organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(tri­phenyl­phosphine)iminium tetra­fluoro­borate chloro­form monosolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Southern Illinois University Edwardsville, Edwardsville, IL 62026-1652, USA, and bDepartment of Chemistry and Biochemistry and, Center for Nanoscience, University of Missouri-St. Louis, St. Louis, MO 63121-4400, USA
*Correspondence e-mail: myrjone@siue.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 27 July 2018; accepted 3 August 2018; online 14 August 2018)

In the title compound, C36H30NP2+·BF4·CHCl3 or [PPN]BF4·CHCl3, where [PPN] = [(Ph3P)2N]+, two tri­phenyl­phosphine units are attached to a central N atom. The P—N—P bond angle is 137.69 (11)°. The two P—N bonds are nearly equivalent, with lengths of 1.5834 (18) and 1.5798 (17) Å. Both the BF4 anion and the chloro­form solvent mol­ecule are disordered over two positions, with occupancy ratios of 0.872 (3):0.128 (3) and 0.9628 (9):0.0372 (9), respectively. In the crystal, C—H⋯F and C—H⋯Cl hydrogen bonds link the [PPN]+ cations, the BF4 anions, and the chloro­form solvent mol­ecules into an array which extends along the b-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The bis­(tri­phenyl­phosphine)iminium cation, [PPN]+ is a large cation commonly used by synthetic chemists to isolate reactive anions. [PPN]+ salts such as the commercially available [PPN]Cl are a common source of the cation. The utility of [PPN]+ is demonstrated in part by the over 4600 substances containing the cation listed in SciFinder® (SciFinder, 2018[SciFinder (2018). Chemical Abstracts Service, Columbus, Ohio, USA. (accessed July 20, 2018).]). Indeed [PPN]+ has been used in many diverse applications. For example, some [PPN]+ salts have been shown to have in vitro anti­cancer activity (Folda et al., 2015[Folda, A., Scalcon, V., Ghazzali, M., Jaafar, M. H., Khan, R. A., Casini, A., Citta, A., Bindoli, A., Rigobello, M. P., Al-Farhan, K., Alsalme, A. & Reedijk, J. (2015). J. Inorg. Biochem. 153, 346-354.]) while [PPN]NO2 is an often used nitro­sylating reagent in chemical synthesis (Stevens et al., 1981[Stevens, R. E., Yanta, T. J. & Gladfelter, W. L. (1981). J. Am. Chem. Soc. 103, 4981-4982.]). [PPN]+-(bipyrid­yl)tetra­cyanidoruthenate has been used as a humidity sensor (Evju & Mann, 1999[Evju, J. K. & Mann, K. R. (1999). Chem. Mater. 11, 1425-1433.]), and the [PPN]+ has been used to construct a nitrate-selective electrode (Werner et al., 1989[Werner, G., Kolowos, I. & Senkýr, J. (1989). Talanta, 36, 966-968.]). A variety of [PPN]+ salts are co-catalysts for the copolymerization of cyclo­hexene oxide and CO2 (Darensbourg & Mackiewicz, 2005[Darensbourg, D. J. & Mackiewicz, R. M. (2005). J. Am. Chem. Soc. 127, 14026-14038.]).

To the best of our knowlege, only four reports of [PPN]BF4 structures are known: solvent-free [PPN]BF4 (Bertocco et al., 2016[Bertocco, P., Bolli, C., Correia Bicho, B. A., Jenne, C., Erken, B., Laitinen, R. S., Seeger, H. A. & Takaluoma, T. T. (2016). Inorg. Chem. 55, 3599-3604.]; Denny & Darensbourg, 2016[Denny, J. A. & Darensbourg, M. Y. (2016). (CCDC Reference 1450627).]; Folda et al., 2015[Folda, A., Scalcon, V., Ghazzali, M., Jaafar, M. H., Khan, R. A., Casini, A., Citta, A., Bindoli, A., Rigobello, M. P., Al-Farhan, K., Alsalme, A. & Reedijk, J. (2015). J. Inorg. Biochem. 153, 346-354.]) and the solvate [PPN]BF4·CH2Cl2 (Liau et al., 2002[Liau, R.-Y., Ehlich, H., Schier, A. & Schmidbaur, H. (2002). Z. Naturforsch. Teil B, 57, 1085-1089.]).

The structure of the title compound is shown in Fig. 1[link]. There is one formula unit per asymmetric unit that consists of one [PPN]+ cation, a tetra­fluoro­borate (BF4) anion, and one chloro­form solvate mol­ecule. The anion and solvate mol­ecule are each disordered over two sites. The central P—N—P bond angle of 137.69 (11)° is similar to the angles observed in the solvent free [PPN]BF4, 139.42 (10)°, and its di­chloro­methane solvate, 138.54 (14)°. The extensive C—H⋯F and C—H⋯Cl hydrogen-bonding inter­actions, summarized in Table 1[link], help to stack an array of [PPN]+ cations, BF4 anions and CHCl3 mol­ecules along the b-axis direction as shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯F2i 0.95 2.57 3.394 (3) 145
C8—H8⋯F2′i 0.95 2.32 2.903 (8) 119
C14—H14⋯F2i 0.95 2.44 3.333 (3) 157
C18—H18⋯Cl3′ 0.95 2.78 3.481 (18) 131
C20—H20⋯F3′ii 0.95 2.61 3.308 (15) 131
C26—H26⋯F4′iii 0.95 2.52 3.427 (14) 160
C1S—H1S⋯F2ii 1.00 2.15 3.132 (3) 166
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
A view of the asymmetric unit of [PPN]BF4·CHCl3 with displacement ellipsoids drawn at the 50% probability level. For clarity only the major disorder components of the BF4 anion and CHCl3 solvent mol­ecule are shown.
[Figure 2]
Figure 2
Overall packing viewed along the b-axis showing representative C—H⋯F and C—H⋯Cl hydrogen bonding contacts as dotted lines. Only the major disorder components are shown.

Synthesis and crystallization

The title compound was obtained during our attempt to crystallize the mono-substituted VDPP derivative of Fe(NO)2(CO)2 (VDPP = 1,1-bis­(di­phenyl­phosphino)ethyl­ene), which had been prepared in THF by reaction of [PPN][Fe(CO)3(NO)] and [NO]BF4. The resulting solution of Fe(NO)2(CO)2 was ostensibly isolated from the solid [PPN]BF4 byproduct by filter cannulation. Subsequent reaction of Fe(NO)2(CO)2 with VDPP produced Fe(NO)2(CO)(vdpp) which was isolated as a solid in vacuo. A chloro­form solution of the filtered Fe(NO)2(CO)(vdpp) was layered with pentane and allowed to evaporate slowly at room temperature under argon. After one week crystals of [PPN]BF4 suitable for single-crystal structure determination were serendipitously obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Both the BF4 anion and the chloro­form mol­ecules were found to be disordered over two positions. Their occupancies were separately refined to sum to unity and the occupancy ratios converged to BF4 [0.872 (3):0.128 (3)] and CHCl3 [0.9628 (9):0.0372 (9)], respectively. The disorder models were refined with geometrical constraints (SADI). The solvent Cl atoms were refined with displacement parameter constraints (EADP).

Table 2
Experimental details

Crystal data
Chemical formula C36H30NP2+·BF4·CHCl3
Mr 744.73
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.6306 (7), 10.8130 (8), 17.0381 (14)
α, β, γ (°) 91.826 (5), 95.619 (4), 90.734 (4)
V3) 1764.6 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.40
Crystal size (mm) 0.57 × 0.14 × 0.11
 
Data collection
Diffractometer Bruker SMART APEX CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.769, 0.838
No. of measured, independent and observed [I > 2σ(I)] reflections 32342, 11718, 7247
Rint 0.056
(sin θ/λ)max−1) 0.736
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.130, 1.03
No. of reflections 11718
No. of parameters 474
No. of restraints 109
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.47, −0.90
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2013 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2013 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Bis(triphenyl-λ5-phosphanylidene)azanium tetrafluoridoborate chloroform monosolvate top
Crystal data top
C36H30NP2+·BF4·CHCl3Z = 2
Mr = 744.73F(000) = 764
Triclinic, P1Dx = 1.402 Mg m3
a = 9.6306 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.8130 (8) ÅCell parameters from 6075 reflections
c = 17.0381 (14) Åθ = 2.3–29.4°
α = 91.826 (5)°µ = 0.40 mm1
β = 95.619 (4)°T = 100 K
γ = 90.734 (4)°Rod, yellow
V = 1764.6 (2) Å30.57 × 0.14 × 0.11 mm
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
11718 independent reflections
Radiation source: sealed tube7247 reflections with I > 2σ(I)
Detector resolution: 8 pixels mm-1Rint = 0.056
ω and φ scansθmax = 31.6°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1114
Tmin = 0.769, Tmax = 0.838k = 1515
32342 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.7191P]
where P = (Fo2 + 2Fc2)/3
11718 reflections(Δ/σ)max = 0.002
474 parametersΔρmax = 0.47 e Å3
109 restraintsΔρmin = 0.89 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.69176 (5)0.63460 (5)0.26638 (3)0.01319 (11)
P20.48489 (5)0.43360 (5)0.27647 (3)0.01301 (11)
N10.62869 (16)0.49844 (16)0.26408 (10)0.0148 (3)
C10.57105 (19)0.75089 (19)0.23202 (12)0.0157 (4)
C20.5522 (2)0.7720 (2)0.15149 (13)0.0196 (4)
H20.6104870.7324770.1168050.023*
C30.4485 (2)0.8504 (2)0.12177 (14)0.0252 (5)
H30.4360590.8649850.0668540.030*
C40.3633 (2)0.9074 (2)0.17236 (15)0.0262 (5)
H40.2919360.9608450.1519200.031*
C50.3811 (2)0.8873 (2)0.25255 (15)0.0245 (5)
H50.3221600.9267540.2869240.029*
C60.4851 (2)0.8094 (2)0.28262 (14)0.0205 (4)
H60.4978010.7958700.3376620.025*
C70.76765 (19)0.68021 (19)0.36417 (12)0.0158 (4)
C80.8034 (2)0.8032 (2)0.38425 (13)0.0202 (4)
H80.7847520.8653380.3466250.024*
C90.8660 (2)0.8352 (2)0.45895 (13)0.0248 (5)
H90.8899350.9191860.4724590.030*
C100.8937 (2)0.7448 (2)0.51411 (13)0.0249 (5)
H100.9355250.7671320.5655140.030*
C110.8605 (2)0.6222 (2)0.49425 (13)0.0229 (5)
H110.8804530.5603470.5319330.028*
C120.7980 (2)0.5890 (2)0.41919 (12)0.0185 (4)
H120.7760460.5046510.4055010.022*
C130.83060 (19)0.63487 (19)0.20303 (12)0.0153 (4)
C140.9004 (2)0.7454 (2)0.19064 (12)0.0181 (4)
H140.8705810.8210890.2127790.022*
C151.0130 (2)0.7446 (2)0.14607 (13)0.0215 (5)
H151.0605620.8197590.1375260.026*
C161.0565 (2)0.6340 (2)0.11391 (13)0.0237 (5)
H161.1347300.6333530.0840020.028*
C170.9866 (2)0.5248 (2)0.12519 (13)0.0236 (5)
H171.0159040.4496180.1021140.028*
C180.8737 (2)0.5239 (2)0.16997 (13)0.0189 (4)
H180.8262240.4485000.1780130.023*
C190.5175 (2)0.29576 (19)0.33066 (12)0.0152 (4)
C200.6497 (2)0.2436 (2)0.33518 (12)0.0182 (4)
H200.7226980.2813980.3103500.022*
C210.6734 (2)0.1357 (2)0.37646 (13)0.0227 (5)
H210.7633520.1000500.3805350.027*
C220.5661 (2)0.0803 (2)0.41155 (14)0.0247 (5)
H220.5829760.0066460.4396090.030*
C230.4346 (2)0.1308 (2)0.40634 (14)0.0245 (5)
H230.3611940.0911300.4297950.029*
C240.4104 (2)0.2395 (2)0.36678 (12)0.0195 (4)
H240.3207910.2757190.3642440.023*
C250.39051 (19)0.39030 (19)0.18288 (11)0.0147 (4)
C260.2980 (2)0.2889 (2)0.17448 (13)0.0184 (4)
H260.2829390.2412140.2188410.022*
C270.2284 (2)0.2582 (2)0.10121 (13)0.0208 (4)
H270.1663750.1887570.0954180.025*
C280.2484 (2)0.3278 (2)0.03660 (13)0.0204 (4)
H280.2001210.3061180.0133600.024*
C290.3386 (2)0.4291 (2)0.04445 (12)0.0214 (4)
H290.3514570.4775530.0001100.026*
C300.4104 (2)0.4597 (2)0.11750 (12)0.0201 (4)
H300.4733510.5284670.1227250.024*
C310.37409 (19)0.52727 (19)0.33263 (11)0.0141 (4)
C320.2454 (2)0.5688 (2)0.30098 (13)0.0223 (5)
H320.2081290.5412820.2496180.027*
C330.1714 (2)0.6509 (2)0.34489 (14)0.0286 (5)
H330.0834760.6796210.3232400.034*
C340.2246 (2)0.6910 (2)0.41956 (13)0.0247 (5)
H340.1739980.7480830.4487920.030*
C350.3519 (2)0.6480 (2)0.45208 (13)0.0203 (4)
H350.3881900.6747060.5037740.024*
C360.4257 (2)0.56592 (19)0.40883 (12)0.0161 (4)
H360.5124250.5356680.4312620.019*
B10.9734 (2)0.9172 (2)0.72177 (15)0.0247 (5)
F10.9085 (2)0.9440 (2)0.78950 (13)0.0427 (6)0.872 (3)
F21.10792 (15)0.96714 (16)0.73349 (10)0.0332 (5)0.872 (3)
F30.9817 (3)0.79082 (18)0.70909 (14)0.0496 (7)0.872 (3)
F40.9052 (2)0.9718 (2)0.65640 (11)0.0535 (7)0.872 (3)
F1'0.9596 (18)0.9723 (15)0.7953 (6)0.067 (5)0.128 (3)
F2'1.0385 (15)0.9971 (11)0.6767 (8)0.067 (5)0.128 (3)
F3'1.0466 (14)0.8091 (9)0.7339 (10)0.056 (5)0.128 (3)
F4'0.8399 (7)0.8879 (10)0.6880 (7)0.040 (4)0.128 (3)
C1S0.7670 (2)0.1105 (2)0.09896 (14)0.0279 (5)
H1S0.8219170.0928670.1501680.033*
Cl10.75419 (7)0.02595 (6)0.03878 (4)0.03460 (16)0.9628 (9)
Cl20.60017 (7)0.15976 (7)0.11801 (5)0.04246 (19)0.9628 (9)
Cl30.85322 (8)0.22581 (7)0.05260 (5)0.0483 (2)0.9628 (9)
Cl1'0.8811 (16)0.0694 (15)0.0272 (8)0.03460 (16)0.0372 (9)
Cl3'0.7185 (19)0.2620 (10)0.0726 (13)0.0483 (2)0.0372 (9)
Cl2'0.6530 (16)0.0073 (13)0.1361 (11)0.04246 (19)0.0372 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0129 (2)0.0141 (3)0.0125 (2)0.00158 (18)0.00078 (18)0.00049 (19)
P20.0146 (2)0.0142 (3)0.0102 (2)0.00071 (18)0.00114 (18)0.00015 (19)
N10.0149 (7)0.0151 (8)0.0148 (8)0.0016 (6)0.0026 (6)0.0002 (7)
C10.0133 (8)0.0140 (10)0.0194 (11)0.0006 (7)0.0007 (7)0.0004 (8)
C20.0182 (9)0.0204 (11)0.0201 (11)0.0006 (8)0.0007 (8)0.0018 (9)
C30.0227 (10)0.0260 (12)0.0257 (12)0.0006 (9)0.0064 (9)0.0084 (10)
C40.0182 (10)0.0211 (12)0.0387 (14)0.0025 (9)0.0028 (9)0.0087 (10)
C50.0181 (10)0.0179 (11)0.0384 (14)0.0041 (8)0.0069 (9)0.0001 (10)
C60.0209 (10)0.0182 (11)0.0224 (11)0.0019 (8)0.0027 (8)0.0006 (9)
C70.0125 (8)0.0197 (10)0.0151 (10)0.0011 (7)0.0023 (7)0.0009 (8)
C80.0212 (10)0.0212 (11)0.0182 (11)0.0010 (8)0.0025 (8)0.0019 (9)
C90.0232 (11)0.0283 (13)0.0219 (12)0.0013 (9)0.0007 (9)0.0104 (10)
C100.0174 (10)0.0414 (15)0.0151 (11)0.0000 (9)0.0000 (8)0.0070 (10)
C110.0187 (10)0.0347 (13)0.0154 (11)0.0042 (9)0.0001 (8)0.0040 (9)
C120.0171 (9)0.0217 (11)0.0169 (10)0.0017 (8)0.0022 (8)0.0008 (8)
C130.0129 (8)0.0199 (10)0.0131 (10)0.0024 (7)0.0003 (7)0.0018 (8)
C140.0180 (9)0.0195 (11)0.0163 (10)0.0001 (8)0.0006 (8)0.0008 (8)
C150.0174 (9)0.0268 (12)0.0198 (11)0.0058 (8)0.0007 (8)0.0041 (9)
C160.0146 (9)0.0369 (14)0.0204 (11)0.0055 (9)0.0043 (8)0.0057 (10)
C170.0223 (10)0.0263 (12)0.0232 (12)0.0078 (9)0.0069 (9)0.0016 (9)
C180.0181 (9)0.0186 (11)0.0205 (11)0.0020 (8)0.0036 (8)0.0014 (8)
C190.0192 (9)0.0155 (10)0.0107 (9)0.0012 (7)0.0008 (7)0.0020 (8)
C200.0204 (9)0.0194 (11)0.0156 (10)0.0033 (8)0.0049 (8)0.0003 (8)
C210.0298 (11)0.0196 (11)0.0195 (11)0.0076 (9)0.0052 (9)0.0001 (9)
C220.0352 (12)0.0183 (11)0.0218 (12)0.0060 (9)0.0070 (9)0.0049 (9)
C230.0284 (11)0.0243 (12)0.0224 (12)0.0003 (9)0.0085 (9)0.0064 (9)
C240.0206 (10)0.0220 (11)0.0162 (11)0.0022 (8)0.0026 (8)0.0035 (9)
C250.0161 (9)0.0177 (10)0.0102 (9)0.0020 (7)0.0014 (7)0.0026 (8)
C260.0190 (9)0.0199 (11)0.0164 (10)0.0014 (8)0.0024 (8)0.0004 (8)
C270.0175 (9)0.0218 (11)0.0223 (11)0.0019 (8)0.0015 (8)0.0032 (9)
C280.0196 (10)0.0251 (12)0.0152 (10)0.0045 (8)0.0028 (8)0.0070 (9)
C290.0277 (11)0.0246 (12)0.0117 (10)0.0011 (9)0.0001 (8)0.0024 (9)
C300.0243 (10)0.0197 (11)0.0162 (11)0.0031 (8)0.0023 (8)0.0004 (8)
C310.0152 (8)0.0170 (10)0.0104 (9)0.0009 (7)0.0021 (7)0.0000 (7)
C320.0178 (9)0.0334 (13)0.0150 (11)0.0042 (9)0.0021 (8)0.0029 (9)
C330.0198 (10)0.0398 (15)0.0256 (13)0.0129 (10)0.0008 (9)0.0019 (11)
C340.0246 (11)0.0302 (13)0.0203 (12)0.0101 (9)0.0067 (9)0.0012 (10)
C350.0220 (10)0.0249 (12)0.0139 (10)0.0037 (8)0.0023 (8)0.0029 (9)
C360.0164 (9)0.0197 (10)0.0119 (10)0.0026 (8)0.0009 (7)0.0008 (8)
B10.0252 (12)0.0247 (14)0.0241 (14)0.0004 (10)0.0032 (10)0.0035 (11)
F10.0458 (12)0.0362 (12)0.0516 (13)0.0010 (9)0.0338 (10)0.0018 (9)
F20.0253 (8)0.0431 (11)0.0322 (10)0.0042 (7)0.0082 (7)0.0032 (8)
F30.0881 (19)0.0230 (11)0.0372 (14)0.0085 (11)0.0084 (12)0.0088 (9)
F40.0584 (14)0.0584 (15)0.0396 (12)0.0099 (11)0.0190 (10)0.0091 (10)
F1'0.087 (11)0.052 (8)0.069 (9)0.009 (7)0.039 (8)0.017 (6)
F2'0.087 (11)0.052 (8)0.069 (9)0.009 (7)0.039 (8)0.017 (6)
F3'0.061 (11)0.040 (9)0.065 (13)0.006 (8)0.004 (8)0.025 (8)
F4'0.021 (6)0.034 (8)0.062 (9)0.005 (5)0.012 (5)0.016 (6)
C1S0.0330 (12)0.0253 (13)0.0251 (13)0.0042 (10)0.0012 (10)0.0009 (10)
Cl10.0473 (4)0.0227 (3)0.0350 (4)0.0078 (3)0.0097 (3)0.0010 (3)
Cl20.0410 (4)0.0408 (4)0.0481 (5)0.0076 (3)0.0192 (3)0.0086 (3)
Cl30.0442 (4)0.0402 (4)0.0609 (5)0.0183 (3)0.0070 (4)0.0095 (4)
Cl1'0.0473 (4)0.0227 (3)0.0350 (4)0.0078 (3)0.0097 (3)0.0010 (3)
Cl3'0.0442 (4)0.0402 (4)0.0609 (5)0.0183 (3)0.0070 (4)0.0095 (4)
Cl2'0.0410 (4)0.0408 (4)0.0481 (5)0.0076 (3)0.0192 (3)0.0086 (3)
Geometric parameters (Å, º) top
P1—N11.5834 (18)C21—C221.383 (3)
P1—C11.7962 (19)C21—H210.9500
P1—C131.799 (2)C22—C231.381 (3)
P1—C71.804 (2)C22—H220.9500
P2—N11.5798 (17)C23—C241.384 (3)
P2—C191.793 (2)C23—H230.9500
P2—C311.802 (2)C24—H240.9500
P2—C251.802 (2)C25—C301.390 (3)
C1—C21.393 (3)C25—C261.399 (3)
C1—C61.395 (3)C26—C271.387 (3)
C2—C31.387 (3)C26—H260.9500
C2—H20.9500C27—C281.380 (3)
C3—C41.384 (3)C27—H270.9500
C3—H30.9500C28—C291.384 (3)
C4—C51.385 (3)C28—H280.9500
C4—H40.9500C29—C301.391 (3)
C5—C61.387 (3)C29—H290.9500
C5—H50.9500C30—H300.9500
C6—H60.9500C31—C321.388 (3)
C7—C81.393 (3)C31—C361.393 (3)
C7—C121.396 (3)C32—C331.391 (3)
C8—C91.385 (3)C32—H320.9500
C8—H80.9500C33—C341.378 (3)
C9—C101.388 (3)C33—H330.9500
C9—H90.9500C34—C351.387 (3)
C10—C111.384 (3)C34—H340.9500
C10—H100.9500C35—C361.383 (3)
C11—C121.393 (3)C35—H350.9500
C11—H110.9500C36—H360.9500
C12—H120.9500B1—F2'1.361 (6)
C13—C181.394 (3)B1—F31.381 (3)
C13—C141.395 (3)B1—F3'1.384 (6)
C14—C151.384 (3)B1—F4'1.385 (6)
C14—H140.9500B1—F41.389 (3)
C15—C161.386 (3)B1—F1'1.389 (7)
C15—H150.9500B1—F11.389 (3)
C16—C171.380 (3)B1—F21.391 (3)
C16—H160.9500C1S—Cl2'1.732 (8)
C17—C181.388 (3)C1S—Cl31.742 (2)
C17—H170.9500C1S—Cl21.756 (2)
C18—H180.9500C1S—Cl11.765 (2)
C19—C241.395 (3)C1S—Cl3'1.769 (8)
C19—C201.395 (3)C1S—Cl1'1.772 (7)
C20—C211.391 (3)C1S—H1S1.0000
C20—H200.9500
N1—P1—C1114.95 (9)C21—C20—H20120.4
N1—P1—C13107.55 (9)C19—C20—H20120.4
C1—P1—C13106.98 (9)C22—C21—C20120.0 (2)
N1—P1—C7111.29 (10)C22—C21—H21120.0
C1—P1—C7108.64 (9)C20—C21—H21120.0
C13—P1—C7107.06 (9)C23—C22—C21120.9 (2)
N1—P2—C19109.18 (9)C23—C22—H22119.6
N1—P2—C31113.71 (9)C21—C22—H22119.6
C19—P2—C31106.23 (9)C22—C23—C24119.7 (2)
N1—P2—C25110.65 (9)C22—C23—H23120.2
C19—P2—C25108.14 (9)C24—C23—H23120.2
C31—P2—C25108.70 (9)C23—C24—C19120.01 (19)
P2—N1—P1137.69 (11)C23—C24—H24120.0
C2—C1—C6119.55 (18)C19—C24—H24120.0
C2—C1—P1118.68 (15)C30—C25—C26119.34 (19)
C6—C1—P1121.35 (16)C30—C25—P2118.98 (16)
C3—C2—C1120.2 (2)C26—C25—P2121.68 (16)
C3—C2—H2119.9C27—C26—C25119.8 (2)
C1—C2—H2119.9C27—C26—H26120.1
C4—C3—C2119.8 (2)C25—C26—H26120.1
C4—C3—H3120.1C28—C27—C26120.5 (2)
C2—C3—H3120.1C28—C27—H27119.7
C3—C4—C5120.52 (19)C26—C27—H27119.7
C3—C4—H4119.7C27—C28—C29120.15 (19)
C5—C4—H4119.7C27—C28—H28119.9
C4—C5—C6119.9 (2)C29—C28—H28119.9
C4—C5—H5120.0C28—C29—C30119.8 (2)
C6—C5—H5120.0C28—C29—H29120.1
C5—C6—C1120.0 (2)C30—C29—H29120.1
C5—C6—H6120.0C25—C30—C29120.4 (2)
C1—C6—H6120.0C25—C30—H30119.8
C8—C7—C12119.63 (19)C29—C30—H30119.8
C8—C7—P1121.33 (16)C32—C31—C36119.51 (18)
C12—C7—P1118.95 (16)C32—C31—P2122.58 (16)
C9—C8—C7120.2 (2)C36—C31—P2117.74 (14)
C9—C8—H8119.9C31—C32—C33119.6 (2)
C7—C8—H8119.9C31—C32—H32120.2
C8—C9—C10120.2 (2)C33—C32—H32120.2
C8—C9—H9119.9C34—C33—C32120.55 (19)
C10—C9—H9119.9C34—C33—H33119.7
C11—C10—C9120.0 (2)C32—C33—H33119.7
C11—C10—H10120.0C33—C34—C35120.1 (2)
C9—C10—H10120.0C33—C34—H34120.0
C10—C11—C12120.3 (2)C35—C34—H34120.0
C10—C11—H11119.9C36—C35—C34119.6 (2)
C12—C11—H11119.9C36—C35—H35120.2
C11—C12—C7119.7 (2)C34—C35—H35120.2
C11—C12—H12120.1C35—C36—C31120.57 (18)
C7—C12—H12120.1C35—C36—H36119.7
C18—C13—C14120.00 (19)C31—C36—H36119.7
C18—C13—P1120.05 (16)F2'—B1—F3'112.4 (8)
C14—C13—P1119.85 (16)F2'—B1—F4'111.0 (7)
C15—C14—C13119.9 (2)F3'—B1—F4'109.1 (7)
C15—C14—H14120.0F3—B1—F4110.8 (2)
C13—C14—H14120.0F2'—B1—F1'109.8 (8)
C14—C15—C16119.9 (2)F3'—B1—F1'107.5 (8)
C14—C15—H15120.0F4'—B1—F1'106.8 (7)
C16—C15—H15120.0F3—B1—F1110.7 (2)
C17—C16—C15120.2 (2)F4—B1—F1111.3 (2)
C17—C16—H16119.9F3—B1—F2108.7 (2)
C15—C16—H16119.9F4—B1—F2107.8 (2)
C16—C17—C18120.5 (2)F1—B1—F2107.4 (2)
C16—C17—H17119.7Cl3—C1S—Cl2110.20 (13)
C18—C17—H17119.7Cl3—C1S—Cl1109.71 (13)
C17—C18—C13119.3 (2)Cl2—C1S—Cl1110.29 (13)
C17—C18—H18120.3Cl2'—C1S—Cl3'122.6 (9)
C13—C18—H18120.3Cl2'—C1S—Cl1'123.8 (8)
C24—C19—C20120.12 (19)Cl3'—C1S—Cl1'102.3 (9)
C24—C19—P2120.14 (15)Cl3—C1S—H1S108.9
C20—C19—P2119.73 (16)Cl2—C1S—H1S108.9
C21—C20—C19119.3 (2)Cl1—C1S—H1S108.9
C19—P2—N1—P1139.36 (16)C16—C17—C18—C130.6 (3)
C31—P2—N1—P120.9 (2)C14—C13—C18—C170.3 (3)
C25—P2—N1—P1101.73 (17)P1—C13—C18—C17176.06 (16)
C1—P1—N1—P234.6 (2)N1—P2—C19—C24163.33 (16)
C13—P1—N1—P2153.64 (15)C31—P2—C19—C2440.33 (19)
C7—P1—N1—P289.39 (17)C25—P2—C19—C2476.21 (18)
N1—P1—C1—C285.86 (18)N1—P2—C19—C2017.96 (19)
C13—P1—C1—C233.46 (19)C31—P2—C19—C20140.97 (17)
C7—P1—C1—C2148.73 (16)C25—P2—C19—C20102.49 (17)
N1—P1—C1—C686.61 (19)C24—C19—C20—C210.4 (3)
C13—P1—C1—C6154.07 (17)P2—C19—C20—C21179.12 (16)
C7—P1—C1—C638.8 (2)C19—C20—C21—C220.9 (3)
C6—C1—C2—C30.1 (3)C20—C21—C22—C230.0 (3)
P1—C1—C2—C3172.51 (17)C21—C22—C23—C241.2 (4)
C1—C2—C3—C40.3 (3)C22—C23—C24—C191.7 (3)
C2—C3—C4—C50.3 (3)C20—C19—C24—C230.9 (3)
C3—C4—C5—C60.0 (3)P2—C19—C24—C23177.85 (17)
C4—C5—C6—C10.4 (3)N1—P2—C25—C3029.05 (18)
C2—C1—C6—C50.4 (3)C19—P2—C25—C30148.59 (16)
P1—C1—C6—C5171.98 (17)C31—P2—C25—C3096.49 (17)
N1—P1—C7—C8166.62 (15)N1—P2—C25—C26150.98 (16)
C1—P1—C7—C839.09 (19)C19—P2—C25—C2631.45 (19)
C13—P1—C7—C876.11 (18)C31—P2—C25—C2683.48 (18)
N1—P1—C7—C1216.94 (18)C30—C25—C26—C270.6 (3)
C1—P1—C7—C12144.47 (16)P2—C25—C26—C27179.47 (15)
C13—P1—C7—C12100.32 (17)C25—C26—C27—C280.7 (3)
C12—C7—C8—C91.4 (3)C26—C27—C28—C290.1 (3)
P1—C7—C8—C9177.76 (16)C27—C28—C29—C300.8 (3)
C7—C8—C9—C100.2 (3)C26—C25—C30—C290.3 (3)
C8—C9—C10—C110.8 (3)P2—C25—C30—C29179.69 (16)
C9—C10—C11—C120.6 (3)C28—C29—C30—C250.9 (3)
C10—C11—C12—C70.6 (3)N1—P2—C31—C32116.20 (19)
C8—C7—C12—C111.6 (3)C19—P2—C31—C32123.70 (19)
P1—C7—C12—C11178.05 (15)C25—P2—C31—C327.5 (2)
N1—P1—C13—C186.98 (19)N1—P2—C31—C3659.10 (19)
C1—P1—C13—C18130.97 (16)C19—P2—C31—C3661.01 (18)
C7—P1—C13—C18112.72 (17)C25—P2—C31—C36177.17 (16)
N1—P1—C13—C14176.65 (15)C36—C31—C32—C331.7 (3)
C1—P1—C13—C1452.66 (18)P2—C31—C32—C33173.55 (19)
C7—P1—C13—C1463.65 (18)C31—C32—C33—C340.2 (4)
C18—C13—C14—C150.5 (3)C32—C33—C34—C351.0 (4)
P1—C13—C14—C15175.84 (15)C33—C34—C35—C360.7 (4)
C13—C14—C15—C160.1 (3)C34—C35—C36—C310.7 (3)
C14—C15—C16—C171.0 (3)C32—C31—C36—C351.9 (3)
C15—C16—C17—C181.2 (3)P2—C31—C36—C35173.51 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···F2i0.952.573.394 (3)145
C8—H8···F2i0.952.322.903 (8)119
C14—H14···F2i0.952.443.333 (3)157
C18—H18···Cl30.952.783.481 (18)131
C20—H20···F3ii0.952.613.308 (15)131
C26—H26···F4iii0.952.523.427 (14)160
C1S—H1S···F2ii1.002.153.132 (3)166
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank Mr Jordan M. Grant for his assistance preparing some of the starting materials for this work.

Funding information

Funding for this research was provided by: National Science Foundation, Division of Chemistry (award No. MRI, CHE-0420497 to UMSL ); College of Arts and Sciences, Southern Illinois University Edwardsville; Graduate School, Southern Illinois University Edwardsville.

References

First citationBertocco, P., Bolli, C., Correia Bicho, B. A., Jenne, C., Erken, B., Laitinen, R. S., Seeger, H. A. & Takaluoma, T. T. (2016). Inorg. Chem. 55, 3599–3604.  Web of Science CrossRef Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDarensbourg, D. J. & Mackiewicz, R. M. (2005). J. Am. Chem. Soc. 127, 14026–14038.  Web of Science CrossRef Google Scholar
First citationDenny, J. A. & Darensbourg, M. Y. (2016). (CCDC Reference 1450627).  Google Scholar
First citationEvju, J. K. & Mann, K. R. (1999). Chem. Mater. 11, 1425–1433.  Web of Science CrossRef Google Scholar
First citationFolda, A., Scalcon, V., Ghazzali, M., Jaafar, M. H., Khan, R. A., Casini, A., Citta, A., Bindoli, A., Rigobello, M. P., Al-Farhan, K., Alsalme, A. & Reedijk, J. (2015). J. Inorg. Biochem. 153, 346–354.  Web of Science CrossRef Google Scholar
First citationLiau, R.-Y., Ehlich, H., Schier, A. & Schmidbaur, H. (2002). Z. Naturforsch. Teil B, 57, 1085–1089.  CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSciFinder (2018). Chemical Abstracts Service, Columbus, Ohio, USA. (accessed July 20, 2018).  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStevens, R. E., Yanta, T. J. & Gladfelter, W. L. (1981). J. Am. Chem. Soc. 103, 4981–4982.  CrossRef Web of Science Google Scholar
First citationWerner, G., Kolowos, I. & Senkýr, J. (1989). Talanta, 36, 966–968.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds