metal-organic compounds
3,3′-Dimethyl-1,1′-methylenediimidazolium tetrabromidocobaltate(II)
aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: tim.peppel@catalysis.de
The title compound, (C9H14N4)[CoBr4], was obtained as single crystals directly in very low yield as a side product in the reaction of 1,1′-bis(1-methylimidazolium)acetate bromide and CoBr2. The title compound consists of an imidazolium-based dication and a tetrabromidocobaltate(II) complex anion, which are connected via C—H⋯Br interactions in the crystal. The dihedral angle between the imidazolium rings in the cation is 72.89 (16)°. The CoII ion in the anion is coordinated tetrahedrally by four bromide ligands [Co—Br = 2.4025 (5)–2.4091 (5) Å and Br—Co—Br = 106.224 (17)–113.893 (17)°]. The compound exhibits a high melting point (>300°C) and is a light-blue solid under ambient conditions.
Keywords: cobalt; imidazolium; tetrahedral; crystal structure.
CCDC reference: 1863993
Structure description
In recent years, there have been enormous efforts in the field of artificial photosynthesis by converting CO2 with water and light to hydrocarbons and just recently a review of concept article regarding photocatalytic CO2 reduction using TiO2-based materials under controlled reaction conditions has been published (Moustakas & Strunk, 2018). Furthermore, homogeneous catalytic CO2 hydrogenation to formates using Ir-based catalysts is an intensively studied research field because of the demand for formic acid as a key industrial chemical and 1,1′-bis(N-methylimidazolium)acetate bromide, [(MIm)2CHCOO]Br, has been investigated as a carboxylate-functionalized ligand for IrI and IrIII complexes (Puerta-Oteo & Hölscher et al., 2018). The title compound was obtained as individual crystals by decarboxylation of the cation in the reaction of [(MIm)2CHCOO]Br and CoBr2 in a boiling mixture of MeNO2 and MeCN. It can be seen from Fig. 1 that (DMDIm)[CoBr4] is characterized by an imidazolium-based dication and a tetrabromidocobaltate(II) complex anion. The complex anion consists of a CoII ion coordinated tetrahedrally by four bromido ligands. In the crystal, C—H⋯Br interactions are observed (Fig. 2 and Table 1). All bond lengths and angles within the cation as well as the complex anion are in expected ranges (Ahrens & Strassner, 2006; Kozlova et al., 2009; Peppel & Köckerling, 2010; Peppel et al., 2017).
Synthesis and crystallization
The title compound, (DMDIm)[CoBr4] (DMDIm = C9H14N4), was obtained in very low yield as a side product in the reaction of [(MIm)2CHCOO]Br (Puerta-Oteo & Hölscher et al., 2018; Puerta-Oteo & Jiménez et al., 2018) and CoBr2. In order to obtain the basic characteristics of bulk (DMDIm)[CoBr4], it was synthesized directly on the gram scale from (DMDIm)Br2 (Cao et al., 2016; Nirmala et al., 2017; García-Fernández et al., 2018) and CoBr2 in 1:1 stoichiometry. (DMDIm)Br2 (1.54 g, 4.57 mmol) was added in one portion to a stirred solution of CoBr2 (1.00 g, 4.57 mmol) in 100 ml of acetonitrile. The suspension was heated under reflux for 4 h and the light-blue precipitate was filtered off, washed thoroughly with Et2O and dried in vacuo (T = 80°C, P = 4 mbar, yield: 2.50 g, 98%). Analytical data for (DMDIm)[CoBr4]: m.p. 310–312°C, EA for C9H14Br4CoN2 % (calc.): C 19.66 (19.41), H 2.37 (2.53), N 9.08 (10.06), Br 57.80 (57.40), Co 10.46 (10.62). UV/Vis (diffuse reflectance, absorbance): λmax = 726, 702, 671, 645, 604, 590, 579, 563, 484, 472, 465, 435, 426, 398, 344 nm; UV/Vis (MeCN, 25°C, absorbance): λmax = 699, 634, 618, 305, 278 nm.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1863993
https://doi.org/10.1107/S2414314618012129/is4029sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618012129/is4029Isup2.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Putz & Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).(C9H14N4)[CoBr4] | F(000) = 2104 |
Mr = 556.81 | Dx = 2.227 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 15.7782 (15) Å | Cell parameters from 7863 reflections |
b = 7.4076 (7) Å | θ = 2.6–29.7° |
c = 28.567 (3) Å | µ = 10.64 mm−1 |
β = 95.7271 (19)° | T = 150 K |
V = 3322.2 (5) Å3 | Needle, blue |
Z = 8 | 0.24 × 0.10 × 0.07 mm |
Bruker APEXII CCD diffractometer | 4017 independent reflections |
Radiation source: fine-focus sealed tube | 3421 reflections with I > 2σ(I) |
Detector resolution: 8.3333 pixels mm-1 | Rint = 0.030 |
φ and ω scans | θmax = 28.0°, θmin = 1.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | h = −20→20 |
Tmin = 0.34, Tmax = 0.52 | k = −9→9 |
21756 measured reflections | l = −37→37 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.024 | H-atom parameters constrained |
wR(F2) = 0.048 | w = 1/[σ2(Fo2) + (0.0174P)2 + 5.0295P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
4017 reflections | Δρmax = 0.51 e Å−3 |
165 parameters | Δρmin = −0.38 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All H atoms were placed in idealized positions with C—H = 0.95 Å (CH), 0.98 Å (CH3) and 0.99 Å (CH2), and were refined using a riding model with Uiso(H) fixed at 1.2 Ueq(C) for CH and CH2, and 1.5 Ueq(C) for CH3. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.17779 (16) | 0.3468 (3) | 0.16985 (9) | 0.0226 (5) | |
H1 | 0.2215 | 0.3549 | 0.1494 | 0.027* | |
C2 | 0.06459 (19) | 0.2588 (4) | 0.20258 (10) | 0.0365 (7) | |
H2 | 0.0154 | 0.1927 | 0.2090 | 0.044* | |
C3 | 0.09624 (18) | 0.4055 (4) | 0.22558 (10) | 0.0345 (7) | |
H3 | 0.0736 | 0.4627 | 0.2514 | 0.041* | |
C4 | 0.2187 (2) | 0.6162 (4) | 0.21901 (11) | 0.0352 (7) | |
H4A | 0.2699 | 0.6163 | 0.2022 | 0.053* | |
H4B | 0.2352 | 0.6125 | 0.2530 | 0.053* | |
H4C | 0.1856 | 0.7259 | 0.2111 | 0.053* | |
C5 | 0.10432 (17) | 0.0753 (3) | 0.13384 (9) | 0.0258 (6) | |
H5A | 0.1605 | 0.0290 | 0.1268 | 0.031* | |
H5B | 0.0734 | −0.0247 | 0.1476 | 0.031* | |
C6 | −0.02772 (16) | 0.1664 (3) | 0.08457 (9) | 0.0211 (5) | |
H6 | −0.0664 | 0.1509 | 0.1077 | 0.025* | |
C7 | 0.09043 (18) | 0.1725 (4) | 0.04886 (9) | 0.0288 (6) | |
H7 | 0.1485 | 0.1624 | 0.0431 | 0.035* | |
C8 | 0.02555 (18) | 0.2265 (4) | 0.01830 (9) | 0.0289 (6) | |
H8 | 0.0291 | 0.2609 | −0.0135 | 0.035* | |
C9 | −0.13247 (18) | 0.2793 (4) | 0.02105 (10) | 0.0352 (7) | |
H9A | −0.1756 | 0.2208 | 0.0383 | 0.053* | |
H9B | −0.1409 | 0.2439 | −0.0121 | 0.053* | |
H9C | −0.1378 | 0.4107 | 0.0236 | 0.053* | |
N1 | 0.11685 (13) | 0.2222 (3) | 0.16801 (7) | 0.0207 (4) | |
N2 | 0.16702 (13) | 0.4578 (3) | 0.20512 (7) | 0.0213 (4) | |
N3 | 0.05644 (13) | 0.1343 (3) | 0.09049 (7) | 0.0215 (4) | |
N4 | −0.04719 (14) | 0.2232 (3) | 0.04118 (7) | 0.0244 (5) | |
Co1 | 0.40230 (2) | 0.18136 (5) | 0.12715 (2) | 0.02171 (8) | |
Br1 | 0.32770 (2) | −0.08576 (4) | 0.14779 (2) | 0.03035 (7) | |
Br2 | 0.31206 (2) | 0.32678 (4) | 0.06547 (2) | 0.02916 (7) | |
Br3 | 0.54182 (2) | 0.12285 (3) | 0.10318 (2) | 0.02435 (6) | |
Br4 | 0.41673 (2) | 0.37353 (4) | 0.19523 (2) | 0.03257 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0196 (13) | 0.0244 (13) | 0.0243 (13) | 0.0013 (10) | 0.0036 (10) | 0.0008 (10) |
C2 | 0.0333 (16) | 0.0497 (18) | 0.0283 (15) | −0.0198 (14) | 0.0118 (12) | −0.0084 (13) |
C3 | 0.0315 (16) | 0.0500 (18) | 0.0245 (14) | −0.0140 (13) | 0.0145 (12) | −0.0106 (13) |
C4 | 0.0391 (17) | 0.0269 (14) | 0.0414 (17) | −0.0133 (13) | 0.0127 (14) | −0.0077 (13) |
C5 | 0.0256 (14) | 0.0225 (13) | 0.0281 (14) | 0.0020 (11) | −0.0034 (11) | −0.0035 (11) |
C6 | 0.0201 (13) | 0.0210 (12) | 0.0225 (12) | 0.0014 (10) | 0.0034 (10) | −0.0006 (10) |
C7 | 0.0245 (14) | 0.0374 (15) | 0.0255 (14) | −0.0073 (12) | 0.0073 (11) | −0.0086 (12) |
C8 | 0.0315 (15) | 0.0342 (15) | 0.0216 (13) | −0.0082 (12) | 0.0052 (11) | −0.0039 (11) |
C9 | 0.0300 (16) | 0.0420 (17) | 0.0321 (16) | 0.0043 (13) | −0.0054 (13) | 0.0039 (13) |
N1 | 0.0174 (10) | 0.0245 (11) | 0.0199 (10) | −0.0015 (8) | −0.0001 (8) | −0.0016 (8) |
N2 | 0.0203 (11) | 0.0242 (11) | 0.0197 (10) | −0.0044 (9) | 0.0035 (9) | 0.0010 (9) |
N3 | 0.0204 (11) | 0.0223 (11) | 0.0216 (11) | −0.0008 (8) | 0.0010 (8) | −0.0053 (9) |
N4 | 0.0221 (11) | 0.0277 (12) | 0.0228 (11) | −0.0028 (9) | −0.0008 (9) | −0.0027 (9) |
Co1 | 0.02076 (18) | 0.02356 (17) | 0.02092 (17) | −0.00132 (14) | 0.00261 (14) | 0.00084 (14) |
Br1 | 0.02704 (14) | 0.02493 (13) | 0.04071 (16) | −0.00168 (11) | 0.01153 (12) | 0.00564 (12) |
Br2 | 0.02183 (14) | 0.04087 (16) | 0.02428 (13) | −0.00203 (11) | −0.00018 (10) | 0.00796 (11) |
Br3 | 0.02163 (13) | 0.02442 (13) | 0.02722 (14) | 0.00184 (10) | 0.00359 (10) | 0.00110 (10) |
Br4 | 0.03414 (16) | 0.03955 (16) | 0.02469 (14) | −0.01065 (12) | 0.00624 (11) | −0.00815 (12) |
C1—N2 | 1.324 (3) | C6—N4 | 1.316 (3) |
C1—N1 | 1.330 (3) | C6—N3 | 1.343 (3) |
C1—H1 | 0.9500 | C6—H6 | 0.9500 |
C2—C3 | 1.340 (4) | C7—C8 | 1.339 (4) |
C2—N1 | 1.375 (3) | C7—N3 | 1.382 (3) |
C2—H2 | 0.9500 | C7—H7 | 0.9500 |
C3—N2 | 1.367 (3) | C8—N4 | 1.376 (3) |
C3—H3 | 0.9500 | C8—H8 | 0.9500 |
C4—N2 | 1.461 (3) | C9—N4 | 1.469 (3) |
C4—H4A | 0.9800 | C9—H9A | 0.9800 |
C4—H4B | 0.9800 | C9—H9B | 0.9800 |
C4—H4C | 0.9800 | C9—H9C | 0.9800 |
C5—N3 | 1.452 (3) | Co1—Br4 | 2.4025 (5) |
C5—N1 | 1.462 (3) | Co1—Br1 | 2.4055 (4) |
C5—H5A | 0.9900 | Co1—Br2 | 2.4067 (5) |
C5—H5B | 0.9900 | Co1—Br3 | 2.4091 (5) |
N2—C1—N1 | 108.3 (2) | C7—C8—N4 | 107.7 (2) |
N2—C1—H1 | 125.9 | C7—C8—H8 | 126.1 |
N1—C1—H1 | 125.9 | N4—C8—H8 | 126.1 |
C3—C2—N1 | 106.9 (2) | N4—C9—H9A | 109.5 |
C3—C2—H2 | 126.5 | N4—C9—H9B | 109.5 |
N1—C2—H2 | 126.5 | H9A—C9—H9B | 109.5 |
C2—C3—N2 | 107.5 (2) | N4—C9—H9C | 109.5 |
C2—C3—H3 | 126.3 | H9A—C9—H9C | 109.5 |
N2—C3—H3 | 126.3 | H9B—C9—H9C | 109.5 |
N2—C4—H4A | 109.5 | C1—N1—C2 | 108.5 (2) |
N2—C4—H4B | 109.5 | C1—N1—C5 | 126.3 (2) |
H4A—C4—H4B | 109.5 | C2—N1—C5 | 125.1 (2) |
N2—C4—H4C | 109.5 | C1—N2—C3 | 108.8 (2) |
H4A—C4—H4C | 109.5 | C1—N2—C4 | 126.5 (2) |
H4B—C4—H4C | 109.5 | C3—N2—C4 | 124.7 (2) |
N3—C5—N1 | 111.7 (2) | C6—N3—C7 | 108.6 (2) |
N3—C5—H5A | 109.3 | C6—N3—C5 | 125.8 (2) |
N1—C5—H5A | 109.3 | C7—N3—C5 | 125.6 (2) |
N3—C5—H5B | 109.3 | C6—N4—C8 | 109.0 (2) |
N1—C5—H5B | 109.3 | C6—N4—C9 | 125.3 (2) |
H5A—C5—H5B | 107.9 | C8—N4—C9 | 125.7 (2) |
N4—C6—N3 | 108.1 (2) | Br4—Co1—Br1 | 107.348 (17) |
N4—C6—H6 | 126.0 | Br4—Co1—Br2 | 109.197 (18) |
N3—C6—H6 | 126.0 | Br1—Co1—Br2 | 106.224 (17) |
C8—C7—N3 | 106.6 (2) | Br4—Co1—Br3 | 108.743 (17) |
C8—C7—H7 | 126.7 | Br1—Co1—Br3 | 113.893 (17) |
N3—C7—H7 | 126.7 | Br2—Co1—Br3 | 111.280 (16) |
N1—C2—C3—N2 | 0.1 (3) | C2—C3—N2—C4 | 178.0 (3) |
N3—C7—C8—N4 | 0.6 (3) | N4—C6—N3—C7 | −0.2 (3) |
N2—C1—N1—C2 | 1.6 (3) | N4—C6—N3—C5 | 177.9 (2) |
N2—C1—N1—C5 | 179.0 (2) | C8—C7—N3—C6 | −0.3 (3) |
C3—C2—N1—C1 | −1.0 (3) | C8—C7—N3—C5 | −178.3 (2) |
C3—C2—N1—C5 | −178.4 (2) | N1—C5—N3—C6 | −74.8 (3) |
N3—C5—N1—C1 | −83.8 (3) | N1—C5—N3—C7 | 102.9 (3) |
N3—C5—N1—C2 | 93.2 (3) | N3—C6—N4—C8 | 0.6 (3) |
N1—C1—N2—C3 | −1.5 (3) | N3—C6—N4—C9 | −177.7 (2) |
N1—C1—N2—C4 | −178.6 (2) | C7—C8—N4—C6 | −0.8 (3) |
C2—C3—N2—C1 | 0.9 (3) | C7—C8—N4—C9 | 177.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···Br2 | 0.95 | 2.92 | 3.829 (3) | 161 |
C2—H2···Br4i | 0.95 | 2.84 | 3.679 (3) | 148 |
C4—H4A···Br1ii | 0.98 | 2.90 | 3.560 (3) | 126 |
C5—H5A···Br1 | 0.99 | 2.78 | 3.705 (3) | 156 |
C5—H5B···Br3i | 0.99 | 2.92 | 3.578 (3) | 124 |
C6—H6···Br1iii | 0.95 | 2.88 | 3.558 (2) | 129 |
C7—H7···Br2 | 0.95 | 2.87 | 3.665 (3) | 142 |
C8—H8···Br3iv | 0.95 | 2.83 | 3.699 (3) | 153 |
Symmetry codes: (i) x−1/2, y−1/2, z; (ii) x, y+1, z; (iii) x−1/2, y+1/2, z; (iv) −x+1/2, −y+1/2, −z. |
Acknowledgements
Professor J. Strunk (LIKAT, Rostock) and A. Wotzka (LIKAT, Rostock) are gratefully acknowledged for their support. The publication of this article was funded by the Open Access Fund of the Leibniz Association.
References
Ahrens, S. & Strassner, T. (2006). Inorg. Chim. Acta, 359, 4789–4796. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cao, Q., Hughes, N. L. & Muldoon, M. J. (2016). Chem. Eur. J. 22, 11982–11985. CrossRef Google Scholar
García-Fernández, A., Marcos-Cives, I., Platas-Iglesias, C., Castro-García, S., Vázquez-García, D., Fernández, A. & Sánchez-Andújar, M. (2018). Inorg. Chem. 57, 7655–7664. Google Scholar
Kozlova, S. A., Verevkin, S. P., Heintz, A., Peppel, T. & Köckerling, M. (2009). J. Chem. Eng. Data, 54, 1524–1528. CrossRef Google Scholar
Moustakas, N. G. & Strunk, J. (2018). Chem. Eur. J. 24 doi: 10.1002/chem.201706178. Google Scholar
Nirmala, M., Saranya, G., Viswanathamurthi, P., Bertani, R., Sgarbossa, P. & Malecki, J. G. (2017). J. Organomet. Chem. 831, 1–10. CrossRef Google Scholar
Peppel, T., Hinz, A., Thiele, P., Geppert-Rybczyńska, M., Lehmann, J. K. & Köckerling, M. (2017). Eur. J. Inorg. Chem. pp. 885–893. CrossRef Google Scholar
Peppel, T. & Köckerling, M. (2010). Z. Anorg. Allg. Chem. 636, 2439–2446. CrossRef Google Scholar
Puerta-Oteo, R., Hölscher, M., Jiménez, M. V., Leitner, W., Passarelli, V. & Pérez-Torrente, J. (2018). Organometallics, 37, 684–696. Google Scholar
Puerta-Oteo, R., Jiménez, M. V., Lahoz, F. J., Modrego, F. J., Passarelli, V. & Pérez-Torrente, J. (2018). Inorg. Chem. 57, 5526–5543. Google Scholar
Putz, H. & Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.