metal-organic compounds
Di-μ-chlorido-bis[chlorido(dimethylformamide-κN)(3,5-diphenyl-1H-pyrazole-κN2)copper(II)]
aDepartment of Chemistry and Biochemistry, Shippensburg University, 1871 Old Main Dr., Shippensburg, PA 17257, USA, and bDepartment of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
*Correspondence e-mail: cmzaleski@ship.edu
The title compound, [Cu2Cl4(C15H12N2)2(C3H7NO)2], Cu2(μ-Cl)2Cl2(3,5-diphenyl-1H-pyrazole)2(DMF)2, where DMF is N,N-dimethylformamide, crystallizes in the monoclinic P21/n. The five-coordinate CuII ions have a distorted square-pyramidal geometry and are joined via two μ-Cl anions. The coordination environment of each CuII ion is completed by a terminal chloride anion, a nitrogen-coordinated 3,5-diphenyl-1H-pyrazole molecule, and a DMF molecule. Two intramolecular hydrogen bonds exist in the molecule as the H atom of the protonated N atom of the 3,5-diphenyl-1H-pyrazole bonds to a terminal chloride anion of the adjacent CuII cation. In addition, molecules are linked into a two-dimensional sheet via weak C—H⋯Cl intermolecular hydrogen bonds. Each dimer hydrogen bonds to four neighboring molecules as the H atom of the C atom in the fourth position of the pyrazole ring bonds to a μ-Cl on a neighboring molecule.
Keywords: crystal structure; copper complex; 3,5-diphenyl-1H-pyrazole.
CCDC reference: 1863262
Structure description
Pyrazole-based ligands are ubiquitous in the literature for their ability to build mono-metal complexes and molecules containing multiple metal centers (Mukherjee, 2000; Viciano-Chumillas et al., 2010; Doidge et al., 2015; Castro et al., 2016). In particular, 3,5-diphenylpyrazole and its derivatives have been used to form numerous copper complexes with the metal in either the 1+ or 2+ oxidation states (Raptis & Fackler Jr, 1988; Mezei et al., 2007; Tardito et al., 2011; Ahmed et al., 2016; Zhang et al., 2017). The title compound Cu2(μ-Cl)2Cl2(3,5-diphenyl-1H-pyrazole)2(DMF)2 (1), where DMF is N,N-dimethylformamide, reported within relates a dicopper(II) compound with two neutral 3,5-diphenyl-1H-pyrazole ligands, two bridging chloride anions, and two terminal chloride anions. In addition, compound (1) has similar structural features to a number of copper(II)–chloride–pyrazole-based molecules and one copper(II)–chloride–triazole-based molecule: Cu2(μ-Cl2)Cl2(1H-3,5-diethyl-4-methylpyrazole)4 (Agre et al., 1977; Agre et al., 1979), Cu2(μ-Cl2)Cl2(3,4-dimethyl-5-phenylpyrazole)2(4,5-dimethyl-3-phenylpyrazole)2 (Keij et al., 1991), Cu2(μ-Cl2)Cl2(3,5-diphenylpyrazole)4 (Małecka et al., 1998; Mezei & Raptis, 2004; Zhu et al., 2011), Cu2(μ-Cl2)Cl2(3,5-dimethyl-1H-pyrazole)4 (Chandrasekhar et al., 2000; Giles et al., 2015), Cu2(μ-Cl2)Cl2(3-methyl-5-phenyl-1H-pyrazole)4 (Soltani et al., 2012), Cu2(μ-Cl2)Cl2(5-methyl-1H-pyrazole)4 (Giles et al., 2015; Feng et al., 2016), Cu2(μ-Cl2)Cl2(3,4,5-trimethyl-1H-pyrazole)4 (Vincent et al., 2018), and Cu2(μ-Cl)2Cl2(3,5-diphenyl-4-amino-1,2,4-triazole)2(H2O)2 (Bushuev et al., 2006).
Compound (1) consists of two CuII ions bridged by two μ-Cl anions (Fig. 1). An inversion center exists in the molecule, resulting in identical coordination environments about the copper centers. Thus, only the coordination environment of Cu1 will be discussed. The copper ions are assigned as a 2+ based on a bond-valence-sum value of 2.03 (Brese & O'Keeffe, 1991; Liu & Thorp, 1993) and overall molecular charge considerations. The 3,5-diphenyl-1H-pyrazole ligand is not deprotonated (H atoms are well resolved in difference electron density maps); thus, the ligands have a neutral charge. The four chloride ions necessitate that each identical copper ion has a 2+ charge. Each CuII ion is five-coordinate with a distorted square-pyramidal geometry (Fig. 2). This geometry is supported by the calculated τ value of 0.28, where an ideal square-pyramidal geometry is given by τ = 0 and an ideal trigonal–bipyramidal geometry is specified as τ = 1 (Addison et al., 1984). The basal atoms of the geometry are comprised of the non-protonated nitrogen atom (N1) of the 3,5-diphenyl-1H-pyrazole ligand, a terminal chloride anion (Cl1), a μ-chloride anion (Cl2), and an oxygen atom (O1) from a DMF molecule. The average bond distance between Cu1 and the basal atoms is 2.133 Å. The coordination is completed by a second μ-chloride anion (Cl2i) in the apical position [symmetry operator (i): −x + 1, −y + 1, −z]. The bond distance of Cu1 to the apical μ-Cl2i is elongated with a distance of 2.6693 (6) Å. For comparison, the bond distance of Cu1 to the basal μ-Cl2 is 2.2851 (5) Å. In addition, an intramolecular hydrogen bond exists between the terminal Cl1 anion of Cu1 and the hydrogen atom of N2i of the 3,5-diphenylpyrazole attached to Cu1i (Fig. 3 and Table 1). The equivalent intramolecular hydrogen bond exists between Cl1i and the hydrogen atom of N2. Thus, two intramolecular hydrogen bonds exist in each molecule. Lastly, weak intermolecular hydrogen bonds (C8—H8⋯Cl2ii) connect the molecules into a two-dimensional sheet [Fig. 4; symmetry operator (ii) −x + , y + , −z + ]. The hydrogen atom of the carbon atom in the fourth position of the pyrazole ring bonds to a μ-Cl on an adjacent molecule. Since there are two 3,5-diphenyl-1H-pyrazole ligands and two μ-Cl anions per molecule, each individual molecule is hydrogen bonded to four neighboring molecules through this connectivity and a two-dimensional sheet is generated.
Synthesis and crystallization
Copper(II) chloride dihydrate was purchased from J. T. Baker Chemical Company, 3,5-diphenyl-1H-pyrazole (>98.0%) was purchased from TCI America, and N,N-dimethylformamide (DMF, ACS grade) was purchased Pharmco–Aaper. All reagents were used as received and without further purification.
Copper(II) chloride dihydrate (1 mmol) and 3,5-diphenyl-1H-pyrazole (1 mmol) were dissolved in 20 ml of DMF resulting in a clear yellow–green solution. The solution was allowed to stir overnight and was then gravity filtered. No precipitate was recovered, and the filtrate had a clear yellow–green color. Slow evaporation of the solvent yielded X-ray quality green plate-like crystals after 30 days. The percent yield of the reaction was 30% based on copper(II) chloride dihydrate.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1863262
https://doi.org/10.1107/S2414314618011860/lh4039sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618011860/lh4039Isup2.hkl
Data collection: COLLECT (Nonius, 1998); cell
HKL-3000 (Otwinowski & Minor, 1997); data reduction: HKL-3000 (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) and shelXle (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[Cu2Cl4(C3H7NO)2(C15H12N2)2] | F(000) = 876 |
Mr = 855.60 | Dx = 1.457 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 12.004 (1) Å | Cell parameters from 12667 reflections |
b = 9.7942 (4) Å | θ = 1.8–27.8° |
c = 17.4116 (8) Å | µ = 1.40 mm−1 |
β = 107.633 (3)° | T = 100 K |
V = 1950.9 (2) Å3 | Plate, green |
Z = 2 | 0.31 × 0.29 × 0.22 mm |
Nonius Kappa CCD diffractometer | 4445 independent reflections |
Radiation source: fine focus X-ray tube | 3976 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.080 |
ω and φ scans | θmax = 27.8°, θmin = 1.8° |
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) | h = −13→15 |
Tmin = 0.612, Tmax = 0.748 | k = −12→10 |
12667 measured reflections | l = −22→20 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.107 | w = 1/[σ2(Fo2) + (0.0444P)2 + 1.0669P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
4445 reflections | Δρmax = 0.49 e Å−3 |
229 parameters | Δρmin = −0.45 e Å−3 |
0 restraints | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0119 (13) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Hydrogen atoms were placed in calculated positions and refined as riding on their carrier atoms with C—H distances of 0.95 Å for sp2 carbon atoms, 0.98 Å for methyl carbon atoms, and 0.88 Å for the sp2 nitrogen atom. The <ui>Uiso values for hydrogen atoms were set to a multiple of the value of the carrying carbon atom (1.2 times for sp2-hybridized carbon atoms or 1.5 times for methyl carbon atoms). |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.63919 (2) | 0.57447 (2) | 0.01853 (2) | 0.01123 (12) | |
Cl2 | 0.58568 (4) | 0.36146 (5) | 0.04774 (3) | 0.01454 (14) | |
Cl1 | 0.68474 (5) | 0.49827 (5) | −0.09070 (3) | 0.01877 (15) | |
O1 | 0.67895 (14) | 0.76438 (15) | −0.00269 (9) | 0.0167 (3) | |
N1 | 0.66061 (15) | 0.63626 (17) | 0.13178 (10) | 0.0128 (3) | |
N2 | 0.57490 (16) | 0.63696 (18) | 0.16782 (10) | 0.0130 (3) | |
H2N | 0.5038 | 0.6053 | 0.1456 | 0.016* | |
N3 | 0.6447 (2) | 0.9468 (2) | −0.08618 (12) | 0.0243 (4) | |
C1 | 0.9082 (2) | 0.6007 (2) | 0.12880 (12) | 0.0161 (4) | |
H1 | 0.8590 | 0.5251 | 0.1072 | 0.019* | |
C2 | 1.0193 (2) | 0.6081 (2) | 0.12018 (12) | 0.0179 (4) | |
H2 | 1.0460 | 0.5376 | 0.0926 | 0.021* | |
C3 | 1.0916 (2) | 0.7185 (3) | 0.15171 (13) | 0.0214 (5) | |
H3 | 1.1676 | 0.7232 | 0.1457 | 0.026* | |
C4 | 1.0528 (2) | 0.8216 (3) | 0.19191 (14) | 0.0238 (5) | |
H4 | 1.1022 | 0.8971 | 0.2134 | 0.029* | |
C5 | 0.9413 (2) | 0.8147 (2) | 0.20085 (14) | 0.0205 (5) | |
H5 | 0.9150 | 0.8853 | 0.2285 | 0.025* | |
C6 | 0.86844 (19) | 0.7044 (2) | 0.16931 (12) | 0.0149 (4) | |
C7 | 0.75421 (19) | 0.6933 (2) | 0.18394 (12) | 0.0140 (4) | |
C8 | 0.72765 (19) | 0.7317 (2) | 0.25414 (12) | 0.0158 (4) | |
H8 | 0.7782 | 0.7755 | 0.3003 | 0.019* | |
C9 | 0.61330 (18) | 0.6929 (2) | 0.24252 (11) | 0.0130 (4) | |
C10 | 0.54215 (19) | 0.7055 (2) | 0.29796 (12) | 0.0134 (4) | |
C11 | 0.6005 (2) | 0.7341 (2) | 0.37895 (12) | 0.0177 (4) | |
H11 | 0.6832 | 0.7431 | 0.3967 | 0.021* | |
C12 | 0.5374 (2) | 0.7494 (2) | 0.43331 (13) | 0.0220 (5) | |
H12 | 0.5775 | 0.7690 | 0.4882 | 0.026* | |
C13 | 0.4177 (2) | 0.7367 (2) | 0.40908 (13) | 0.0211 (5) | |
H13 | 0.3754 | 0.7468 | 0.4469 | 0.025* | |
C14 | 0.3592 (2) | 0.7088 (2) | 0.32849 (13) | 0.0208 (5) | |
H14 | 0.2765 | 0.7004 | 0.3112 | 0.025* | |
C15 | 0.42102 (19) | 0.6930 (2) | 0.27315 (12) | 0.0171 (4) | |
H15 | 0.3804 | 0.6737 | 0.2183 | 0.021* | |
C16 | 0.62989 (19) | 0.8181 (2) | −0.06975 (12) | 0.0165 (4) | |
H16 | 0.5795 | 0.7632 | −0.1107 | 0.020* | |
C17 | 0.7246 (3) | 1.0358 (3) | −0.02662 (17) | 0.0460 (8) | |
H17A | 0.7893 | 1.0635 | −0.0465 | 0.069* | |
H17B | 0.7554 | 0.9863 | 0.0243 | 0.069* | |
H17C | 0.6822 | 1.1170 | −0.0179 | 0.069* | |
C18 | 0.5865 (3) | 1.0043 (3) | −0.16520 (15) | 0.0372 (7) | |
H18A | 0.6450 | 1.0411 | −0.1885 | 0.056* | |
H18B | 0.5338 | 1.0777 | −0.1599 | 0.056* | |
H18C | 0.5413 | 0.9328 | −0.2005 | 0.056* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01127 (17) | 0.01268 (17) | 0.00998 (15) | −0.00203 (9) | 0.00358 (10) | −0.00140 (8) |
Cl2 | 0.0123 (3) | 0.0129 (3) | 0.0168 (2) | −0.00006 (18) | 0.00204 (18) | 0.00201 (17) |
Cl1 | 0.0170 (3) | 0.0250 (3) | 0.0169 (2) | −0.0054 (2) | 0.0089 (2) | −0.00756 (19) |
O1 | 0.0191 (8) | 0.0159 (7) | 0.0153 (7) | −0.0037 (6) | 0.0054 (6) | 0.0009 (6) |
N1 | 0.0108 (9) | 0.0162 (8) | 0.0120 (7) | −0.0017 (7) | 0.0044 (6) | −0.0010 (6) |
N2 | 0.0108 (9) | 0.0166 (9) | 0.0125 (7) | −0.0025 (7) | 0.0047 (6) | −0.0021 (7) |
N3 | 0.0344 (12) | 0.0161 (9) | 0.0199 (9) | −0.0020 (8) | 0.0047 (9) | 0.0007 (8) |
C1 | 0.0149 (11) | 0.0185 (10) | 0.0140 (9) | −0.0001 (8) | 0.0029 (8) | −0.0008 (8) |
C2 | 0.0157 (11) | 0.0231 (11) | 0.0156 (9) | 0.0029 (9) | 0.0057 (8) | −0.0007 (8) |
C3 | 0.0148 (11) | 0.0307 (13) | 0.0199 (10) | −0.0010 (9) | 0.0073 (9) | 0.0039 (9) |
C4 | 0.0170 (12) | 0.0251 (12) | 0.0298 (11) | −0.0084 (9) | 0.0078 (9) | −0.0037 (10) |
C5 | 0.0177 (11) | 0.0198 (11) | 0.0252 (10) | −0.0015 (9) | 0.0085 (9) | −0.0047 (9) |
C6 | 0.0141 (10) | 0.0177 (10) | 0.0131 (8) | 0.0001 (8) | 0.0043 (8) | 0.0013 (8) |
C7 | 0.0152 (10) | 0.0129 (9) | 0.0135 (8) | −0.0010 (8) | 0.0037 (8) | −0.0006 (7) |
C8 | 0.0149 (11) | 0.0185 (10) | 0.0132 (9) | −0.0014 (8) | 0.0030 (8) | −0.0032 (8) |
C9 | 0.0132 (10) | 0.0123 (9) | 0.0128 (8) | 0.0010 (8) | 0.0028 (7) | −0.0003 (7) |
C10 | 0.0155 (11) | 0.0124 (9) | 0.0139 (9) | 0.0011 (8) | 0.0066 (8) | 0.0003 (7) |
C11 | 0.0143 (11) | 0.0245 (11) | 0.0144 (9) | 0.0029 (9) | 0.0044 (8) | 0.0000 (8) |
C12 | 0.0241 (12) | 0.0304 (12) | 0.0123 (9) | 0.0065 (10) | 0.0065 (9) | −0.0003 (9) |
C13 | 0.0221 (12) | 0.0254 (11) | 0.0201 (10) | 0.0019 (9) | 0.0129 (9) | −0.0012 (9) |
C14 | 0.0155 (11) | 0.0261 (12) | 0.0226 (10) | −0.0007 (9) | 0.0083 (9) | −0.0017 (9) |
C15 | 0.0170 (11) | 0.0193 (11) | 0.0151 (9) | −0.0005 (8) | 0.0048 (8) | −0.0022 (8) |
C16 | 0.0149 (11) | 0.0195 (10) | 0.0162 (9) | −0.0038 (8) | 0.0063 (8) | −0.0015 (8) |
C17 | 0.071 (2) | 0.0207 (13) | 0.0338 (14) | −0.0132 (14) | −0.0030 (14) | −0.0007 (12) |
C18 | 0.055 (2) | 0.0254 (13) | 0.0255 (12) | 0.0064 (12) | 0.0044 (12) | 0.0106 (10) |
Cu1—O1 | 1.9826 (15) | C5—H5 | 0.9500 |
Cu1—N1 | 2.0034 (16) | C6—C7 | 1.473 (3) |
Cu1—Cl1 | 2.2590 (5) | C7—C8 | 1.405 (3) |
Cu1—Cl2 | 2.2851 (5) | C8—C9 | 1.379 (3) |
Cu1—Cl2i | 2.6693 (6) | C8—H8 | 0.9500 |
Cl2—Cu1i | 2.6693 (6) | C9—C10 | 1.475 (3) |
O1—C16 | 1.253 (3) | C10—C15 | 1.391 (3) |
N1—C7 | 1.335 (3) | C10—C11 | 1.400 (3) |
N1—N2 | 1.358 (2) | C11—C12 | 1.388 (3) |
N2—C9 | 1.357 (3) | C11—H11 | 0.9500 |
N2—H2N | 0.8800 | C12—C13 | 1.375 (4) |
N3—C16 | 1.317 (3) | C12—H12 | 0.9500 |
N3—C18 | 1.455 (3) | C13—C14 | 1.393 (3) |
N3—C17 | 1.467 (3) | C13—H13 | 0.9500 |
C1—C2 | 1.388 (3) | C14—C15 | 1.391 (3) |
C1—C6 | 1.400 (3) | C14—H14 | 0.9500 |
C1—H1 | 0.9500 | C15—H15 | 0.9500 |
C2—C3 | 1.391 (3) | C16—H16 | 0.9500 |
C2—H2 | 0.9500 | C17—H17A | 0.9800 |
C3—C4 | 1.387 (3) | C17—H17B | 0.9800 |
C3—H3 | 0.9500 | C17—H17C | 0.9800 |
C4—C5 | 1.395 (3) | C18—H18A | 0.9800 |
C4—H4 | 0.9500 | C18—H18B | 0.9800 |
C5—C6 | 1.393 (3) | C18—H18C | 0.9800 |
O1—Cu1—N1 | 86.20 (6) | C8—C7—C6 | 126.82 (19) |
O1—Cu1—Cl1 | 91.13 (4) | C9—C8—C7 | 106.06 (18) |
N1—Cu1—Cl1 | 159.53 (5) | C9—C8—H8 | 127.0 |
O1—Cu1—Cl2 | 176.18 (5) | C7—C8—H8 | 127.0 |
N1—Cu1—Cl2 | 91.01 (5) | N2—C9—C8 | 106.62 (17) |
Cl1—Cu1—Cl2 | 92.39 (2) | N2—C9—C10 | 124.41 (19) |
O1—Cu1—Cl2i | 88.16 (5) | C8—C9—C10 | 128.97 (18) |
N1—Cu1—Cl2i | 99.55 (5) | C15—C10—C11 | 119.17 (19) |
Cl1—Cu1—Cl2i | 100.643 (19) | C15—C10—C9 | 123.19 (18) |
Cl2—Cu1—Cl2i | 89.727 (18) | C11—C10—C9 | 117.63 (19) |
Cu1—Cl2—Cu1i | 90.273 (18) | C12—C11—C10 | 119.9 (2) |
C16—O1—Cu1 | 119.72 (14) | C12—C11—H11 | 120.0 |
C7—N1—N2 | 106.44 (16) | C10—C11—H11 | 120.0 |
C7—N1—Cu1 | 128.82 (14) | C13—C12—C11 | 121.1 (2) |
N2—N1—Cu1 | 124.55 (13) | C13—C12—H12 | 119.5 |
C9—N2—N1 | 111.11 (17) | C11—C12—H12 | 119.5 |
C9—N2—H2N | 124.4 | C12—C13—C14 | 119.2 (2) |
N1—N2—H2N | 124.4 | C12—C13—H13 | 120.4 |
C16—N3—C18 | 121.2 (2) | C14—C13—H13 | 120.4 |
C16—N3—C17 | 121.2 (2) | C15—C14—C13 | 120.5 (2) |
C18—N3—C17 | 117.6 (2) | C15—C14—H14 | 119.7 |
C2—C1—C6 | 120.1 (2) | C13—C14—H14 | 119.7 |
C2—C1—H1 | 120.0 | C10—C15—C14 | 120.1 (2) |
C6—C1—H1 | 120.0 | C10—C15—H15 | 119.9 |
C1—C2—C3 | 120.2 (2) | C14—C15—H15 | 119.9 |
C1—C2—H2 | 119.9 | O1—C16—N3 | 123.2 (2) |
C3—C2—H2 | 119.9 | O1—C16—H16 | 118.4 |
C4—C3—C2 | 120.0 (2) | N3—C16—H16 | 118.4 |
C4—C3—H3 | 120.0 | N3—C17—H17A | 109.5 |
C2—C3—H3 | 120.0 | N3—C17—H17B | 109.5 |
C3—C4—C5 | 120.0 (2) | H17A—C17—H17B | 109.5 |
C3—C4—H4 | 120.0 | N3—C17—H17C | 109.5 |
C5—C4—H4 | 120.0 | H17A—C17—H17C | 109.5 |
C6—C5—C4 | 120.2 (2) | H17B—C17—H17C | 109.5 |
C6—C5—H5 | 119.9 | N3—C18—H18A | 109.5 |
C4—C5—H5 | 119.9 | N3—C18—H18B | 109.5 |
C5—C6—C1 | 119.5 (2) | H18A—C18—H18B | 109.5 |
C5—C6—C7 | 119.69 (19) | N3—C18—H18C | 109.5 |
C1—C6—C7 | 120.70 (19) | H18A—C18—H18C | 109.5 |
N1—C7—C8 | 109.76 (18) | H18B—C18—H18C | 109.5 |
N1—C7—C6 | 123.32 (18) | ||
C7—N1—N2—C9 | −0.4 (2) | N1—N2—C9—C8 | 1.0 (2) |
Cu1—N1—N2—C9 | −175.77 (13) | N1—N2—C9—C10 | −178.41 (18) |
C6—C1—C2—C3 | 0.0 (3) | C7—C8—C9—N2 | −1.2 (2) |
C1—C2—C3—C4 | 0.0 (3) | C7—C8—C9—C10 | 178.2 (2) |
C2—C3—C4—C5 | 0.1 (4) | N2—C9—C10—C15 | −16.5 (3) |
C3—C4—C5—C6 | −0.2 (4) | C8—C9—C10—C15 | 164.2 (2) |
C4—C5—C6—C1 | 0.2 (3) | N2—C9—C10—C11 | 164.8 (2) |
C4—C5—C6—C7 | 175.8 (2) | C8—C9—C10—C11 | −14.5 (3) |
C2—C1—C6—C5 | −0.1 (3) | C15—C10—C11—C12 | 0.1 (3) |
C2—C1—C6—C7 | −175.67 (19) | C9—C10—C11—C12 | 178.8 (2) |
N2—N1—C7—C8 | −0.3 (2) | C10—C11—C12—C13 | 0.1 (4) |
Cu1—N1—C7—C8 | 174.72 (14) | C11—C12—C13—C14 | −0.4 (4) |
N2—N1—C7—C6 | 176.29 (18) | C12—C13—C14—C15 | 0.4 (4) |
Cu1—N1—C7—C6 | −8.6 (3) | C11—C10—C15—C14 | −0.1 (3) |
C5—C6—C7—N1 | 148.5 (2) | C9—C10—C15—C14 | −178.7 (2) |
C1—C6—C7—N1 | −35.9 (3) | C13—C14—C15—C10 | −0.2 (3) |
C5—C6—C7—C8 | −35.4 (3) | Cu1—O1—C16—N3 | 174.50 (17) |
C1—C6—C7—C8 | 140.1 (2) | C18—N3—C16—O1 | 179.6 (2) |
N1—C7—C8—C9 | 1.0 (2) | C17—N3—C16—O1 | 2.2 (4) |
C6—C7—C8—C9 | −175.5 (2) |
Symmetry code: (i) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···Cl1i | 0.88 | 2.40 | 3.2766 (19) | 175 |
C8—H8···Cl2ii | 0.95 | 2.79 | 3.722 (2) | 169 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+3/2, y+1/2, −z+1/2. |
Acknowledgements
CMZ, MSN, and BTK thank the Chemistry and Biochemistry Department at Shippensburg University for support.
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. G. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Agre, V. M., Krol, I. A. & Trunov, V. K. (1977). Proc. Nat. Acad. Sci. USSR, 235, 341. Google Scholar
Agre, V. M., Krol, I. A., Trunov, V. K., Dziomko, V. M. & Ivanov, O. V. (1979). Russ. J. Coord. Chem. 5, 1413. Google Scholar
Ahmed, B. M., Calco, B. & Mezei, G. (2016). Dalton Trans. 45, 8327–8339. Web of Science CSD CrossRef CAS PubMed Google Scholar
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bushuev, M. B., Virovets, A. V., Naumov, D. Y., Shvedenkov, Y. G., Sheludyakova, L. A., Elokhina, V. N., Boguslavsky, E. G. & Lavrenova, L. G. (2006). Russ. J. Coord. Chem. 32, 309–320. CrossRef Google Scholar
Castro, I., Barros, W. P., Calatayud, M. L., Lloret, F., Marino, N., De Munno, G., Stumpf, H. O., Ruiz-García, R. & Julve, M. (2016). Coord. Chem. Rev. 315, 135–152. CrossRef Google Scholar
Chandrasekhar, V., Kingsley, S., Vij, A., Lam, K. C. & Rheingold, A. L. (2000). Inorg. Chem. 39, 3238–3242. Web of Science CSD CrossRef PubMed CAS Google Scholar
Doidge, E. D., Roebuck, J. W., Healy, M. R. & Tasker, P. A. (2015). Coord. Chem. Rev. 288, 98–117. CrossRef Google Scholar
Feng, C., Zhang, D., Chu, Z.-J. & Zhao, H. (2016). Polyhedron, 115, 288–296. CrossRef Google Scholar
Giles, I. D., DePriest, J. C. & Deschamps, J. R. (2015). J. Coord. Chem. 68, 3611–3635. Web of Science CSD CrossRef CAS Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Keij, F. S., Haasnoot, J. G., Oosterling, A. J., Reedijk, J., O'Connor, C. J., Zhang, J. H. & Spek, A. L. (1991). Inorg. Chim. Acta, 181, 185–193. CSD CrossRef CAS Web of Science Google Scholar
Liu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102–4105. CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Małecka, M., Grabowski, M. J., Olszak, T. A., Kostka, K. & Strawiak, M. (1998). Acta Cryst. C54, 1770–1773. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mezei, G. & Raptis, R. G. (2004). Inorg. Chim. Acta, 357, 3279–3288. Web of Science CSD CrossRef CAS Google Scholar
Mezei, G., Rivera-Carrillo, M. & Raptis, R. G. (2007). Dalton Trans. pp. 37–40. Web of Science CSD CrossRef Google Scholar
Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151–218. Web of Science CrossRef CAS Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Raptis, R. G. & Fackler, J. P. Jr (1988). Inorg. Chem. 27, 4179–4182. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Soltani, B., Sadr, M. H., Engle, J. T., Ziegler, C. J., Joo, S. W. & Hanifehpour, Y. (2012). Transition Met. Chem. 37, 687–694. CrossRef Google Scholar
Tardito, S., Bassanetti, I., Bignardi, C., Elviri, L., Tegoni, M., Mucchino, C., Bussolati, O., Franchi-Gazzola, R. & Marchiò, L. (2011). 133, 6235-6242. Google Scholar
Viciano-Chumillas, M., Tanase, S., de Jongh, L. J. & Reedijk, J. (2010). Eur. J. Inorg. Chem. 2010, 3403–3418. Google Scholar
Vincent, C. J., Giles, I. D. & Deschamps, J. R. (2018). Acta Cryst. E74, 357–362. CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, H.-J., Shi, C.-Y., Zhong, F. & Yin, L. (2017). J. Am. Chem. Soc. 139, 2196–2199. CrossRef Google Scholar
Zhu, W.-R., Ding, S.-H., Li, J.-G., Chen, Y., Liu, G.-C., Zhu, Y.-L. & Huang, Z.-Y. (2011). Chin. J. Struct. Chem. 30, 1101–1104. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.