5—H50.9500C20—C211.3964 (19)
C5—C61.3504 (18)C20—C231.5158 (18)
C6—C171.4533 (17)C21—H210.9500
C7—H70.9500C21—C221.3907 (19)
C9—C101.3965 (19)C22—H220.9500
C9—C161.3956 (19)C23—H23A0.9800
C10—H100.9500C23—H23B0.9800
C10—C111.3880 (18)C23—H23C0.9800
C2—O1—C6107.58 (10)C13—C14—Cl15117.97 (10)
C7—N8—H8116.8 (14)C13—C14—C16122.82 (12)
C7—N8—C9125.78 (12)C16—C14—Cl15119.19 (10)
C9—N8—H8117.4 (14)C9—C16—H16120.7
O1—C2—C4107.75 (11)C14—C16—C9118.67 (12)
O3—C2—O1121.51 (12)C14—C16—H16120.7
O3—C2—C4130.74 (12)C18—C17—C6121.04 (12)
C5—C4—C2106.19 (11)C22—C17—C6120.34 (12)
C7—C4—C2123.25 (12)C22—C17—C18118.62 (12)
C7—C4—C5130.56 (13)C17—C18—H18119.9
C4—C5—H5126.4C19—C18—C17120.17 (12)
C6—C5—C4107.27 (12)C19—C18—H18119.9
C6—C5—H5126.4C18—C19—H19119.2
O1—C6—C17115.91 (11)C18—C19—C20121.57 (12)
C5—C6—O1111.20 (11)C20—C19—H19119.2
C5—C6—C17132.89 (12)C19—C20—C23120.65 (12)
N8—C7—C4123.02 (13)C21—C20—C19117.97 (12)
N8—C7—H7118.5C21—C20—C23121.37 (12)
C4—C7—H7118.5C20—C21—H21119.5
C10—C9—N8117.85 (12)C22—C21—C20121.07 (12)
C16—C9—N8121.80 (12)C22—C21—H21119.5
C16—C9—C10120.34 (12)C17—C22—H22119.7
C9—C10—H10120.7C21—C22—C17120.60 (12)
C11—C10—C9118.57 (13)C21—C22—H22119.7
C11—C10—H10120.7C20—C23—H23A109.5
C10—C11—Cl12118.97 (11)C20—C23—H23B109.5
C10—C11—C13122.77 (12)C20—C23—H23C109.5
C13—C11—Cl12118.25 (10)H23A—C23—H23B109.5
C11—C13—H13121.6H23A—C23—H23C109.5
C14—C13—C11116.80 (12)H23B—C23—H23C109.5
C14—C13—H13121.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···O30.89 (2)2.18 (2)2.8553 (16)132.2 (19)
 

Funding information

The work was supported by the RFBR (research project No. 16–03-00530).

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOsipov, A. K., Anis'kov, A. A., Grinev, V. S. & Yegorova, A. Yu. (2017). Magn. Reson. Chem. 55, 730–737.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds