organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Amino-4-(4-meth­­oxy­phen­yl)-6-(4-methyl­phen­yl)pyrimidin-1-ium chloride

CROSSMARK_Color_square_no_text.svg

aDepartment of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea
*Correspondence e-mail: dskoh@dongduk.ac.kr

Edited by A. J. Lough, University of Toronto, Canada (Received 6 August 2018; accepted 15 August 2018; online 16 August 2018)

In the title salt, C18H18N3O+·Cl, the amino­pyrimidine mol­ecule is protonated at one of the pyrimidine N atoms. The chloride anion inter­acts with the protonated pyrimidine N—H group and one of the amino N—H groups through two N—H⋯Cl hydrogen bonds, forming a six-membered ring. The chloride anion inter­acts further with the other amino N—H group to form an additional N—H⋯Cl hydrogen bond, which links the mol­ecules along [001] in a helical manner.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As a result of their being a natural component of nucleic acid, amino­pyrimidine derivatives are biologically important and have shown a broad spectrum of biological activities including anti-platelet (Giridhar et al., 2012[Giridhar, R., Tamboli, R. S., Ramajayam, R., Prajapati, D. G. & Yadav, M. R. (2012). Eur. J. Med. Chem. 50, 428-432.]), anti­tumor (Lee et al., 2011[Lee, J., Kim, K.-H. & Jeong, S. (2011). Bioorg. Med. Chem. Lett. 21, 4203-4205.]), anti-bacterial (Nagarajan et al., 2014[Nagarajan, S., Shanmugavelan, P., Sathishkumar, M., Selvi, R., Ponnuswamy, A., Harikrishnan, H., Shanmugaiah, V. & Murugavel, S. (2014). Bioorg. Med. Chem. Lett. 24, 4999-5007.]) and anti-diabetic properties (Singh et al., 2011[Singh, N., Pandey, S. K., Anand, N., Dwivedi, R., Singh, S., Sinha, S. K., Chaturvedi, V., Jaiswal, N., Srivastava, A. K., Shah, P., Siddiqui, M. I. & Tripathi, R. P. (2011). Bioorg. Med. Chem. Lett. 21, 4404-4408.]). As a continuation of our research program to expand the use of novel synthetic chalcones (Lee et al. 2016[Lee, Y., Kim, B. S., Ahn, S., Koh, D., Lee, Y. H., Shin, S. Y. & Lim, Y. (2016). Bioorg. Chem. 68, 166-176.]), the title amino­pyrimidine compound was synthesized from chalcone and its crystal structure was determined. Other examples of amino­pyrimidinium salt structures have been published recently (Swinton Darious et al., 2018[Swinton Darious, R., Thomas Muthiah, P. & Perdih, F. (2018). Acta Cryst. E74, 237-241.]; Jeevaraj et al., 2016[Jeevaraj, M., Edison, B., Kavitha, S. J., Thanikasalam, K., Britto, S. & Balasubramani, K. (2016). IUCrData, 1, x161010.]).

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The amino­pyrimidine mol­ecule is protonated at one of the pyrimidine nitro­gen atoms. As a result, the two C—N—C bond angles in the pyrimidine ring are different: the C1—N2—C4 angle at protonated atom N2 is 121.1 (2)°, while for the unprotonated atom N1, the C1—N1—C2 angle is 117.8 (2)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labelling scheme and displacement ellipsoids drawn at the 30% probability level.

In the crystal, a six-membered ring is formed through N—H⋯Cl hydrogen bonds (aqua coloured dashed lines in Fig. 2[link], Table 1[link]) involving one of the hydrogen atoms in the amino group (N3—H3B) and a hydrogen atom in the pyrimidium ring (N2—H2A) and the chlorine anion. An additional hydrogen bond is formed by the other hydrogen atom in the amino group (N3—H3A) and the chloride anion (orange dashed line in Fig. 2[link], Table 1[link]), which links the mol­ecules into a chain along [001]. The three N—H⋯Cl hydrogen bonds connect the mol­ecules in helical manner along [001]. Six mol­ecules are involved in one turn of the helix (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl1i 0.87 2.27 3.106 (3) 160
N3—H3A⋯Cl1ii 0.87 2.44 3.305 (3) 172
N3—H3B⋯Cl1i 0.87 2.56 3.332 (3) 148
C14—H14⋯O1iii 0.94 2.46 3.300 (4) 148
Symmetry codes: (i) [y+1, -x+y+1, z+{\script{1\over 6}}]; (ii) x+1, y+1, z; (iii) [-x+y, -x+1, z+{\script{1\over 3}}].
[Figure 2]
Figure 2
Part of the crystal structure with inter­molecular hydrogen bonds are shown as red and blue dashed lines. For clarity, only those H atoms involved in hydrogen bonding are shown.
[Figure 3]
Figure 3
Part of the crystal structure shown along the c axis. The three N—H⋯Cl hydrogen bonds connect mol­ecules in a helical manner along the c axis.

Synthesis and crystallization

The same synthetic procedures were used as described in our previous report (Koh & Lee, 2018[Koh, D. & Lee, J. (2018). IUCrData, 3, x180796.]), but starting from 4-meth­oxy aceto­phenone and 4-methyl benzaldehyde for the synthesis of the chalcone inter­mediate, as shown in Fig. 4[link].

[Figure 4]
Figure 4
Synthetic scheme for the preparation of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C18H18N3O+·Cl
Mr 327.80
Crystal system, space group Hexagonal, P65
Temperature (K) 223
a, c (Å) 9.9013 (9), 28.981 (2)
V3) 2460.6 (5)
Z 6
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.18 × 0.10 × 0.07
 
Data collection
Diffractometer Bruker PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.721, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 135729, 4073, 3401
Rint 0.081
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.083, 1.10
No. of reflections 4073
No. of parameters 228
No. of restraints 1
H-atom treatment Only H-atom displacement parameters refined
Δρmax, Δρmin (e Å−3) 0.19, −0.15
Absolute structure Flack x determined using 1416 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.016 (15)
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.])and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

2-Amino-4-(4-methoxyphenyl)-6-(4-methylphenyl)pyrimidin-1-ium chloride top
Crystal data top
C18H18N3O+·ClDx = 1.327 Mg m3
Mr = 327.80Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P65Cell parameters from 9935 reflections
a = 9.9013 (9) Åθ = 2.4–26.1°
c = 28.981 (2) ŵ = 0.24 mm1
V = 2460.6 (5) Å3T = 223 K
Z = 6Block, colourless
F(000) = 10320.18 × 0.10 × 0.07 mm
Data collection top
Bruker PHOTON 100 CMOS
diffractometer
3401 reflections with I > 2σ(I)
φ and ω scansRint = 0.081
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
θmax = 28.3°, θmin = 2.4°
Tmin = 0.721, Tmax = 0.746h = 1313
135729 measured reflectionsk = 1313
4073 independent reflectionsl = 3838
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullOnly H-atom displacement parameters refined
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0281P)2 + 0.7437P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.083(Δ/σ)max = 0.005
S = 1.10Δρmax = 0.19 e Å3
4073 reflectionsΔρmin = 0.15 e Å3
228 parametersAbsolute structure: Flack x determined using 1416 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.016 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.1580 (3)0.9339 (3)0.12113 (9)0.0327 (6)
N11.0866 (3)0.9519 (3)0.08454 (8)0.0324 (5)
C20.9390 (3)0.8427 (3)0.07668 (9)0.0317 (6)
C30.8602 (3)0.7103 (3)0.10505 (10)0.0363 (6)
H30.75690.63350.09840.041 (9)*
C40.9356 (3)0.6949 (3)0.14220 (9)0.0327 (6)
N21.0862 (3)0.8080 (3)0.14949 (8)0.0335 (5)
H2A1.13730.79950.17270.056 (11)*
N31.3025 (3)1.0421 (3)0.13150 (9)0.0402 (6)
H3A1.35121.12520.11450.050 (10)*
H3B1.34881.03010.15540.052 (11)*
C50.8595 (3)0.8685 (3)0.03772 (9)0.0314 (6)
C60.9184 (3)1.0184 (3)0.01960 (10)0.0353 (6)
H61.00931.10170.03230.038 (8)*
C70.8450 (4)1.0454 (3)0.01649 (10)0.0385 (7)
H70.88631.14660.02860.041 (9)*
C80.7090 (3)0.9226 (4)0.03525 (10)0.0355 (6)
C90.6482 (4)0.7740 (3)0.01741 (10)0.0373 (6)
H90.55610.69120.02980.047 (9)*
C100.7234 (4)0.7477 (3)0.01875 (10)0.0358 (6)
H100.68190.64640.03070.039 (8)*
O10.6439 (3)0.9614 (3)0.07036 (8)0.0485 (6)
C110.5094 (4)0.8394 (4)0.09247 (12)0.0523 (9)
H11A0.53510.76510.10580.076 (13)*
H11B0.47520.88310.11670.073 (12)*
H11C0.42660.78690.07000.066 (12)*
C120.8636 (3)0.5676 (3)0.17621 (9)0.0337 (6)
C130.7053 (4)0.4976 (5)0.18546 (15)0.0597 (10)
H130.64320.52760.16870.084 (14)*
C140.6380 (4)0.3837 (5)0.21918 (15)0.0617 (11)
H140.53070.33810.22520.079 (13)*
C150.7247 (4)0.3361 (4)0.24390 (10)0.0417 (7)
C160.8803 (4)0.3997 (4)0.23269 (11)0.0474 (8)
H160.94020.36380.24790.059 (11)*
C170.9500 (4)0.5155 (3)0.19954 (11)0.0406 (7)
H171.05670.55860.19300.062 (11)*
C180.6526 (5)0.2185 (4)0.28224 (12)0.0597 (10)
H18A0.71550.17030.28800.088 (16)*
H18B0.54810.13910.27340.082 (14)*
H18C0.64770.27040.31010.12 (2)*
Cl10.47413 (9)0.33310 (8)0.05723 (3)0.0449 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0317 (15)0.0354 (15)0.0304 (13)0.0165 (13)0.0060 (11)0.0016 (11)
N10.0319 (12)0.0331 (13)0.0304 (12)0.0149 (10)0.0030 (10)0.0038 (10)
C20.0343 (15)0.0355 (15)0.0288 (13)0.0201 (12)0.0038 (11)0.0026 (11)
C30.0316 (16)0.0355 (15)0.0392 (15)0.0148 (13)0.0015 (12)0.0062 (12)
C40.0334 (15)0.0339 (15)0.0319 (15)0.0177 (12)0.0053 (11)0.0033 (11)
N20.0328 (13)0.0387 (13)0.0294 (12)0.0182 (11)0.0019 (10)0.0042 (10)
N30.0298 (13)0.0434 (15)0.0385 (14)0.0117 (11)0.0008 (11)0.0092 (11)
C50.0338 (15)0.0329 (14)0.0293 (13)0.0181 (12)0.0038 (11)0.0019 (11)
C60.0349 (15)0.0331 (15)0.0346 (15)0.0145 (13)0.0005 (12)0.0010 (12)
C70.0411 (17)0.0331 (15)0.0398 (16)0.0174 (14)0.0005 (13)0.0050 (13)
C80.0410 (16)0.0439 (17)0.0281 (14)0.0261 (14)0.0010 (12)0.0004 (12)
C90.0387 (16)0.0364 (16)0.0334 (15)0.0162 (13)0.0032 (12)0.0035 (12)
C100.0427 (16)0.0297 (14)0.0327 (14)0.0163 (13)0.0032 (12)0.0022 (12)
O10.0548 (14)0.0477 (13)0.0455 (13)0.0277 (12)0.0140 (10)0.0018 (10)
C110.061 (2)0.058 (2)0.047 (2)0.0364 (19)0.0178 (17)0.0105 (16)
C120.0370 (15)0.0343 (15)0.0317 (15)0.0194 (13)0.0047 (11)0.0044 (11)
C130.0438 (19)0.075 (3)0.072 (2)0.038 (2)0.0222 (17)0.041 (2)
C140.047 (2)0.068 (3)0.076 (3)0.0336 (19)0.0296 (19)0.038 (2)
C150.0532 (19)0.0341 (16)0.0328 (15)0.0181 (14)0.0045 (13)0.0022 (13)
C160.0474 (18)0.0349 (16)0.0466 (19)0.0106 (14)0.0143 (15)0.0093 (14)
C170.0335 (16)0.0342 (15)0.0455 (17)0.0105 (13)0.0069 (13)0.0048 (13)
C180.080 (3)0.043 (2)0.0413 (19)0.019 (2)0.0055 (18)0.0100 (16)
Cl10.0498 (5)0.0295 (3)0.0452 (4)0.0122 (3)0.0071 (3)0.0003 (3)
Geometric parameters (Å, º) top
C1—N31.324 (4)C9—C101.384 (4)
C1—N11.335 (4)C9—H90.9400
C1—N21.360 (4)C10—H100.9400
N1—C21.333 (4)O1—C111.426 (4)
C2—C31.407 (4)C11—H11A0.9700
C2—C51.470 (4)C11—H11B0.9700
C3—C41.361 (4)C11—H11C0.9700
C3—H30.9400C12—C171.377 (4)
C4—N21.361 (4)C12—C131.387 (4)
C4—C121.473 (4)C13—C141.385 (5)
N2—H2A0.8700C13—H130.9400
N3—H3A0.8700C14—C151.369 (5)
N3—H3B0.8700C14—H140.9400
C5—C101.391 (4)C15—C161.380 (5)
C5—C61.397 (4)C15—C181.506 (4)
C6—C71.374 (4)C16—C171.386 (4)
C6—H60.9400C16—H160.9400
C7—C81.396 (4)C17—H170.9400
C7—H70.9400C18—H18A0.9700
C8—O11.359 (4)C18—H18B0.9700
C8—C91.381 (4)C18—H18C0.9700
N3—C1—N1120.2 (3)C9—C10—C5121.2 (3)
N3—C1—N2117.6 (3)C9—C10—H10119.4
N1—C1—N2122.2 (3)C5—C10—H10119.4
C2—N1—C1117.8 (2)C8—O1—C11118.1 (3)
N1—C2—C3121.9 (3)O1—C11—H11A109.5
N1—C2—C5117.1 (2)O1—C11—H11B109.5
C3—C2—C5121.0 (3)H11A—C11—H11B109.5
C4—C3—C2119.1 (3)O1—C11—H11C109.5
C4—C3—H3120.4H11A—C11—H11C109.5
C2—C3—H3120.4H11B—C11—H11C109.5
N2—C4—C3117.9 (3)C17—C12—C13118.5 (3)
N2—C4—C12117.5 (2)C17—C12—C4121.6 (3)
C3—C4—C12124.6 (3)C13—C12—C4119.9 (3)
C1—N2—C4121.1 (2)C14—C13—C12120.4 (3)
C1—N2—H2A119.5C14—C13—H13119.8
C4—N2—H2A119.5C12—C13—H13119.8
C1—N3—H3A120.0C15—C14—C13121.4 (3)
C1—N3—H3B120.0C15—C14—H14119.3
H3A—N3—H3B120.0C13—C14—H14119.3
C10—C5—C6118.3 (3)C14—C15—C16117.9 (3)
C10—C5—C2121.8 (3)C14—C15—C18121.0 (3)
C6—C5—C2119.9 (3)C16—C15—C18121.0 (3)
C7—C6—C5120.8 (3)C15—C16—C17121.4 (3)
C7—C6—H6119.6C15—C16—H16119.3
C5—C6—H6119.6C17—C16—H16119.3
C6—C7—C8120.0 (3)C12—C17—C16120.2 (3)
C6—C7—H7120.0C12—C17—H17119.9
C8—C7—H7120.0C16—C17—H17119.9
O1—C8—C9124.4 (3)C15—C18—H18A109.5
O1—C8—C7115.6 (3)C15—C18—H18B109.5
C9—C8—C7120.0 (3)H18A—C18—H18B109.5
C8—C9—C10119.6 (3)C15—C18—H18C109.5
C8—C9—H9120.2H18A—C18—H18C109.5
C10—C9—H9120.2H18B—C18—H18C109.5
N3—C1—N1—C2177.3 (3)O1—C8—C9—C10179.4 (3)
N2—C1—N1—C21.2 (4)C7—C8—C9—C100.6 (4)
C1—N1—C2—C31.4 (4)C8—C9—C10—C50.2 (4)
C1—N1—C2—C5176.8 (2)C6—C5—C10—C90.5 (4)
N1—C2—C3—C41.6 (4)C2—C5—C10—C9178.9 (3)
C5—C2—C3—C4176.6 (3)C9—C8—O1—C114.4 (4)
C2—C3—C4—N21.5 (4)C7—C8—O1—C11176.8 (3)
C2—C3—C4—C12175.9 (3)N2—C4—C12—C1732.0 (4)
N3—C1—N2—C4177.3 (3)C3—C4—C12—C17150.6 (3)
N1—C1—N2—C41.2 (4)N2—C4—C12—C13147.8 (3)
C3—C4—N2—C11.3 (4)C3—C4—C12—C1329.6 (5)
C12—C4—N2—C1176.3 (2)C17—C12—C13—C143.4 (6)
N1—C2—C5—C10162.7 (3)C4—C12—C13—C14176.4 (4)
C3—C2—C5—C1019.1 (4)C12—C13—C14—C150.6 (7)
N1—C2—C5—C619.0 (4)C13—C14—C15—C163.1 (6)
C3—C2—C5—C6159.2 (3)C13—C14—C15—C18176.7 (4)
C10—C5—C6—C70.9 (4)C14—C15—C16—C174.1 (5)
C2—C5—C6—C7179.3 (3)C18—C15—C16—C17175.7 (3)
C5—C6—C7—C80.6 (5)C13—C12—C17—C162.4 (5)
C6—C7—C8—O1179.1 (3)C4—C12—C17—C16177.4 (3)
C6—C7—C8—C90.2 (4)C15—C16—C17—C121.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl1i0.872.273.106 (3)160
N3—H3A···Cl1ii0.872.443.305 (3)172
N3—H3B···Cl1i0.872.563.332 (3)148
C14—H14···O1iii0.942.463.300 (4)148
Symmetry codes: (i) y+1, x+y+1, z+1/6; (ii) x+1, y+1, z; (iii) x+y, x+1, z+1/3.
 

Funding information

The authors acknowledge financial support from the Basic Science Research Program (award No. NRF– 2016R1D1A1B03931623).

References

First citationBruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationGiridhar, R., Tamboli, R. S., Ramajayam, R., Prajapati, D. G. & Yadav, M. R. (2012). Eur. J. Med. Chem. 50, 428–432.  Web of Science CrossRef Google Scholar
First citationJeevaraj, M., Edison, B., Kavitha, S. J., Thanikasalam, K., Britto, S. & Balasubramani, K. (2016). IUCrData, 1, x161010.  Google Scholar
First citationKoh, D. & Lee, J. (2018). IUCrData, 3, x180796.  Google Scholar
First citationLee, Y., Kim, B. S., Ahn, S., Koh, D., Lee, Y. H., Shin, S. Y. & Lim, Y. (2016). Bioorg. Chem. 68, 166–176.  Web of Science CrossRef Google Scholar
First citationLee, J., Kim, K.-H. & Jeong, S. (2011). Bioorg. Med. Chem. Lett. 21, 4203–4205.  Web of Science CrossRef Google Scholar
First citationNagarajan, S., Shanmugavelan, P., Sathishkumar, M., Selvi, R., Ponnuswamy, A., Harikrishnan, H., Shanmugaiah, V. & Murugavel, S. (2014). Bioorg. Med. Chem. Lett. 24, 4999–5007.  Web of Science CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, N., Pandey, S. K., Anand, N., Dwivedi, R., Singh, S., Sinha, S. K., Chaturvedi, V., Jaiswal, N., Srivastava, A. K., Shah, P., Siddiqui, M. I. & Tripathi, R. P. (2011). Bioorg. Med. Chem. Lett. 21, 4404–4408.  Web of Science CrossRef Google Scholar
First citationSwinton Darious, R., Thomas Muthiah, P. & Perdih, F. (2018). Acta Cryst. E74, 237–241.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds