metal-organic compounds
Poly[bis(μ-4-aminobenzenesulfonato-κ2N:O)diaquacobalt(II)]
aLaboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bService de Cristallochimie – ICSN, Bat. 27, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
*Correspondence e-mail: kama.antoineblaise@yahoo.fr
The title compound, [Co(C6H6NO3S)2(H2O)2]n, was obtained from a mixture of Co(NO3)2·6H2O and a previously synthesized salt, namely CyNH3·NH2PhSO3, in a 1:1 ratio (Cy = cyclohexyl; Ph = phenyl). The consists of a three-dimensional supramolecular framework, in which polymeric layers are interconnected via N—H⋯O and O—H⋯O hydrogen bonding. The polymeric layers are formed by an interconnection of neighbouring cobalt(II) cations via NH2PhSO3− bridges. Each cobalt(II) cation is surrounded by four NH2PhSO3− moieties and two water molecules, leading to a distorted octahedral environment.
Keywords: crystal structure; cobalt sufanilate; polymeric layers; hydrogen bonds; three-dimensional framework.
CCDC reference: 1863810
Structure description
Mononuclear or polynuclear cobalt complexes formed by electron-donating groups have been widely studied (Liu et al., 2017; Leung et al., 2012; McCool et al., 2011; Nakazono et al., 2013; Pizzolato et al., 2013; Wang et al., 2014; Xu et al., 2017) owing to their capacities for water oxidation. Indeed, it has been frequently observed that ligand dissociation of cobalt complexes occurs, generating CoOx nanoparticles that act as water oxidation catalysts (Wasylenko et al., 2011; Hong et al., 2012). For the design of new cobalt complexes, we target the synthesis of a new material from Co(NO3)2·6H2O and a previously synthesized ligand. In this case, CyNH3·NH2PhSO3 (Cy = cyclohexyl; Ph = phenyl) yielded the title compound [Co(NH2PhSO3)2(H2O)2]n via the elimination of the NO3− group and the substitution of four water molecules by NH2PhSO3−. If we consider the reagents and the resulting material, a notable fact is the elimination of some water molecules and the nitrate, probably in the form of CyNH3·NO3, leading to the substitution complex [Co(NH2PhSO3)2(H2O)2]n. The is reported herein. A similar tetrahydrate cobalt complex has been previously reported (Shakeri & Haussühl, 1992).
The 2PhSO3− anion and one water molecule (Fig. 1). The trans coordination of the ligands around the CoII ion leads to a distorted octahedral coordination sphere with O—Co—N and O—Co—O angles in the range 88.42 (5)–91.58 (5)°. The Co—N [2.2424 (14) Å] and Co—O [in the range 2.0800 (12)–2.1049 (10) Å] bond length are similar to those found in the literature (Co—N = 2.256 and Co—O = 2.118 Å; Li et al., 2007]. The three S—O bond lengths are different [S1—O2 = 1.4652 (12), S1—O3 = 1.4512 (13) and S1—O4 = 1.4463 (15) Å] because O2 is involved in covalent bonding while O3 and O4 are involved in hydrogen bonding (Table 1, Fig. 2).
comprises of a cobalt(II) cation (situated at an inversion centre), one NHIn the 2PhSO3− moieties. Each NH2PhSO3− unit is a bridge connecting two neighboring cobalt(II) cations through the NH2 groups on the one hand and the SO3− group on the other, leading to polymeric layers (Fig. 3). The layers are connected via N—H⋯O (sulfanilate–sulfanilate interaction through SO3− and NH2 groups) and O—H⋯O (sulfanilate–water interaction) hydrogen bonding. The resulting structure can be described as a three-dimensional supramolecular framework built from layers (Fig. 4).
the cobalt(II) cation is surrounded by four NHSynthesis and crystallization
The title compound was obtained by mixing cyclohexylammonium sulfanilate (0.78 g, 3 mmol) and cobalt nitrate hexahydrate, Co(NO3)2·6H2O (0.6 g, 3 mmol) in ethanol as solvent. The solution was stirred for about two h and filtered. Slow evaporation of the filtrate at room temperature afforded red crystals suitable for single-crystal X-ray diffraction analysis.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1863810
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Co(C6H6NO3S)2(H2O)2] | F(000) = 450 |
Mr = 439.32 | Dx = 1.884 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.0768 (3) Å | Cell parameters from 5404 reflections |
b = 5.9601 (3) Å | θ = 4.5–29.6° |
c = 18.6738 (8) Å | µ = 1.43 mm−1 |
β = 100.494 (4)° | T = 293 K |
V = 774.46 (6) Å3 | Block, red |
Z = 2 | 0.7 × 0.5 × 0.1 mm |
Rigaku Pilatus 200K diffractometer | 1780 reflections with I > 2σ(I) |
Detector resolution: 5.8140 pixels mm-1 | Rint = 0.024 |
profile data from ω–scans | θmax = 29.7°, θmin = 4.0° |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | h = −9→8 |
Tmin = 0.837, Tmax = 1.000 | k = −8→7 |
7932 measured reflections | l = −25→22 |
1931 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.024 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.065 | w = 1/[σ2(Fo2) + (0.0326P)2 + 0.403P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
1931 reflections | Δρmax = 0.30 e Å−3 |
131 parameters | Δρmin = −0.47 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Co1 | 1.000000 | 0.500000 | 0.500000 | 0.01583 (9) | |
S1 | 0.61895 (5) | 0.27748 (7) | 0.39481 (2) | 0.01899 (10) | |
O1 | 0.81064 (18) | 0.7558 (2) | 0.51451 (7) | 0.0250 (3) | |
HO1A | 0.761 (3) | 0.833 (5) | 0.4782 (14) | 0.052 (7)* | |
HO1B | 0.727 (4) | 0.711 (5) | 0.5342 (16) | 0.062 (9)* | |
O2 | 0.81062 (15) | 0.3792 (2) | 0.40793 (6) | 0.0285 (3) | |
O3 | 0.48036 (17) | 0.4192 (3) | 0.42166 (6) | 0.0349 (3) | |
N1 | 0.3584 (2) | 0.2190 (3) | 0.07238 (7) | 0.0201 (3) | |
HN1A | 0.245 (3) | 0.166 (4) | 0.0662 (12) | 0.036 (6)* | |
HN1B | 0.359 (3) | 0.351 (4) | 0.0570 (12) | 0.034 (6)* | |
O4 | 0.6175 (2) | 0.0504 (3) | 0.42203 (7) | 0.0429 (4) | |
C1 | 0.5497 (2) | 0.2593 (2) | 0.29930 (7) | 0.0167 (3) | |
C2 | 0.4574 (2) | 0.0664 (3) | 0.26903 (8) | 0.0204 (3) | |
H2 | 0.436669 | −0.052910 | 0.298746 | 0.024* | |
C3 | 0.3963 (2) | 0.0531 (3) | 0.19415 (8) | 0.0212 (3) | |
H3 | 0.336171 | −0.076396 | 0.173539 | 0.025* | |
C5 | 0.5176 (2) | 0.4255 (3) | 0.18059 (8) | 0.0205 (3) | |
C4 | 0.4249 (2) | 0.2329 (2) | 0.14997 (7) | 0.0169 (3) | |
H5 | 0.537318 | 0.545480 | 0.150979 | 0.025* | |
C6 | 0.5808 (2) | 0.4383 (3) | 0.25555 (8) | 0.0205 (3) | |
H6 | 0.643504 | 0.566272 | 0.276156 | 0.025* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.01436 (15) | 0.02289 (16) | 0.00953 (14) | 0.00224 (10) | 0.00027 (10) | −0.00099 (9) |
S1 | 0.01725 (19) | 0.0298 (2) | 0.00910 (16) | 0.00209 (13) | 0.00034 (12) | 0.00003 (13) |
O1 | 0.0220 (6) | 0.0298 (6) | 0.0232 (6) | 0.0067 (5) | 0.0040 (5) | 0.0020 (5) |
O2 | 0.0173 (5) | 0.0521 (8) | 0.0147 (5) | −0.0029 (5) | −0.0010 (4) | −0.0078 (5) |
O3 | 0.0242 (6) | 0.0608 (9) | 0.0204 (6) | 0.0104 (6) | 0.0062 (5) | −0.0093 (6) |
N1 | 0.0209 (7) | 0.0273 (7) | 0.0110 (6) | −0.0005 (5) | −0.0001 (5) | −0.0003 (5) |
O4 | 0.0648 (10) | 0.0370 (7) | 0.0220 (6) | −0.0013 (7) | −0.0051 (6) | 0.0121 (5) |
C4 | 0.0161 (7) | 0.0243 (7) | 0.0104 (6) | 0.0012 (5) | 0.0023 (5) | −0.0012 (5) |
C1 | 0.0146 (6) | 0.0245 (7) | 0.0106 (6) | 0.0009 (5) | 0.0010 (5) | −0.0005 (5) |
C6 | 0.0224 (7) | 0.0213 (7) | 0.0168 (7) | −0.0048 (6) | 0.0012 (5) | −0.0023 (6) |
C2 | 0.0226 (7) | 0.0233 (7) | 0.0151 (6) | −0.0039 (6) | 0.0031 (5) | 0.0028 (6) |
C5 | 0.0238 (7) | 0.0224 (7) | 0.0151 (6) | −0.0035 (6) | 0.0035 (5) | 0.0026 (6) |
C3 | 0.0226 (7) | 0.0231 (7) | 0.0165 (7) | −0.0060 (6) | −0.0002 (5) | −0.0021 (6) |
Co1—O1i | 2.0800 (12) | N1—C4 | 1.4420 (17) |
Co1—O1 | 2.0800 (12) | N1—HN1A | 0.85 (2) |
Co1—O2i | 2.1048 (10) | N1—HN1B | 0.84 (2) |
Co1—O2 | 2.1049 (10) | C4—C5 | 1.392 (2) |
Co1—N1ii | 2.2424 (14) | C4—C3 | 1.390 (2) |
Co1—N1iii | 2.2424 (14) | C1—C6 | 1.385 (2) |
S1—O2 | 1.4652 (12) | C1—C2 | 1.391 (2) |
S1—O3 | 1.4512 (13) | C6—H6 | 0.9300 |
S1—O4 | 1.4463 (15) | C6—C5 | 1.392 (2) |
S1—C1 | 1.7648 (14) | C2—H2 | 0.9300 |
O1—HO1A | 0.84 (3) | C2—C3 | 1.389 (2) |
O1—HO1B | 0.80 (3) | C5—H5 | 0.9300 |
N1—Co1iv | 2.2424 (13) | C3—H3 | 0.9300 |
O1i—Co1—O1 | 180.0 | Co1iv—N1—HN1A | 102.4 (15) |
O1i—Co1—O2 | 88.42 (5) | Co1iv—N1—HN1B | 108.0 (15) |
O1i—Co1—O2i | 91.58 (5) | C4—N1—Co1iv | 122.62 (10) |
O1—Co1—O2 | 91.58 (5) | C4—N1—HN1A | 106.6 (15) |
O1—Co1—O2i | 88.42 (5) | C4—N1—HN1B | 105.6 (15) |
O1i—Co1—N1ii | 91.20 (6) | HN1A—N1—HN1B | 111 (2) |
O1i—Co1—N1iii | 88.80 (6) | C5—C4—N1 | 120.19 (13) |
O1—Co1—N1ii | 88.80 (6) | C3—C4—N1 | 119.75 (13) |
O1—Co1—N1iii | 91.20 (6) | C3—C4—C5 | 120.05 (13) |
O2i—Co1—O2 | 180.0 | C6—C1—S1 | 120.28 (11) |
O2—Co1—N1iii | 89.70 (5) | C6—C1—C2 | 120.67 (13) |
O2—Co1—N1ii | 90.30 (5) | C2—C1—S1 | 119.01 (11) |
O2i—Co1—N1ii | 89.70 (5) | C1—C6—H6 | 120.2 |
O2i—Co1—N1iii | 90.30 (5) | C1—C6—C5 | 119.64 (14) |
N1ii—Co1—N1iii | 180.0 | C5—C6—H6 | 120.2 |
O2—S1—C1 | 105.81 (7) | C1—C2—H2 | 120.2 |
O3—S1—O2 | 111.38 (8) | C3—C2—C1 | 119.59 (14) |
O3—S1—C1 | 107.71 (7) | C3—C2—H2 | 120.2 |
O4—S1—O2 | 113.22 (9) | C4—C5—H5 | 120.0 |
O4—S1—O3 | 112.01 (10) | C6—C5—C4 | 119.95 (14) |
O4—S1—C1 | 106.22 (8) | C6—C5—H5 | 120.0 |
Co1—O1—HO1A | 118.7 (17) | C4—C3—H3 | 120.0 |
Co1—O1—HO1B | 111 (2) | C2—C3—C4 | 120.09 (14) |
HO1A—O1—HO1B | 108 (2) | C2—C3—H3 | 120.0 |
S1—O2—Co1 | 135.27 (7) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x+1/2, −y+1/2, z+1/2; (iii) −x+3/2, y+1/2, −z+1/2; (iv) −x+3/2, y−1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—HO1A···O4v | 0.84 (3) | 1.85 (3) | 2.660 (2) | 161 (3) |
O1—HO1B···O3vi | 0.80 (3) | 1.97 (3) | 2.7647 (18) | 176 (3) |
N1—HN1A···O3vii | 0.85 (2) | 2.21 (2) | 3.008 (2) | 156 (2) |
N1—HN1B···O1viii | 0.84 (2) | 2.48 (2) | 3.309 (2) | 171 (2) |
C3—H3···O3vii | 0.93 | 2.59 | 3.2123 (19) | 124 |
C5—H5···O2iii | 0.93 | 2.60 | 3.501 (2) | 163 |
Symmetry codes: (iii) −x+3/2, y+1/2, −z+1/2; (v) x, y+1, z; (vi) −x+1, −y+1, −z+1; (vii) −x+1/2, y−1/2, −z+1/2; (viii) x−1/2, −y+3/2, z−1/2. |
Acknowledgements
The authors thank the ICSN cristallochimie service (France) for instrumentation use.
Funding information
The authors acknowledge the Cheikh Anta Diop University of Dakar (Senegal) for financial support.
References
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hong, D., Jung, J., Park, J., Yamada, Y., Suenobu, T., Lee, Y. M., Nam, W. & Fukuzumi, S. (2012). Energy Environ. Sci. 5, 7606–7616. CrossRef Google Scholar
Leung, C. F., Ng, S. M., Ko, C. C., Man, W. L., Wu, J., Chen, L. & Lau, T. C. (2012). Energy Environ. Sci. 5, 7903–907. CrossRef Google Scholar
Li, Z.-F., Wang, S.-W., Zhang, Q. & Yu, X.-J. (2007). Acta Cryst. E63, m2373. CrossRef IUCr Journals Google Scholar
Liu, S., Lei, Y. J., Xin, Z. J., Xiang, R. J., Styring, S., Thapper, A. & Wang, H. Y. (2017). Int. J. Hydrogen Energy, 42, 29716–29724. CrossRef Google Scholar
McCool, N. S., Robinson, D. M., Sheats, J. E. & Dismukes, G. C. (2011). J. Am. Chem. Soc. 133, 11446–11449. Web of Science CrossRef CAS PubMed Google Scholar
Nakazono, T., Parent, A. R. & Sakai, K. (2013). Chem. Commun. 49, 6325–6327. CrossRef Google Scholar
Pizzolato, E., Natali, M., Posocco, B., Montellano López, A., Bazzan, I., Di Valentin, M., Galloni, P., Conte, V., Bonchio, M., Scandola, F. & Sartorel, A. (2013). Chem. Commun. 49, 9941–9943. CrossRef Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Shakeri, V. & Haussühl, S. (1992). Z. Kristallogr. 198, 165–166. CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wang, H., Lu, Y., Mijangos, E. & Thapper, A. (2014). Chin. J. Chem. 32, 467–473. CrossRef Google Scholar
Wasylenko, D. J., Ganesamoorthy, C., Borau-Garcia, J. & Berlinguette, C. P. (2011). Chem. Commun. 47, 4249–4251. CrossRef Google Scholar
Xu, J. H., Guo, L. Y., Su, H. F., Gao, X., Wu, X. F., Wang, W. G., Tung, C. H. & Sun, D. (2017). Inorg. Chem. 56, 1591–1598. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.