metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tetra­carbonyl-2κ4C-[μ-5-methyl-1,1,3-tri­phenyl-2-(propan-2-yl)-2,4-di­aza-1,3-diphosphahexan-4-ido-1κN4:2κP1,P3](N,N,N′,N′-tetra­methyl­ethane-1,2-di­amine-1κ2N,N′)lithiummolybdenum

CROSSMARK_Color_square_no_text.svg

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: uwe.rosenthal@catalysis.de

Edited by H. Ishida, Okayama University, Japan (Received 19 July 2018; accepted 14 August 2018; online 21 August 2018)

The title complex, [LiMo(C6H16N2)(C24H29N2P2)(CO)4], contains a distorted octa­hedrally coordinated molybdenum centre bearing a li­thia­ted P,P′-cis-chelating PNPN ligand, which results in a nearly planar four-membered metallacycle. The Li atom is coordinated by one equivalent tetra­methyl­ethylenedi­amine. In the crystal, mol­ecules are linked via weak C—H⋯O inter­actions, forming a chain along the b-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title complex is very similar to the compound recently published by Höhne et al. (2018[Höhne, M., Gongoll, M., Spannenberg, A., Müller, B. H., Peulecke, N. & Rosenthal, U. (2018). IUCrData, 3, x180846.]). Instead of the terminal amine function of the PNP chelating ligand, the deprotonated N2 atom is attached to a lithium ion coordinated by one tetra­methyl­ethylenedi­amine (tmeda) mol­ecule. An analogous chromium compound was presumably prepared in situ by Dulai et al. (2011[Dulai, A., McMullin, C. L., Tenza, K. & Wass, D. F. (2011). Organometallics, 30, 935-941.]).

The molybdenum atom of the title compound (Fig. 1[link])exhibits a distorted octa­hedral geometry and is ligated by four carbonyl groups and the P,P′-cis-chelating PNPN fragment, which forms a nearly planar four-membered Mo/P/N/P metallacycle. The P—Mo—P bite angle is 65.714 (11)°, similar to those in comparable [Mo(CO)4{Ar2PN(R)PAr2}] complexes [range from 64.9 (1) to 66.14 (3)°; Al-Masri et al., 2013[Al-Masri, H. T., Mohamed, B. M., Moussa, Z. & Alkordi, M. H. (2013). Helv. Chim. Acta, 96, 738-746.]; Biricik et al., 2003[Biricik, N., Fei, Z., Scopelliti, R. & Dyson, P. J. (2003). Helv. Chim. Acta, 86, 3281-3287.]; Gaw et al., 2000[Gaw, K. G., Smith, M. B. & Slawin, A. M. Z. (2000). New J. Chem. 24, 429-435.], 2002[Gaw, K. G., Smith, M. B. & Steed, J. W. (2002). J. Organomet. Chem. 664, 294-297.]; Majoumo et al., 2004[Majoumo, F., Lönnecke, P., Kühl, O. & Hey-Hawkins, E. (2004). Z. Anorg. Allg. Chem. 630, 305-308.]].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom labelling and displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity.

The P1—N1—P2 angle is 105.41 (6)°, which is slightly larger than that in the proton­ated complex [103.06 (7)°] prepared by Höhne et al. (2018[Höhne, M., Gongoll, M., Spannenberg, A., Müller, B. H., Peulecke, N. & Rosenthal, U. (2018). IUCrData, 3, x180846.]). Nevertheless, it is obviously larger than in the uncoordinated [Ph2PN(iPr)P(Ph)N(iPr)][Li(tmeda)] [P1—N2—P2 117.77 (7)°; Peitz et al., 2010[Peitz, S., Peulecke, N., Aluri, B. R., Müller, B. H., Spannenberg, A., Rosenthal, U., Al-Hazmi, M. H., Mosa, F. M., Wöhl, A. & Müller, W. (2010). Organometallics, 29, 5263-5268.]]. In comparison with the calculated sum of the covalent radii by Pyykkö (2015[Pyykkö, P. (2015). J. Phys. Chem. A, 119, 2326-2337.]) [single: Σrcov(P—N) = 1.82 Å, double: Σrcov(P=N) = 1.62 Å], the P—N bond lengths are shortened [range from 1.6142 (12) to 1.7508 (11) Å] and show some multiple-bond character. The central N1 atom is nearly trigonal planar [Σ(∠N1) = 359.96°]. As already observed at the protonated analogue, the Mo—P distances are different [Mo1—P1 2.5074 (3) Å and Mo1—P2 2.5362 (3) Å], which might be a result of the asymmetric character of the P,P′-cis-chelating PNPN ligand. In the crystal, a weak inter­molecular C—H⋯O inter­action is observed (C14—H14⋯O3i; symmetry code as in Table 1[link]) that links the complex mol­ecules into chains along the b-axis direction.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O3i 0.95 2.54 3.4609 (19) 163
Symmetry code: (i) x, y+1, z.

Synthesis and crystallization

Mo(CO)6 (0.99 g, 2.617 mmol) and Ph2PN(iPr)P(Ph)NH(iPr) (1.305 g, 3.193 mmol) were dissolved in CH2Cl2 (30 ml) at room temperature. After 2 h of refluxing, 20 ml CH2Cl2 were removed under vacuum. Ethanol (15 ml) was added and the solution was cooled down to −78°C. The white solid was washed with n-hexane at −78°C and dried under vacuum. Yield 1.45 g (90%). [Mo(CO)4{Ph2PN(iPr)P(Ph)NH(iPr)}] (0.77 g, 1.25 mmol) and tetra­methyl­ethylenedi­amine (0.19 ml, 1.26 mmol) were dissolved in toluene (25 ml). The solution was cooled down to −78°C. n-BuLi (0.56 ml, 2.5 M in n-hexa­ne) was added dropwise without stirring. After defrosting the solution, colourless crystals were obtained. Yield 0.76 g (82%). 1H NMR (300 MHz, CD2Cl2, 298 K): δ (p.p.m.) 7.80–7.73 (m, 4H, ArH), 7.57–7.46 (m, 2H, ArH), 7.40–7.26 (m, 9H, ArH), 3.75 (m, 1H, CHCH3), 3.52 (m, 1H, CHCH3), 2.14 [br s, 4H, (CH3)2N(CH2)2N(CH3)2], 1.92 [br s, 12H, (CH3)2N(CH2)2N(CH3)2], 1.20 (d, 3JH,H = 6.1 Hz, 3H, CHCH3), 1.11 (d, 3JH,H = 6.4 Hz, 3H, CHCH3), 1.01 (d, 3JH,H = 6.8 Hz, 3H, CHCH3), 0.68 (d, 3JH,H = 6.7 Hz, 3H, CHCH3). 13C NMR (100 MHz, CD2Cl2, 298 K): δ (p.p.m.) 220.3 (m, CO), 213.3 (m, CO), 133.3, 133.1, 132.3, 132.1, 130.0, 129.8, 129.4, 129.2, 128.9, 128.8, 128.4, 128.2, 128.1, 128.0 (ArC), 56.9 [br s, (CH3)2N(CH2)2N(CH3)2], 50.6 (dd, 2JP,C = 8.5 Hz, 2.2 Hz, CHCH3), 48.5 (d, 2JP,C = 8.0 Hz, CHCH3), 46.0 [br s, (CH3)2N(CH2)2N(CH3)2], 29.0, 28.9, 28.8, 28.7, (CHCH3), 25.5, 24.3, (br s, CHCH3). 31P NMR (121 MHz, CD2Cl2, 298 K): δ = 98.7 (d, 2JPP = 8.9 Hz), 81.8 (d, 2JPP = 8.9 Hz). Elemental analysis calculated (%) for C34H45LiMoN4O4P2 (738.57): C 55.29, H 6.14, N 7.59. Found: C 54.82, H 6.03, N 7.00. IR (CH2Cl2, cm−1): ν (CO) 1870, 1896, 1918, 2005. M.p. 155°C (dec.).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [LiMo(C6H16N2)(C24H29N2P2)(CO)4]
Mr 738.56
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 11.7633 (4), 12.5731 (4), 13.7249 (4)
α, β, γ (°) 87.283 (2), 75.537 (2), 67.450 (2)
V3) 1812.66 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.49
Crystal size (mm) 0.50 × 0.35 × 0.32
 
Data collection
Diffractometer Stoe IPDS II
Absorption correction Multi-scan (LANA; Stoe & Cie, 2012[Stoe & Cie (2012). LANA. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.79, 0.86
No. of measured, independent and observed [I > 2σ(I)] reflections 31426, 8659, 7733
Rint 0.017
(sin θ/λ)max−1) 0.658
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.061, 1.03
No. of reflections 8659
No. of parameters 423
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.33
Computer programs: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Tetracarbonyl-2κ4C-[µ-5-methyl-1,1,3-triphenyl-2-(propan-2-yl)-2,4-diaza-1,3-diphosphahexan-4-ido-1κN4:2κP1,P3](N,N,N',N'-tetramethylethane-1,2-diamine-1κ2N,N')lithiummolybdenum top
Crystal data top
[LiMo(C6H16N2)(C24H29N2P2)(CO)4]Z = 2
Mr = 738.56F(000) = 768
Triclinic, P1Dx = 1.353 Mg m3
a = 11.7633 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.5731 (4) ÅCell parameters from 10549 reflections
c = 13.7249 (4) Åθ = 1.7–28.4°
α = 87.283 (2)°µ = 0.49 mm1
β = 75.537 (2)°T = 150 K
γ = 67.450 (2)°Prism, colourless
V = 1812.66 (10) Å30.50 × 0.35 × 0.32 mm
Data collection top
Stoe IPDS II
diffractometer
8659 independent reflections
Radiation source: fine-focus sealed tube7733 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 27.9°, θmin = 1.8°
Absorption correction: multi-scan
(LANA; Stoe & Cie, 2012)
h = 1515
Tmin = 0.79, Tmax = 0.86k = 1616
31426 measured reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0445P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.003
8659 reflectionsΔρmax = 0.41 e Å3
423 parametersΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.02298 (13)0.88601 (12)0.32143 (11)0.0258 (3)
C20.16950 (13)0.72936 (13)0.17894 (11)0.0273 (3)
C30.13497 (14)0.65850 (12)0.37362 (11)0.0264 (3)
C40.12911 (13)0.85988 (11)0.45555 (10)0.0236 (3)
C50.25040 (13)0.94608 (12)0.09271 (10)0.0245 (3)
C60.32937 (15)0.86039 (13)0.01871 (11)0.0299 (3)
H60.39800.79710.03370.036*
C70.30915 (18)0.86617 (16)0.07717 (12)0.0385 (4)
H70.36490.80760.12760.046*
C80.20834 (18)0.95671 (17)0.09955 (13)0.0411 (4)
H80.19490.96070.16530.049*
C90.12755 (17)1.04110 (16)0.02614 (14)0.0408 (4)
H90.05751.10280.04110.049*
C100.14768 (15)1.03667 (14)0.06965 (12)0.0325 (3)
H100.09151.09540.11980.039*
C110.23017 (13)1.07747 (11)0.26445 (11)0.0248 (3)
C120.17658 (14)1.11238 (12)0.36546 (12)0.0297 (3)
H120.14801.06290.41050.036*
C130.16392 (16)1.21857 (14)0.40198 (14)0.0393 (4)
H130.12691.24140.47140.047*
C140.20546 (16)1.29100 (13)0.33669 (16)0.0432 (4)
H140.19831.36320.36140.052*
C150.25717 (16)1.25830 (14)0.23576 (16)0.0403 (4)
H150.28471.30860.19110.048*
C160.26948 (14)1.15245 (13)0.19870 (13)0.0315 (3)
H160.30451.13100.12890.038*
C170.44782 (12)0.73527 (12)0.40823 (10)0.0227 (2)
C180.40542 (14)0.84035 (13)0.46161 (11)0.0281 (3)
H180.35370.90840.43630.034*
C190.43714 (16)0.84769 (15)0.55102 (12)0.0352 (3)
H190.40780.92040.58600.042*
C200.51155 (16)0.74913 (16)0.58928 (12)0.0383 (4)
H200.53470.75410.65000.046*
C210.55215 (16)0.64334 (15)0.53884 (12)0.0385 (4)
H210.60230.57530.56540.046*
C220.51966 (14)0.63630 (13)0.44930 (11)0.0298 (3)
H220.54680.56310.41570.036*
C230.53105 (13)0.86583 (12)0.20044 (11)0.0263 (3)
H230.59720.79210.21370.032*
C240.57085 (16)0.88029 (17)0.08935 (13)0.0406 (4)
H24A0.57990.81200.05170.061*
H24B0.65240.88970.07340.061*
H24C0.50620.94870.07050.061*
C250.53846 (16)0.95936 (15)0.26222 (13)0.0364 (3)
H25A0.48151.03520.24720.055*
H25B0.62590.95580.24510.055*
H25C0.51280.94730.33410.055*
C260.49594 (13)0.55535 (12)0.15393 (10)0.0251 (3)
H260.42950.61450.12520.030*
C270.62026 (16)0.51011 (16)0.07195 (12)0.0378 (3)
H27A0.64280.57490.04480.057*
H27B0.60980.46940.01780.057*
H27C0.68800.45700.10070.057*
C280.45166 (17)0.45833 (14)0.19039 (12)0.0355 (3)
H28A0.51450.40120.22110.053*
H28B0.44220.42150.13320.053*
H28C0.36970.48970.24040.053*
C290.93139 (16)0.38160 (15)0.21864 (16)0.0440 (4)
H29A0.93680.37730.14570.053*
H29B1.00110.31300.23330.053*
C300.94864 (18)0.48891 (16)0.2441 (2)0.0556 (6)
H30A0.95090.48980.31560.067*
H30B1.03100.48770.20220.067*
C310.79815 (19)0.27593 (16)0.24283 (18)0.0513 (5)
H31A0.86790.20760.25580.077*
H31B0.80270.27740.17050.077*
H31C0.71660.27320.28000.077*
C320.8033 (2)0.37508 (18)0.38413 (16)0.0554 (5)
H32A0.72660.36280.42050.083*
H32B0.80080.44790.40910.083*
H32C0.87870.31140.39500.083*
C330.8355 (2)0.69034 (18)0.2894 (3)0.0849 (10)
H33A0.91880.69600.27620.127*
H33B0.80800.67660.36060.127*
H33C0.77340.76250.27300.127*
C340.8721 (2)0.6192 (2)0.1196 (2)0.0725 (8)
H34A0.95270.63010.10040.109*
H34B0.80340.68960.10820.109*
H34C0.87800.55460.07870.109*
Li10.6848 (3)0.5480 (2)0.2588 (2)0.0360 (6)
Mo10.16120 (2)0.79639 (2)0.31354 (2)0.01809 (4)
N10.40931 (10)0.84881 (9)0.23155 (8)0.0210 (2)
N20.51403 (11)0.61040 (10)0.23746 (9)0.0229 (2)
N30.80895 (13)0.37986 (12)0.27596 (11)0.0364 (3)
N40.84506 (15)0.59430 (13)0.22659 (16)0.0523 (4)
O10.12821 (11)0.93646 (11)0.32469 (10)0.0424 (3)
O20.16212 (12)0.69253 (12)0.10722 (9)0.0442 (3)
O30.12213 (13)0.57696 (10)0.40721 (10)0.0433 (3)
O40.10544 (11)0.89290 (10)0.53707 (8)0.0340 (2)
P10.25981 (3)0.93050 (3)0.22417 (2)0.01956 (7)
P20.39924 (3)0.72621 (3)0.29287 (2)0.01817 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0241 (7)0.0233 (6)0.0302 (7)0.0076 (5)0.0086 (5)0.0032 (5)
C20.0222 (6)0.0301 (7)0.0303 (7)0.0112 (5)0.0049 (5)0.0034 (6)
C30.0275 (7)0.0217 (6)0.0301 (7)0.0098 (5)0.0064 (6)0.0013 (5)
C40.0212 (6)0.0207 (6)0.0281 (7)0.0074 (5)0.0057 (5)0.0000 (5)
C50.0262 (6)0.0266 (6)0.0268 (6)0.0148 (5)0.0108 (5)0.0069 (5)
C60.0341 (8)0.0296 (7)0.0308 (7)0.0156 (6)0.0115 (6)0.0031 (6)
C70.0514 (10)0.0457 (9)0.0293 (7)0.0292 (8)0.0123 (7)0.0021 (7)
C80.0559 (11)0.0576 (11)0.0333 (8)0.0399 (9)0.0250 (8)0.0164 (8)
C90.0382 (9)0.0488 (10)0.0510 (10)0.0258 (8)0.0275 (8)0.0236 (8)
C100.0275 (7)0.0341 (8)0.0393 (8)0.0136 (6)0.0131 (6)0.0096 (6)
C110.0204 (6)0.0185 (6)0.0361 (7)0.0066 (5)0.0092 (5)0.0001 (5)
C120.0253 (7)0.0232 (7)0.0387 (8)0.0067 (5)0.0076 (6)0.0033 (6)
C130.0348 (8)0.0280 (8)0.0515 (10)0.0053 (6)0.0126 (7)0.0130 (7)
C140.0365 (9)0.0207 (7)0.0769 (13)0.0079 (6)0.0256 (9)0.0066 (7)
C150.0337 (8)0.0236 (7)0.0698 (12)0.0145 (6)0.0190 (8)0.0088 (7)
C160.0284 (7)0.0239 (7)0.0442 (8)0.0116 (6)0.0107 (6)0.0059 (6)
C170.0200 (6)0.0268 (7)0.0234 (6)0.0100 (5)0.0073 (5)0.0003 (5)
C180.0286 (7)0.0272 (7)0.0295 (7)0.0101 (6)0.0093 (6)0.0021 (5)
C190.0365 (8)0.0385 (8)0.0340 (8)0.0153 (7)0.0114 (7)0.0082 (6)
C200.0370 (8)0.0540 (10)0.0285 (7)0.0169 (8)0.0159 (7)0.0027 (7)
C210.0385 (9)0.0426 (9)0.0312 (8)0.0074 (7)0.0170 (7)0.0043 (7)
C220.0300 (7)0.0290 (7)0.0281 (7)0.0066 (6)0.0105 (6)0.0003 (6)
C230.0207 (6)0.0271 (7)0.0337 (7)0.0117 (5)0.0073 (5)0.0022 (5)
C240.0354 (8)0.0584 (11)0.0359 (8)0.0281 (8)0.0076 (7)0.0083 (8)
C250.0326 (8)0.0400 (9)0.0458 (9)0.0227 (7)0.0108 (7)0.0015 (7)
C260.0261 (7)0.0238 (6)0.0251 (6)0.0069 (5)0.0099 (5)0.0018 (5)
C270.0332 (8)0.0479 (9)0.0291 (7)0.0114 (7)0.0066 (6)0.0105 (7)
C280.0460 (9)0.0290 (7)0.0377 (8)0.0175 (7)0.0158 (7)0.0006 (6)
C290.0286 (8)0.0331 (8)0.0678 (12)0.0073 (7)0.0141 (8)0.0023 (8)
C300.0299 (9)0.0364 (9)0.1060 (18)0.0113 (7)0.0287 (10)0.0033 (10)
C310.0434 (10)0.0342 (9)0.0819 (15)0.0159 (8)0.0241 (10)0.0028 (9)
C320.0532 (12)0.0465 (11)0.0512 (11)0.0001 (9)0.0184 (9)0.0083 (9)
C330.0559 (13)0.0360 (11)0.181 (3)0.0120 (10)0.0674 (18)0.0123 (14)
C340.0382 (11)0.0636 (14)0.114 (2)0.0225 (10)0.0164 (12)0.0302 (14)
Li10.0283 (13)0.0327 (13)0.0494 (16)0.0098 (11)0.0169 (12)0.0011 (12)
Mo10.01671 (6)0.01617 (6)0.02204 (6)0.00650 (4)0.00546 (4)0.00026 (4)
N10.0196 (5)0.0194 (5)0.0256 (5)0.0083 (4)0.0076 (4)0.0027 (4)
N20.0219 (5)0.0211 (5)0.0253 (5)0.0059 (4)0.0083 (4)0.0032 (4)
N30.0302 (7)0.0310 (7)0.0485 (8)0.0087 (5)0.0158 (6)0.0029 (6)
N40.0319 (8)0.0330 (8)0.0991 (14)0.0127 (6)0.0286 (8)0.0040 (8)
O10.0260 (6)0.0400 (6)0.0573 (7)0.0026 (5)0.0181 (5)0.0085 (6)
O20.0405 (7)0.0591 (8)0.0374 (6)0.0233 (6)0.0076 (5)0.0162 (6)
O30.0598 (8)0.0285 (6)0.0466 (7)0.0248 (6)0.0101 (6)0.0057 (5)
O40.0367 (6)0.0340 (6)0.0292 (5)0.0123 (5)0.0052 (4)0.0052 (4)
P10.01917 (15)0.01714 (15)0.02327 (15)0.00716 (12)0.00659 (12)0.00109 (12)
P20.01789 (15)0.01743 (15)0.02011 (15)0.00651 (12)0.00651 (12)0.00051 (11)
Geometric parameters (Å, º) top
C1—O11.1443 (18)C24—H24A0.9800
C1—Mo11.9993 (14)C24—H24B0.9800
C2—O21.1435 (18)C24—H24C0.9800
C2—Mo12.0315 (14)C25—H25A0.9800
C3—O31.1513 (18)C25—H25B0.9800
C3—Mo11.9820 (14)C25—H25C0.9800
C4—O41.1408 (18)C26—N21.4658 (16)
C4—Mo12.0317 (14)C26—C281.520 (2)
C5—C61.386 (2)C26—C271.526 (2)
C5—C101.399 (2)C26—H261.0000
C5—P11.8319 (14)C27—H27A0.9800
C6—C71.388 (2)C27—H27B0.9800
C6—H60.9500C27—H27C0.9800
C7—C81.382 (3)C28—H28A0.9800
C7—H70.9500C28—H28B0.9800
C8—C91.376 (3)C28—H28C0.9800
C8—H80.9500C29—N31.466 (2)
C9—C101.388 (2)C29—C301.508 (3)
C9—H90.9500C29—Li12.784 (3)
C10—H100.9500C29—H29A0.9900
C11—C121.386 (2)C29—H29B0.9900
C11—C161.4007 (19)C30—N41.475 (2)
C11—P11.8298 (14)C30—H30A0.9900
C12—C131.389 (2)C30—H30B0.9900
C12—H120.9500C31—N31.464 (2)
C13—C141.384 (3)C31—H31A0.9800
C13—H130.9500C31—H31B0.9800
C14—C151.378 (3)C31—H31C0.9800
C14—H140.9500C32—N31.469 (2)
C15—C161.389 (2)C32—H32A0.9800
C15—H150.9500C32—H32B0.9800
C16—H160.9500C32—H32C0.9800
C17—C181.391 (2)C33—N41.469 (3)
C17—C221.3948 (19)C33—H33A0.9800
C17—P21.8344 (13)C33—H33B0.9800
C18—C191.385 (2)C33—H33C0.9800
C18—H180.9500C34—N41.469 (3)
C19—C201.383 (2)C34—H34A0.9800
C19—H190.9500C34—H34B0.9800
C20—C211.383 (2)C34—H34C0.9800
C20—H200.9500Li1—N21.949 (3)
C21—C221.391 (2)Li1—N32.101 (3)
C21—H210.9500Li1—N42.119 (3)
C22—H220.9500Mo1—P12.5074 (3)
C23—N11.4833 (16)Mo1—P22.5362 (3)
C23—C241.503 (2)N1—P11.6886 (11)
C23—C251.523 (2)N1—P21.7508 (11)
C23—H231.0000N2—P21.6142 (12)
O1—C1—Mo1179.00 (13)H28B—C28—H28C109.5
O2—C2—Mo1173.23 (12)N3—C29—C30112.05 (16)
O3—C3—Mo1178.57 (14)N3—C29—Li147.77 (9)
O4—C4—Mo1175.82 (12)C30—C29—Li177.15 (11)
C6—C5—C10118.61 (13)N3—C29—H29A109.2
C6—C5—P1121.50 (10)C30—C29—H29A109.2
C10—C5—P1118.97 (12)Li1—C29—H29A92.2
C5—C6—C7120.63 (15)N3—C29—H29B109.2
C5—C6—H6119.7C30—C29—H29B109.2
C7—C6—H6119.7Li1—C29—H29B154.6
C8—C7—C6120.29 (17)H29A—C29—H29B107.9
C8—C7—H7119.9N4—C30—C29111.58 (15)
C6—C7—H7119.9N4—C30—H30A109.3
C9—C8—C7119.67 (14)C29—C30—H30A109.3
C9—C8—H8120.2N4—C30—H30B109.3
C7—C8—H8120.2C29—C30—H30B109.3
C8—C9—C10120.46 (15)H30A—C30—H30B108.0
C8—C9—H9119.8N3—C31—H31A109.5
C10—C9—H9119.8N3—C31—H31B109.5
C9—C10—C5120.31 (16)H31A—C31—H31B109.5
C9—C10—H10119.8N3—C31—H31C109.5
C5—C10—H10119.8H31A—C31—H31C109.5
C12—C11—C16118.73 (13)H31B—C31—H31C109.5
C12—C11—P1118.68 (10)N3—C32—H32A109.5
C16—C11—P1122.36 (12)N3—C32—H32B109.5
C11—C12—C13121.11 (15)H32A—C32—H32B109.5
C11—C12—H12119.4N3—C32—H32C109.5
C13—C12—H12119.4H32A—C32—H32C109.5
C14—C13—C12119.66 (17)H32B—C32—H32C109.5
C14—C13—H13120.2N4—C33—H33A109.5
C12—C13—H13120.2N4—C33—H33B109.5
C15—C14—C13119.93 (15)H33A—C33—H33B109.5
C15—C14—H14120.0N4—C33—H33C109.5
C13—C14—H14120.0H33A—C33—H33C109.5
C14—C15—C16120.66 (16)H33B—C33—H33C109.5
C14—C15—H15119.7N4—C34—H34A109.5
C16—C15—H15119.7N4—C34—H34B109.5
C15—C16—C11119.88 (16)H34A—C34—H34B109.5
C15—C16—H16120.1N4—C34—H34C109.5
C11—C16—H16120.1H34A—C34—H34C109.5
C18—C17—C22117.96 (12)H34B—C34—H34C109.5
C18—C17—P2120.72 (10)N2—Li1—N3132.75 (15)
C22—C17—P2121.12 (11)N2—Li1—N4137.04 (15)
C19—C18—C17121.32 (14)N3—Li1—N487.21 (11)
C19—C18—H18119.3N2—Li1—C29151.06 (15)
C17—C18—H18119.3N3—Li1—C2931.12 (7)
C20—C19—C18119.98 (15)N4—Li1—C2958.55 (8)
C20—C19—H19120.0C3—Mo1—C194.46 (6)
C18—C19—H19120.0C3—Mo1—C286.82 (6)
C21—C20—C19119.72 (14)C1—Mo1—C286.04 (6)
C21—C20—H20120.1C3—Mo1—C488.02 (6)
C19—C20—H20120.1C1—Mo1—C487.95 (5)
C20—C21—C22120.10 (15)C2—Mo1—C4171.75 (5)
C20—C21—H21119.9C3—Mo1—P1163.43 (4)
C22—C21—H21119.9C1—Mo1—P1101.60 (4)
C21—C22—C17120.86 (14)C2—Mo1—P190.19 (4)
C21—C22—H22119.6C4—Mo1—P196.55 (4)
C17—C22—H22119.6C3—Mo1—P298.44 (4)
N1—C23—C24113.36 (11)C1—Mo1—P2166.92 (4)
N1—C23—C25114.76 (12)C2—Mo1—P296.77 (4)
C24—C23—C25111.33 (13)C4—Mo1—P290.35 (4)
N1—C23—H23105.5P1—Mo1—P265.714 (11)
C24—C23—H23105.5C23—N1—P1132.93 (9)
C25—C23—H23105.5C23—N1—P2121.62 (9)
C23—C24—H24A109.5P1—N1—P2105.41 (6)
C23—C24—H24B109.5C26—N2—P2118.00 (9)
H24A—C24—H24B109.5C26—N2—Li1115.88 (12)
C23—C24—H24C109.5P2—N2—Li1125.54 (10)
H24A—C24—H24C109.5C31—N3—C29108.10 (15)
H24B—C24—H24C109.5C31—N3—C32108.49 (16)
C23—C25—H25A109.5C29—N3—C32110.32 (15)
C23—C25—H25B109.5C31—N3—Li1123.53 (13)
H25A—C25—H25B109.5C29—N3—Li1101.10 (13)
C23—C25—H25C109.5C32—N3—Li1104.79 (14)
H25A—C25—H25C109.5C34—N4—C33110.4 (2)
H25B—C25—H25C109.5C34—N4—C30109.63 (19)
N2—C26—C28110.82 (11)C33—N4—C30108.67 (16)
N2—C26—C27109.31 (11)C34—N4—Li1107.85 (15)
C28—C26—C27110.72 (13)C33—N4—Li1116.21 (18)
N2—C26—H26108.6C30—N4—Li1103.82 (13)
C28—C26—H26108.6N1—P1—C11106.08 (6)
C27—C26—H26108.6N1—P1—C5111.02 (6)
C26—C27—H27A109.5C11—P1—C5102.27 (6)
C26—C27—H27B109.5N1—P1—Mo195.73 (4)
H27A—C27—H27B109.5C11—P1—Mo1128.14 (5)
C26—C27—H27C109.5C5—P1—Mo1112.88 (4)
H27A—C27—H27C109.5N2—P2—N1111.07 (6)
H27B—C27—H27C109.5N2—P2—C17100.63 (6)
C26—C28—H28A109.5N1—P2—C17102.74 (6)
C26—C28—H28B109.5N2—P2—Mo1130.98 (4)
H28A—C28—H28B109.5N1—P2—Mo193.14 (4)
C26—C28—H28C109.5C17—P2—Mo1115.17 (4)
H28A—C28—H28C109.5
C10—C5—C6—C71.9 (2)C29—C30—N4—C3482.7 (2)
P1—C5—C6—C7170.81 (11)C29—C30—N4—C33156.6 (2)
C5—C6—C7—C81.1 (2)C29—C30—N4—Li132.3 (2)
C6—C7—C8—C90.3 (2)C23—N1—P1—C1144.51 (14)
C7—C8—C9—C100.9 (2)P2—N1—P1—C11133.43 (6)
C8—C9—C10—C50.1 (2)C23—N1—P1—C565.84 (14)
C6—C5—C10—C91.3 (2)P2—N1—P1—C5116.22 (6)
P1—C5—C10—C9170.48 (11)C23—N1—P1—Mo1176.96 (12)
C16—C11—C12—C131.2 (2)P2—N1—P1—Mo10.98 (5)
P1—C11—C12—C13173.37 (12)C12—C11—P1—N191.04 (11)
C11—C12—C13—C140.0 (2)C16—C11—P1—N183.37 (12)
C12—C13—C14—C151.0 (2)C12—C11—P1—C5152.55 (11)
C13—C14—C15—C160.7 (2)C16—C11—P1—C533.03 (13)
C14—C15—C16—C110.6 (2)C12—C11—P1—Mo119.96 (13)
C12—C11—C16—C151.6 (2)C16—C11—P1—Mo1165.62 (9)
P1—C11—C16—C15172.85 (11)C6—C5—P1—N130.47 (13)
C22—C17—C18—C192.3 (2)C10—C5—P1—N1160.64 (10)
P2—C17—C18—C19177.34 (12)C6—C5—P1—C11143.26 (11)
C17—C18—C19—C200.5 (2)C10—C5—P1—C1147.85 (12)
C18—C19—C20—C211.1 (3)C6—C5—P1—Mo175.68 (12)
C19—C20—C21—C220.8 (3)C10—C5—P1—Mo193.21 (11)
C20—C21—C22—C171.0 (3)C26—N2—P2—N187.20 (10)
C18—C17—C22—C212.6 (2)Li1—N2—P2—N183.66 (13)
P2—C17—C22—C21177.56 (12)C26—N2—P2—C17164.57 (10)
N3—C29—C30—N457.2 (3)Li1—N2—P2—C1724.57 (14)
Li1—C29—C30—N423.90 (18)C26—N2—P2—Mo127.16 (12)
C24—C23—N1—P160.19 (18)Li1—N2—P2—Mo1161.98 (11)
C25—C23—N1—P169.28 (17)C23—N1—P2—N246.27 (12)
C24—C23—N1—P2122.14 (13)P1—N1—P2—N2135.50 (6)
C25—C23—N1—P2108.39 (13)C23—N1—P2—C1760.58 (11)
C28—C26—N2—P296.22 (13)P1—N1—P2—C17117.65 (6)
C27—C26—N2—P2141.48 (11)C23—N1—P2—Mo1177.26 (10)
C28—C26—N2—Li192.04 (16)P1—N1—P2—Mo10.97 (5)
C27—C26—N2—Li130.26 (17)C18—C17—P2—N2156.25 (11)
C30—C29—N3—C31177.27 (16)C22—C17—P2—N228.91 (13)
Li1—C29—N3—C31131.02 (17)C18—C17—P2—N141.57 (12)
C30—C29—N3—C3264.2 (2)C22—C17—P2—N1143.59 (12)
Li1—C29—N3—C32110.49 (16)C18—C17—P2—Mo158.12 (12)
C30—C29—N3—Li146.25 (19)C22—C17—P2—Mo1116.72 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O3i0.952.543.4609 (19)163
Symmetry code: (i) x, y+1, z.
 

Funding information

The publication of this article was funded by the Open Access Fund of the Leibniz Association.

References

First citationAl-Masri, H. T., Mohamed, B. M., Moussa, Z. & Alkordi, M. H. (2013). Helv. Chim. Acta, 96, 738–746.  Google Scholar
First citationBiricik, N., Fei, Z., Scopelliti, R. & Dyson, P. J. (2003). Helv. Chim. Acta, 86, 3281–3287.  Web of Science CrossRef Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDulai, A., McMullin, C. L., Tenza, K. & Wass, D. F. (2011). Organometallics, 30, 935–941.  Web of Science CrossRef CAS Google Scholar
First citationGaw, K. G., Smith, M. B. & Slawin, A. M. Z. (2000). New J. Chem. 24, 429–435.  Web of Science CSD CrossRef CAS Google Scholar
First citationGaw, K. G., Smith, M. B. & Steed, J. W. (2002). J. Organomet. Chem. 664, 294–297.  Web of Science CSD CrossRef CAS Google Scholar
First citationHöhne, M., Gongoll, M., Spannenberg, A., Müller, B. H., Peulecke, N. & Rosenthal, U. (2018). IUCrData, 3, x180846.  Google Scholar
First citationMajoumo, F., Lönnecke, P., Kühl, O. & Hey-Hawkins, E. (2004). Z. Anorg. Allg. Chem. 630, 305–308.  Web of Science CrossRef Google Scholar
First citationPeitz, S., Peulecke, N., Aluri, B. R., Müller, B. H., Spannenberg, A., Rosenthal, U., Al-Hazmi, M. H., Mosa, F. M., Wöhl, A. & Müller, W. (2010). Organometallics, 29, 5263–5268.  CrossRef Google Scholar
First citationPyykkö, P. (2015). J. Phys. Chem. A, 119, 2326–2337.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2012). LANA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds