organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

10-Methyl-9,11-annulated dibenzobarrelene

CROSSMARK_Color_square_no_text.svg

aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi-22, Kerala, India, bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka, and cDepartment of Chemistry, School of Physical Sciences, Central University of Kerala, Riverside Transit Campus, Nileshwar 671 314, India
*Correspondence e-mail: msithambaresan@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 25 July 2018; accepted 2 August 2018; online 10 August 2018)

In the title compound (systematic name: 8-methyl-16-oxa­penta­cyclo[6.6.5.01,18.02,7.09,14]nona­deca-2,4,6,9(14),10,12,18-heptaen-15-one), C19H14O2, the benzene rings form a dihedral angle of 64.84 (7)°. In the crystal, ππ stacking inter­actions, with a centroid–centroid distance of 3.7695 (8) Å, and weak C—H⋯π inter­actions link mol­ecules along the b-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Dibenzobarrelene systems have attracted inter­est over the years because of their biological (Khalil et al., 2010[Khalil, A. M., Berghot, M. A., Gouda, M. A. & El Bialy, S. A. (2010). Monatsh. Chem. 141, 1353-1360.]) and photochemical properties (Zimmerman & Grunewald, 1966[Zimmerman, H. E. & Grunewald, G. L. (1966). J. Am. Chem. Soc. 88, 183-184.]). Suitably substituted dibenzobarrelenes exhibit inter­esting physical properties (Ishii et al., 2016[Ishii, A., Shibata, M. & Nakata, N. (2016). Bull. Chem. Soc. Jpn, 89, 1470-1479.]). Mathew et al. (2013[Mathew, E. M., Sithambaresan, M., Unnikrishnan, P. A. & Kurup, M. R. P. (2013). Acta Cryst. E69, o1165.], 2014[Mathew, E. M., Sithambaresan, M., Unnikrishnan, P. A. & Kurup, M. R. P. (2014). Acta Cryst. E70, o114.]) reported two dibenzobarrelene derivatives and discussed their structural features. A recent report highlighted the applications of dibenzobarrelenes in OLEDs and photoluminescent materials (Ishii et al., 2018[Ishii, A., Shibata, M., Ebina, R. & Nakata, N. (2018). Eur. J. Org. Chem. pp. 1011-1018.]).

In the present study, an intra­molecular Diels–Alder reaction was employed for the synthesis of 9,11-annulated dibenzobarrelenes and their diffraction-quality single crystals could be obtained by crystallization from suitable solvents. The derivatives can be easily modified structurally by using different substituents on the bridgehead positions. In the case of the title compound, the bridgehead position 10 is substituted with a methyl group and we obtained good-quality single crystals by recrystallization from aceto­nitrile. The mol­ecular structure of the title compound is shown in Fig. 1[link]. The two benzene rings form a dihedral of 64.84 (7)°. These rings form angles of 58.86 (8) and 56.96 (6)°, respectively, with the annulated ring at the vinyl­lic bridge head position.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.

In the crystal, ππ stacking inter­actions are present between inversion-related rings (C1–C4/C18/C19) with a centroid–centroid distance of 3.7695 (8) Å. Pairs of weak C—H⋯π inter­actions are also present between these inversion-related mol­ecules (Table 1[link], Fig. 2[link]). A further C—H⋯π inter­action links the inversion-related mol­ecules along the b-axis direction (Figs. 2[link] and 3[link]).

Table 1
C—H⋯π inter­actions (Å, °)

Cg1 and Cg2 are the centroids of the C6–C9/C16/C17 and C1–C4/C18/C19 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cg1i 0.93 2.80 3.582 (2) 142
C11—H11BCg2ii 0.97 2.74 3.675 (2) 163
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].
[Figure 2]
Figure 2
The ππ (blue) and C—H⋯π (brown) inter­actions present in the title compound.
[Figure 3]
Figure 3
The packing viewed along the b axis.

Synthesis and crystallization

The title compound was synthesized by a reported procedure (Ciganek, 1980[Ciganek, E. (1980). J. Org. Chem. 45, 1497-1505.]). 10-Methyl-9-anthracene­carb­oxy­lic acid (1.1 g, 5 mmol) was dissolved in acetone and stirred at room temperature for 1 h with tri­methyl­amine (0.70 ml, 5 mmol) and cyanuric chloride (0.92 g, 5 mmol). The acid chloride obtained was treated with propargyl alcohol (0.30 ml, 5 mmol) for about 4 h to obtain propargyl-9-anthroate, which underwent an intra­molecular Diels–Alder reaction to give the target 9,11-anulated barrelene derivative. The product was purified by silica column chromatography, eluting with a 1:1 DCM–hexane mixture. Recrystallization was carried out in an aceto­nitrile solvent by slow evaporation.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C19H14O2
Mr 274.30
Crystal system, space group Orthorhombic, Pbcn
Temperature (K) 296
a, b, c (Å) 19.7403 (10), 9.3294 (3), 15.0595 (7)
V3) 2773.4 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.40 × 0.30 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.967, 0.983
No. of measured, independent and observed [I > 2σ(I)] reflections 21513, 3394, 2487
Rint 0.030
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.132, 1.04
No. of reflections 3394
No. of parameters 192
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.25
Computer programs: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b) and publCIF (Westrip, 2010).

8-Methyl-16-oxapentacyclo[6.6.5.01,18.02,7.09,14]nonadeca-2,4,6,9(14),10,12,18-heptaen-15-one top
Crystal data top
C19H14O2Dx = 1.314 Mg m3
Mr = 274.30Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 8066 reflections
a = 19.7403 (10) Åθ = 4.8–56.3°
b = 9.3294 (3) ŵ = 0.08 mm1
c = 15.0595 (7) ÅT = 296 K
V = 2773.4 (2) Å3Block, colorless
Z = 80.40 × 0.30 × 0.20 mm
F(000) = 1152
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2487 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
ω and φ scanθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2619
Tmin = 0.967, Tmax = 0.983k = 912
21513 measured reflectionsl = 1918
3394 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.068P)2 + 0.5261P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.132(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.22 e Å3
3394 reflectionsΔρmin = 0.25 e Å3
192 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0118 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Carbon bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2 Ueq(C) (1.5 times Ueq(C) for methyl groups).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.29033 (7)0.80423 (15)0.15003 (8)0.0740 (4)
O20.40199 (8)0.83530 (16)0.15059 (9)0.0827 (5)
C10.44196 (8)0.28888 (15)0.00666 (12)0.0503 (4)
H10.4615370.1992100.0016930.060*
C20.45800 (7)0.36683 (16)0.08067 (11)0.0483 (4)
H20.4879590.3295430.1223560.058*
C30.42961 (7)0.50186 (15)0.09380 (9)0.0410 (3)
H30.4406800.5558120.1436550.049*
C40.38498 (6)0.55377 (13)0.03171 (8)0.0331 (3)
C50.34901 (7)0.69910 (14)0.03169 (9)0.0368 (3)
C60.37181 (6)0.77210 (13)0.05361 (9)0.0348 (3)
C70.40604 (7)0.90020 (15)0.06192 (11)0.0461 (4)
H70.4173570.9535700.0119190.055*
C80.42329 (8)0.94811 (17)0.14604 (13)0.0574 (5)
H80.4460291.0347710.1525780.069*
C90.40712 (8)0.86881 (18)0.21974 (12)0.0569 (5)
H90.4191670.9019800.2757960.068*
C100.27445 (7)0.66803 (16)0.02136 (10)0.0432 (3)
C110.23853 (9)0.7332 (2)0.09881 (11)0.0650 (5)
H11A0.2163960.6597100.1339550.078*
H11B0.2046830.8013480.0789020.078*
C120.35311 (10)0.78600 (18)0.11548 (11)0.0561 (4)
C130.25779 (7)0.59227 (16)0.04863 (10)0.0449 (4)
H130.2133990.5665920.0618620.054*
C140.31846 (6)0.55000 (14)0.10663 (9)0.0371 (3)
C150.29780 (9)0.46275 (18)0.18740 (11)0.0576 (4)
H15A0.2677770.5184000.2238190.086*
H15B0.3374100.4377340.2209810.086*
H15C0.2751580.3769810.1684330.086*
C160.35485 (6)0.69107 (14)0.12803 (9)0.0345 (3)
C170.37298 (7)0.73966 (17)0.21144 (10)0.0456 (4)
H170.3623510.6860790.2616170.055*
C180.36800 (6)0.47459 (13)0.04359 (9)0.0336 (3)
C190.39709 (7)0.34135 (15)0.05595 (11)0.0445 (4)
H190.3865680.2873510.1059940.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0880 (9)0.0844 (9)0.0496 (7)0.0323 (8)0.0154 (6)0.0128 (6)
O20.0991 (11)0.0788 (9)0.0700 (9)0.0036 (8)0.0134 (8)0.0381 (7)
C10.0412 (7)0.0315 (7)0.0783 (11)0.0040 (5)0.0036 (7)0.0066 (7)
C20.0359 (7)0.0475 (8)0.0614 (10)0.0043 (6)0.0002 (6)0.0193 (7)
C30.0391 (7)0.0451 (8)0.0388 (7)0.0007 (6)0.0002 (5)0.0058 (6)
C40.0316 (6)0.0313 (6)0.0364 (7)0.0003 (5)0.0044 (5)0.0038 (5)
C50.0402 (7)0.0349 (7)0.0354 (7)0.0055 (5)0.0019 (5)0.0024 (5)
C60.0326 (6)0.0292 (6)0.0427 (7)0.0065 (5)0.0021 (5)0.0009 (5)
C70.0433 (7)0.0285 (7)0.0663 (10)0.0049 (5)0.0029 (7)0.0012 (6)
C80.0497 (9)0.0350 (8)0.0876 (13)0.0030 (6)0.0151 (8)0.0172 (8)
C90.0541 (9)0.0559 (10)0.0607 (11)0.0107 (7)0.0162 (8)0.0271 (8)
C100.0376 (7)0.0464 (8)0.0457 (8)0.0108 (6)0.0099 (6)0.0113 (7)
C110.0595 (10)0.0828 (13)0.0526 (10)0.0290 (9)0.0197 (8)0.0119 (9)
C120.0744 (11)0.0493 (9)0.0447 (9)0.0154 (8)0.0008 (8)0.0096 (7)
C130.0294 (6)0.0511 (8)0.0541 (9)0.0009 (6)0.0009 (6)0.0109 (7)
C140.0345 (6)0.0381 (7)0.0386 (7)0.0030 (5)0.0024 (5)0.0016 (5)
C150.0599 (9)0.0592 (10)0.0536 (10)0.0109 (8)0.0153 (8)0.0074 (8)
C160.0294 (6)0.0366 (7)0.0376 (7)0.0051 (5)0.0006 (5)0.0051 (5)
C170.0433 (7)0.0536 (8)0.0399 (8)0.0096 (6)0.0013 (6)0.0090 (6)
C180.0305 (6)0.0298 (6)0.0404 (7)0.0036 (5)0.0032 (5)0.0018 (5)
C190.0420 (7)0.0320 (7)0.0594 (9)0.0034 (6)0.0030 (6)0.0061 (6)
Geometric parameters (Å, º) top
O1—C121.355 (2)C8—H80.9300
O1—C111.442 (3)C9—C171.386 (2)
O2—C121.193 (2)C9—H90.9300
C1—C21.368 (2)C10—C131.311 (2)
C1—C191.383 (2)C10—C111.494 (2)
C1—H10.9300C11—H11A0.9700
C2—C31.393 (2)C11—H11B0.9700
C2—H20.9300C13—C141.5339 (19)
C3—C41.3730 (18)C13—H130.9300
C3—H30.9300C14—C151.5194 (19)
C4—C181.3943 (18)C14—C161.5336 (18)
C4—C51.5305 (17)C14—C181.5338 (18)
C5—C121.502 (2)C15—H15A0.9600
C5—C101.5081 (19)C15—H15B0.9600
C5—C61.5220 (18)C15—H15C0.9600
C6—C71.3786 (19)C16—C171.3825 (19)
C6—C161.3927 (19)C17—H170.9300
C7—C81.386 (2)C18—C191.3819 (18)
C7—H70.9300C19—H190.9300
C8—C91.372 (3)
C12—O1—C11112.66 (13)O1—C11—H11A110.6
C2—C1—C19121.02 (13)C10—C11—H11A110.6
C2—C1—H1119.5O1—C11—H11B110.6
C19—C1—H1119.5C10—C11—H11B110.6
C1—C2—C3120.22 (13)H11A—C11—H11B108.8
C1—C2—H2119.9O2—C12—O1121.43 (16)
C3—C2—H2119.9O2—C12—C5128.62 (17)
C4—C3—C2118.72 (14)O1—C12—C5109.95 (15)
C4—C3—H3120.6C10—C13—C14113.61 (12)
C2—C3—H3120.6C10—C13—H13123.2
C3—C4—C18121.41 (12)C14—C13—H13123.2
C3—C4—C5127.61 (12)C15—C14—C16114.66 (12)
C18—C4—C5110.96 (10)C15—C14—C18114.89 (12)
C12—C5—C10104.06 (12)C16—C14—C18103.01 (9)
C12—C5—C6116.85 (12)C15—C14—C13112.58 (12)
C10—C5—C6106.71 (11)C16—C14—C13105.35 (11)
C12—C5—C4116.94 (11)C18—C14—C13105.27 (10)
C10—C5—C4106.41 (11)C14—C15—H15A109.5
C6—C5—C4105.03 (10)C14—C15—H15B109.5
C7—C6—C16121.02 (13)H15A—C15—H15B109.5
C7—C6—C5127.55 (13)C14—C15—H15C109.5
C16—C6—C5111.42 (11)H15A—C15—H15C109.5
C6—C7—C8118.88 (15)H15B—C15—H15C109.5
C6—C7—H7120.6C17—C16—C6119.40 (13)
C8—C7—H7120.6C17—C16—C14126.41 (12)
C9—C8—C7120.57 (14)C6—C16—C14114.16 (11)
C9—C8—H8119.7C16—C17—C9119.53 (15)
C7—C8—H8119.7C16—C17—H17120.2
C8—C9—C17120.60 (15)C9—C17—H17120.2
C8—C9—H9119.7C19—C18—C4119.09 (12)
C17—C9—H9119.7C19—C18—C14126.46 (12)
C13—C10—C11136.70 (15)C4—C18—C14114.43 (10)
C13—C10—C5115.56 (12)C18—C19—C1119.52 (14)
C11—C10—C5107.72 (13)C18—C19—H19120.2
O1—C11—C10105.55 (13)C1—C19—H19120.2
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C6–C9/C16/C17 and C1–C4/C18/C19 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg1i0.932.803.582 (2)142
C11—H11B···Cg2ii0.972.743.675 (2)163
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y+1/2, z.
 

Acknowledgements

We acknowledge the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, Kochi-22, India, for single-crystal X-ray diffraction measurements.

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCiganek, E. (1980). J. Org. Chem. 45, 1497–1505.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIshii, A., Shibata, M., Ebina, R. & Nakata, N. (2018). Eur. J. Org. Chem. pp. 1011–1018.  Web of Science CrossRef Google Scholar
First citationIshii, A., Shibata, M. & Nakata, N. (2016). Bull. Chem. Soc. Jpn, 89, 1470–1479.  Web of Science CrossRef Google Scholar
First citationKhalil, A. M., Berghot, M. A., Gouda, M. A. & El Bialy, S. A. (2010). Monatsh. Chem. 141, 1353–1360.  Web of Science CrossRef Google Scholar
First citationMathew, E. M., Sithambaresan, M., Unnikrishnan, P. A. & Kurup, M. R. P. (2013). Acta Cryst. E69, o1165.  CSD CrossRef IUCr Journals Google Scholar
First citationMathew, E. M., Sithambaresan, M., Unnikrishnan, P. A. & Kurup, M. R. P. (2014). Acta Cryst. E70, o114.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZimmerman, H. E. & Grunewald, G. L. (1966). J. Am. Chem. Soc. 88, 183–184.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds