metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[bis­(μ-4-amino­benzene­sulfonato-κ2N:O)di­aquacobalt(II)]

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bService de Cristallochimie – ICSN, Bat. 27, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
*Correspondence e-mail: kama.antoineblaise@yahoo.fr

Edited by T. J. Prior, University of Hull, England (Received 31 July 2018; accepted 24 August 2018; online 31 August 2018)

The title compound, [Co(C6H6NO3S)2(H2O)2]n, was obtained from a mixture of Co(NO3)2·6H2O and a previously synthesized salt, namely CyNH3·NH2PhSO3, in a 1:1 ratio (Cy = cyclo­hexyl; Ph = phen­yl). The crystal structure consists of a three-dimensional supra­molecular framework, in which polymeric layers are inter­connected via N—H⋯O and O—H⋯O hydrogen bonding. The polymeric layers are formed by an inter­connection of neighbouring cobalt(II) cations via NH2PhSO3 bridges. Each cobalt(II) cation is surrounded by four NH2PhSO3 moieties and two water mol­ecules, leading to a distorted octa­hedral environment.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Mononuclear or polynuclear cobalt complexes formed by electron-donating groups have been widely studied (Liu et al., 2017[Liu, S., Lei, Y. J., Xin, Z. J., Xiang, R. J., Styring, S., Thapper, A. & Wang, H. Y. (2017). Int. J. Hydrogen Energy, 42, 29716-29724.]; Leung et al., 2012[Leung, C. F., Ng, S. M., Ko, C. C., Man, W. L., Wu, J., Chen, L. & Lau, T. C. (2012). Energy Environ. Sci. 5, 7903-907.]; McCool et al., 2011[McCool, N. S., Robinson, D. M., Sheats, J. E. & Dismukes, G. C. (2011). J. Am. Chem. Soc. 133, 11446-11449.]; Nakazono et al., 2013[Nakazono, T., Parent, A. R. & Sakai, K. (2013). Chem. Commun. 49, 6325-6327.]; Pizzolato et al., 2013[Pizzolato, E., Natali, M., Posocco, B., Montellano López, A., Bazzan, I., Di Valentin, M., Galloni, P., Conte, V., Bonchio, M., Scandola, F. & Sartorel, A. (2013). Chem. Commun. 49, 9941-9943.]; Wang et al., 2014[Wang, H., Lu, Y., Mijangos, E. & Thapper, A. (2014). Chin. J. Chem. 32, 467-473.]; Xu et al., 2017[Xu, J. H., Guo, L. Y., Su, H. F., Gao, X., Wu, X. F., Wang, W. G., Tung, C. H. & Sun, D. (2017). Inorg. Chem. 56, 1591-1598.]) owing to their capacities for water oxidation. Indeed, it has been frequently observed that ligand dissociation of cobalt complexes occurs, generating CoOx nanoparticles that act as water oxidation catalysts (Wasylenko et al., 2011[Wasylenko, D. J., Ganesamoorthy, C., Borau-Garcia, J. & Berlinguette, C. P. (2011). Chem. Commun. 47, 4249-4251.]; Hong et al., 2012[Hong, D., Jung, J., Park, J., Yamada, Y., Suenobu, T., Lee, Y. M., Nam, W. & Fukuzumi, S. (2012). Energy Environ. Sci. 5, 7606-7616.]). For the design of new cobalt complexes, we target the synthesis of a new material from Co(NO3)2·6H2O and a previously synthesized ligand. In this case, CyNH3·NH2PhSO3 (Cy = cyclo­hexyl; Ph = phen­yl) yielded the title compound [Co(NH2PhSO3)2(H2O)2]n via the elimination of the NO3 group and the substitution of four water mol­ecules by NH2PhSO3. If we consider the reagents and the resulting material, a notable fact is the elimination of some water mol­ecules and the nitrate, probably in the form of CyNH3·NO3, leading to the substitution complex [Co(NH2PhSO3)2(H2O)2]n. The crystal structure is reported herein. A similar tetra­hydrate cobalt complex has been previously reported (Shakeri & Haussühl, 1992[Shakeri, V. & Haussühl, S. (1992). Z. Kristallogr. 198, 165-166.]).

The asymmetric unit comprises of a cobalt(II) cation (situated at an inversion centre), one NH2PhSO3 anion and one water mol­ecule (Fig. 1[link]). The trans coordination of the ligands around the CoII ion leads to a distorted octa­hedral coordination sphere with O—Co—N and O—Co—O angles in the range 88.42 (5)–91.58 (5)°. The Co—N [2.2424 (14) Å] and Co—O [in the range 2.0800 (12)–2.1049 (10) Å] bond length are similar to those found in the literature (Co—N = 2.256 and Co—O = 2.118 Å; Li et al., 2007[Li, Z.-F., Wang, S.-W., Zhang, Q. & Yu, X.-J. (2007). Acta Cryst. E63, m2373.]]. The three S—O bond lengths are different [S1—O2 = 1.4652 (12), S1—O3 = 1.4512 (13) and S1—O4 = 1.4463 (15) Å] because O2 is involved in covalent bonding while O3 and O4 are involved in hydrogen bonding (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—HO1A⋯O4i 0.84 (3) 1.85 (3) 2.660 (2) 161 (3)
O1—HO1B⋯O3ii 0.80 (3) 1.97 (3) 2.7647 (18) 176 (3)
N1—HN1A⋯O3iii 0.85 (2) 2.21 (2) 3.008 (2) 156 (2)
N1—HN1B⋯O1iv 0.84 (2) 2.48 (2) 3.309 (2) 171 (2)
C3—H3⋯O3iii 0.93 2.59 3.2123 (19) 124
C5—H5⋯O2v 0.93 2.60 3.501 (2) 163
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z+1; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at 50% probability level.
[Figure 2]
Figure 2
Hydrogen bonds (shown as light-blue dashed lines) between water mol­ecules and SO3 groups in the title compound.

In the crystal structure, the cobalt(II) cation is surrounded by four NH2PhSO3 moieties. Each NH2PhSO3 unit is a bridge connecting two neighboring cobalt(II) cations through the NH2 groups on the one hand and the SO3 group on the other, leading to polymeric layers (Fig. 3[link]). The layers are connected via N—H⋯O (sulfanilate–sulfanilate inter­action through SO3 and NH2 groups) and O—H⋯O (sulfanilate–water inter­action) hydrogen bonding. The resulting structure can be described as a three-dimensional supra­molecular framework built from layers (Fig. 4[link]).

[Figure 3]
Figure 3
Polymeric layers formed by inter­conection of neighbouring cobalt(II) cations.
[Figure 4]
Figure 4
Three-dimensional supra­molecular framework built from polymeric layers connected via hydrogen bonds.

Synthesis and crystallization

The title compound was obtained by mixing cyclo­hexyl­ammonium sulfanilate (0.78 g, 3 mmol) and cobalt nitrate hexa­hydrate, Co(NO3)2·6H2O (0.6 g, 3 mmol) in ethanol as solvent. The solution was stirred for about two h and filtered. Slow evaporation of the filtrate at room temperature afforded red crystals suitable for single-crystal X-ray diffraction analysis.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Co(C6H6NO3S)2(H2O)2]
Mr 439.32
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 7.0768 (3), 5.9601 (3), 18.6738 (8)
β (°) 100.494 (4)
V3) 774.46 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.43
Crystal size (mm) 0.7 × 0.5 × 0.1
 
Data collection
Diffractometer Rigaku Pilatus 200K
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.837, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7932, 1931, 1780
Rint 0.024
(sin θ/λ)max−1) 0.696
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.065, 1.07
No. of reflections 1931
No. of parameters 131
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.48
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[bis(µ-4-aminobenzenesulfonato-κ2N:O)diaquacobalt(II)] top
Crystal data top
[Co(C6H6NO3S)2(H2O)2]F(000) = 450
Mr = 439.32Dx = 1.884 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.0768 (3) ÅCell parameters from 5404 reflections
b = 5.9601 (3) Åθ = 4.5–29.6°
c = 18.6738 (8) ŵ = 1.43 mm1
β = 100.494 (4)°T = 293 K
V = 774.46 (6) Å3Block, red
Z = 20.7 × 0.5 × 0.1 mm
Data collection top
Rigaku Pilatus 200K
diffractometer
1780 reflections with I > 2σ(I)
Detector resolution: 5.8140 pixels mm-1Rint = 0.024
profile data from ω–scansθmax = 29.7°, θmin = 4.0°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 98
Tmin = 0.837, Tmax = 1.000k = 87
7932 measured reflectionsl = 2522
1931 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0326P)2 + 0.403P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1931 reflectionsΔρmax = 0.30 e Å3
131 parametersΔρmin = 0.47 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co11.0000000.5000000.5000000.01583 (9)
S10.61895 (5)0.27748 (7)0.39481 (2)0.01899 (10)
O10.81064 (18)0.7558 (2)0.51451 (7)0.0250 (3)
HO1A0.761 (3)0.833 (5)0.4782 (14)0.052 (7)*
HO1B0.727 (4)0.711 (5)0.5342 (16)0.062 (9)*
O20.81062 (15)0.3792 (2)0.40793 (6)0.0285 (3)
O30.48036 (17)0.4192 (3)0.42166 (6)0.0349 (3)
N10.3584 (2)0.2190 (3)0.07238 (7)0.0201 (3)
HN1A0.245 (3)0.166 (4)0.0662 (12)0.036 (6)*
HN1B0.359 (3)0.351 (4)0.0570 (12)0.034 (6)*
O40.6175 (2)0.0504 (3)0.42203 (7)0.0429 (4)
C10.5497 (2)0.2593 (2)0.29930 (7)0.0167 (3)
C20.4574 (2)0.0664 (3)0.26903 (8)0.0204 (3)
H20.4366690.0529100.2987460.024*
C30.3963 (2)0.0531 (3)0.19415 (8)0.0212 (3)
H30.3361710.0763960.1735390.025*
C50.5176 (2)0.4255 (3)0.18059 (8)0.0205 (3)
C40.4249 (2)0.2329 (2)0.14997 (7)0.0169 (3)
H50.5373180.5454800.1509790.025*
C60.5808 (2)0.4383 (3)0.25555 (8)0.0205 (3)
H60.6435040.5662720.2761560.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01436 (15)0.02289 (16)0.00953 (14)0.00224 (10)0.00027 (10)0.00099 (9)
S10.01725 (19)0.0298 (2)0.00910 (16)0.00209 (13)0.00034 (12)0.00003 (13)
O10.0220 (6)0.0298 (6)0.0232 (6)0.0067 (5)0.0040 (5)0.0020 (5)
O20.0173 (5)0.0521 (8)0.0147 (5)0.0029 (5)0.0010 (4)0.0078 (5)
O30.0242 (6)0.0608 (9)0.0204 (6)0.0104 (6)0.0062 (5)0.0093 (6)
N10.0209 (7)0.0273 (7)0.0110 (6)0.0005 (5)0.0001 (5)0.0003 (5)
O40.0648 (10)0.0370 (7)0.0220 (6)0.0013 (7)0.0051 (6)0.0121 (5)
C40.0161 (7)0.0243 (7)0.0104 (6)0.0012 (5)0.0023 (5)0.0012 (5)
C10.0146 (6)0.0245 (7)0.0106 (6)0.0009 (5)0.0010 (5)0.0005 (5)
C60.0224 (7)0.0213 (7)0.0168 (7)0.0048 (6)0.0012 (5)0.0023 (6)
C20.0226 (7)0.0233 (7)0.0151 (6)0.0039 (6)0.0031 (5)0.0028 (6)
C50.0238 (7)0.0224 (7)0.0151 (6)0.0035 (6)0.0035 (5)0.0026 (6)
C30.0226 (7)0.0231 (7)0.0165 (7)0.0060 (6)0.0002 (5)0.0021 (6)
Geometric parameters (Å, º) top
Co1—O1i2.0800 (12)N1—C41.4420 (17)
Co1—O12.0800 (12)N1—HN1A0.85 (2)
Co1—O2i2.1048 (10)N1—HN1B0.84 (2)
Co1—O22.1049 (10)C4—C51.392 (2)
Co1—N1ii2.2424 (14)C4—C31.390 (2)
Co1—N1iii2.2424 (14)C1—C61.385 (2)
S1—O21.4652 (12)C1—C21.391 (2)
S1—O31.4512 (13)C6—H60.9300
S1—O41.4463 (15)C6—C51.392 (2)
S1—C11.7648 (14)C2—H20.9300
O1—HO1A0.84 (3)C2—C31.389 (2)
O1—HO1B0.80 (3)C5—H50.9300
N1—Co1iv2.2424 (13)C3—H30.9300
O1i—Co1—O1180.0Co1iv—N1—HN1A102.4 (15)
O1i—Co1—O288.42 (5)Co1iv—N1—HN1B108.0 (15)
O1i—Co1—O2i91.58 (5)C4—N1—Co1iv122.62 (10)
O1—Co1—O291.58 (5)C4—N1—HN1A106.6 (15)
O1—Co1—O2i88.42 (5)C4—N1—HN1B105.6 (15)
O1i—Co1—N1ii91.20 (6)HN1A—N1—HN1B111 (2)
O1i—Co1—N1iii88.80 (6)C5—C4—N1120.19 (13)
O1—Co1—N1ii88.80 (6)C3—C4—N1119.75 (13)
O1—Co1—N1iii91.20 (6)C3—C4—C5120.05 (13)
O2i—Co1—O2180.0C6—C1—S1120.28 (11)
O2—Co1—N1iii89.70 (5)C6—C1—C2120.67 (13)
O2—Co1—N1ii90.30 (5)C2—C1—S1119.01 (11)
O2i—Co1—N1ii89.70 (5)C1—C6—H6120.2
O2i—Co1—N1iii90.30 (5)C1—C6—C5119.64 (14)
N1ii—Co1—N1iii180.0C5—C6—H6120.2
O2—S1—C1105.81 (7)C1—C2—H2120.2
O3—S1—O2111.38 (8)C3—C2—C1119.59 (14)
O3—S1—C1107.71 (7)C3—C2—H2120.2
O4—S1—O2113.22 (9)C4—C5—H5120.0
O4—S1—O3112.01 (10)C6—C5—C4119.95 (14)
O4—S1—C1106.22 (8)C6—C5—H5120.0
Co1—O1—HO1A118.7 (17)C4—C3—H3120.0
Co1—O1—HO1B111 (2)C2—C3—C4120.09 (14)
HO1A—O1—HO1B108 (2)C2—C3—H3120.0
S1—O2—Co1135.27 (7)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—HO1A···O4v0.84 (3)1.85 (3)2.660 (2)161 (3)
O1—HO1B···O3vi0.80 (3)1.97 (3)2.7647 (18)176 (3)
N1—HN1A···O3vii0.85 (2)2.21 (2)3.008 (2)156 (2)
N1—HN1B···O1viii0.84 (2)2.48 (2)3.309 (2)171 (2)
C3—H3···O3vii0.932.593.2123 (19)124
C5—H5···O2iii0.932.603.501 (2)163
Symmetry codes: (iii) x+3/2, y+1/2, z+1/2; (v) x, y+1, z; (vi) x+1, y+1, z+1; (vii) x+1/2, y1/2, z+1/2; (viii) x1/2, y+3/2, z1/2.
 

Acknowledgements

The authors thank the ICSN cristallochimie service (France) for instrumentation use.

Funding information

The authors acknowledge the Cheikh Anta Diop University of Dakar (Senegal) for financial support.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHong, D., Jung, J., Park, J., Yamada, Y., Suenobu, T., Lee, Y. M., Nam, W. & Fukuzumi, S. (2012). Energy Environ. Sci. 5, 7606–7616.  CrossRef Google Scholar
First citationLeung, C. F., Ng, S. M., Ko, C. C., Man, W. L., Wu, J., Chen, L. & Lau, T. C. (2012). Energy Environ. Sci. 5, 7903–907.  CrossRef Google Scholar
First citationLi, Z.-F., Wang, S.-W., Zhang, Q. & Yu, X.-J. (2007). Acta Cryst. E63, m2373.  CrossRef IUCr Journals Google Scholar
First citationLiu, S., Lei, Y. J., Xin, Z. J., Xiang, R. J., Styring, S., Thapper, A. & Wang, H. Y. (2017). Int. J. Hydrogen Energy, 42, 29716–29724.  CrossRef Google Scholar
First citationMcCool, N. S., Robinson, D. M., Sheats, J. E. & Dismukes, G. C. (2011). J. Am. Chem. Soc. 133, 11446–11449.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNakazono, T., Parent, A. R. & Sakai, K. (2013). Chem. Commun. 49, 6325–6327.  CrossRef Google Scholar
First citationPizzolato, E., Natali, M., Posocco, B., Montellano López, A., Bazzan, I., Di Valentin, M., Galloni, P., Conte, V., Bonchio, M., Scandola, F. & Sartorel, A. (2013). Chem. Commun. 49, 9941–9943.  CrossRef Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationShakeri, V. & Haussühl, S. (1992). Z. Kristallogr. 198, 165–166.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, H., Lu, Y., Mijangos, E. & Thapper, A. (2014). Chin. J. Chem. 32, 467–473.  CrossRef Google Scholar
First citationWasylenko, D. J., Ganesamoorthy, C., Borau-Garcia, J. & Berlinguette, C. P. (2011). Chem. Commun. 47, 4249–4251.  CrossRef Google Scholar
First citationXu, J. H., Guo, L. Y., Su, H. F., Gao, X., Wu, X. F., Wang, W. G., Tung, C. H. & Sun, D. (2017). Inorg. Chem. 56, 1591–1598.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds