metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3,3′-Di­methyl-1,1′-methyl­enediimidazolium tetra­bromido­cobaltate(II)

CROSSMARK_Color_square_no_text.svg

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: tim.peppel@catalysis.de

Edited by H. Ishida, Okayama University, Japan (Received 17 July 2018; accepted 27 August 2018; online 31 August 2018)

The title compound, (C9H14N4)[CoBr4], was obtained as single crystals directly in very low yield as a side product in the reaction of 1,1′-bis­(1-methyl­imidazolium)acetate bromide and CoBr2. The title compound consists of an imidazolium-based dication and a tetra­bromido­cobaltate(II) complex anion, which are connected via C—H⋯Br inter­actions in the crystal. The dihedral angle between the imidazolium rings in the cation is 72.89 (16)°. The CoII ion in the anion is coordinated tetra­hedrally by four bromide ligands [Co—Br = 2.4025 (5)–2.4091 (5) Å and Br—Co—Br = 106.224 (17)–113.893 (17)°]. The compound exhibits a high melting point (>300°C) and is a light-blue solid under ambient conditions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In recent years, there have been enormous efforts in the field of artificial photosynthesis by converting CO2 with water and light to hydro­carbons and just recently a review of concept article regarding photocatalytic CO2 reduction using TiO2-based materials under controlled reaction conditions has been published (Moustakas & Strunk, 2018[Moustakas, N. G. & Strunk, J. (2018). Chem. Eur. J. 24 doi: 10.1002/chem.201706178.]). Furthermore, homogeneous catalytic CO2 hydrogenation to formates using Ir-based catalysts is an intensively studied research field because of the demand for formic acid as a key industrial chemical and 1,1′-bis­(N-methyl­imidazolium)acetate bromide, [(MIm)2CHCOO]Br, has been investigated as a carboxyl­ate-functionalized ligand for IrI and IrIII complexes (Puerta-Oteo & Hölscher et al., 2018[Puerta-Oteo, R., Hölscher, M., Jiménez, M. V., Leitner, W., Passarelli, V. & Pérez-Torrente, J. (2018). Organometallics, 37, 684-696.]). The title compound was obtained as individual crystals by deca­rboxylation of the cation in the reaction of [(MIm)2CHCOO]Br and CoBr2 in a boiling mixture of MeNO2 and MeCN. It can be seen from Fig. 1[link] that (DMDIm)[CoBr4] is characterized by an imidazolium-based dication and a tetra­bromido­cobaltate(II) complex anion. The complex anion consists of a CoII ion coordinated tetra­hedrally by four bromido ligands. In the crystal, C—H⋯Br inter­actions are observed (Fig. 2[link] and Table 1[link]). All bond lengths and angles within the cation as well as the complex anion are in expected ranges (Ahrens & Strassner, 2006[Ahrens, S. & Strassner, T. (2006). Inorg. Chim. Acta, 359, 4789-4796.]; Kozlova et al., 2009[Kozlova, S. A., Verevkin, S. P., Heintz, A., Peppel, T. & Köckerling, M. (2009). J. Chem. Eng. Data, 54, 1524-1528.]; Peppel & Köckerling, 2010[Peppel, T. & Köckerling, M. (2010). Z. Anorg. Allg. Chem. 636, 2439-2446.]; Peppel et al., 2017[Peppel, T., Hinz, A., Thiele, P., Geppert-Rybczyńska, M., Lehmann, J. K. & Köckerling, M. (2017). Eur. J. Inorg. Chem. pp. 885-893.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Br2 0.95 2.92 3.829 (3) 161
C2—H2⋯Br4i 0.95 2.84 3.679 (3) 148
C4—H4A⋯Br1ii 0.98 2.90 3.560 (3) 126
C5—H5A⋯Br1 0.99 2.78 3.705 (3) 156
C5—H5B⋯Br3i 0.99 2.92 3.578 (3) 124
C6—H6⋯Br1iii 0.95 2.88 3.558 (2) 129
C7—H7⋯Br2 0.95 2.87 3.665 (3) 142
C8—H8⋯Br3iv 0.95 2.83 3.699 (3) 153
Symmetry codes: (i) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) x, y+1, z; (iii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound with atom labelling and displacement ellipsoids drawn at 30% probability level.
[Figure 2]
Figure 2
A packing diagram of the title compound viewed along the b axis, showing the C—H⋯Br inter­actions (dashed lines).

Synthesis and crystallization

The title compound, (DMDIm)[CoBr4] (DMDIm = C9H14N4), was obtained in very low yield as a side product in the reaction of [(MIm)2CHCOO]Br (Puerta-Oteo & Hölscher et al., 2018[Puerta-Oteo, R., Hölscher, M., Jiménez, M. V., Leitner, W., Passarelli, V. & Pérez-Torrente, J. (2018). Organometallics, 37, 684-696.]; Puerta-Oteo & Jiménez et al., 2018[Puerta-Oteo, R., Jiménez, M. V., Lahoz, F. J., Modrego, F. J., Passarelli, V. & Pérez-Torrente, J. (2018). Inorg. Chem. 57, 5526-5543.]) and CoBr2. In order to obtain the basic characteristics of bulk (DMDIm)[CoBr4], it was synthesized directly on the gram scale from (DMDIm)Br2 (Cao et al., 2016[Cao, Q., Hughes, N. L. & Muldoon, M. J. (2016). Chem. Eur. J. 22, 11982-11985.]; Nirmala et al., 2017[Nirmala, M., Saranya, G., Viswanathamurthi, P., Bertani, R., Sgarbossa, P. & Malecki, J. G. (2017). J. Organomet. Chem. 831, 1-10.]; García-Fernández et al., 2018[García-Fernández, A., Marcos-Cives, I., Platas-Iglesias, C., Castro-García, S., Vázquez-García, D., Fernández, A. & Sánchez-Andújar, M. (2018). Inorg. Chem. 57, 7655-7664.]) and CoBr2 in 1:1 stoichiometry. (DMDIm)Br2 (1.54 g, 4.57 mmol) was added in one portion to a stirred solution of CoBr2 (1.00 g, 4.57 mmol) in 100 ml of aceto­nitrile. The suspension was heated under reflux for 4 h and the light-blue precipitate was filtered off, washed thoroughly with Et2O and dried in vacuo (T = 80°C, P = 4 mbar, yield: 2.50 g, 98%). Analytical data for (DMDIm)[CoBr4]: m.p. 310–312°C, EA for C9H14Br4CoN2 % (calc.): C 19.66 (19.41), H 2.37 (2.53), N 9.08 (10.06), Br 57.80 (57.40), Co 10.46 (10.62). UV/Vis (diffuse reflectance, absorbance): λmax = 726, 702, 671, 645, 604, 590, 579, 563, 484, 472, 465, 435, 426, 398, 344 nm; UV/Vis (MeCN, saturated solution, 25°C, absorbance): λmax = 699, 634, 618, 305, 278 nm.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula (C9H14N4)[CoBr4]
Mr 556.81
Crystal system, space group Monoclinic, C2/c
Temperature (K) 150
a, b, c (Å) 15.7782 (15), 7.4076 (7), 28.567 (3)
β (°) 95.7271 (19)
V3) 3322.2 (5)
Z 8
Radiation type Mo Kα
μ (mm−1) 10.64
Crystal size (mm) 0.24 × 0.10 × 0.07
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.34, 0.52
No. of measured, independent and observed [I > 2σ(I)] reflections 21756, 4017, 3421
Rint 0.030
(sin θ/λ)max−1) 0.660
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.048, 1.05
No. of reflections 4017
No. of parameters 165
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.51, −0.38
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), XP in SHELXTL and SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Putz & Brandenburg, 1999[Putz, H. & Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Putz & Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

3,3'-Dimethyl-1,1'-methylenediimidazolium tetrabromidocobaltate(II) top
Crystal data top
(C9H14N4)[CoBr4]F(000) = 2104
Mr = 556.81Dx = 2.227 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.7782 (15) ÅCell parameters from 7863 reflections
b = 7.4076 (7) Åθ = 2.6–29.7°
c = 28.567 (3) ŵ = 10.64 mm1
β = 95.7271 (19)°T = 150 K
V = 3322.2 (5) Å3Needle, blue
Z = 80.24 × 0.10 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
4017 independent reflections
Radiation source: fine-focus sealed tube3421 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.030
φ and ω scansθmax = 28.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 2020
Tmin = 0.34, Tmax = 0.52k = 99
21756 measured reflectionsl = 3737
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0174P)2 + 5.0295P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4017 reflectionsΔρmax = 0.51 e Å3
165 parametersΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were placed in idealized positions with C—H = 0.95 Å (CH), 0.98 Å (CH3) and 0.99 Å (CH2), and were refined using a riding model with Uiso(H) fixed at 1.2 Ueq(C) for CH and CH2, and 1.5 Ueq(C) for CH3.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.17779 (16)0.3468 (3)0.16985 (9)0.0226 (5)
H10.22150.35490.14940.027*
C20.06459 (19)0.2588 (4)0.20258 (10)0.0365 (7)
H20.01540.19270.20900.044*
C30.09624 (18)0.4055 (4)0.22558 (10)0.0345 (7)
H30.07360.46270.25140.041*
C40.2187 (2)0.6162 (4)0.21901 (11)0.0352 (7)
H4A0.26990.61630.20220.053*
H4B0.23520.61250.25300.053*
H4C0.18560.72590.21110.053*
C50.10432 (17)0.0753 (3)0.13384 (9)0.0258 (6)
H5A0.16050.02900.12680.031*
H5B0.07340.02470.14760.031*
C60.02772 (16)0.1664 (3)0.08457 (9)0.0211 (5)
H60.06640.15090.10770.025*
C70.09043 (18)0.1725 (4)0.04886 (9)0.0288 (6)
H70.14850.16240.04310.035*
C80.02555 (18)0.2265 (4)0.01830 (9)0.0289 (6)
H80.02910.26090.01350.035*
C90.13247 (18)0.2793 (4)0.02105 (10)0.0352 (7)
H9A0.17560.22080.03830.053*
H9B0.14090.24390.01210.053*
H9C0.13780.41070.02360.053*
N10.11685 (13)0.2222 (3)0.16801 (7)0.0207 (4)
N20.16702 (13)0.4578 (3)0.20512 (7)0.0213 (4)
N30.05644 (13)0.1343 (3)0.09049 (7)0.0215 (4)
N40.04719 (14)0.2232 (3)0.04118 (7)0.0244 (5)
Co10.40230 (2)0.18136 (5)0.12715 (2)0.02171 (8)
Br10.32770 (2)0.08576 (4)0.14779 (2)0.03035 (7)
Br20.31206 (2)0.32678 (4)0.06547 (2)0.02916 (7)
Br30.54182 (2)0.12285 (3)0.10318 (2)0.02435 (6)
Br40.41673 (2)0.37353 (4)0.19523 (2)0.03257 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0196 (13)0.0244 (13)0.0243 (13)0.0013 (10)0.0036 (10)0.0008 (10)
C20.0333 (16)0.0497 (18)0.0283 (15)0.0198 (14)0.0118 (12)0.0084 (13)
C30.0315 (16)0.0500 (18)0.0245 (14)0.0140 (13)0.0145 (12)0.0106 (13)
C40.0391 (17)0.0269 (14)0.0414 (17)0.0133 (13)0.0127 (14)0.0077 (13)
C50.0256 (14)0.0225 (13)0.0281 (14)0.0020 (11)0.0034 (11)0.0035 (11)
C60.0201 (13)0.0210 (12)0.0225 (12)0.0014 (10)0.0034 (10)0.0006 (10)
C70.0245 (14)0.0374 (15)0.0255 (14)0.0073 (12)0.0073 (11)0.0086 (12)
C80.0315 (15)0.0342 (15)0.0216 (13)0.0082 (12)0.0052 (11)0.0039 (11)
C90.0300 (16)0.0420 (17)0.0321 (16)0.0043 (13)0.0054 (13)0.0039 (13)
N10.0174 (10)0.0245 (11)0.0199 (10)0.0015 (8)0.0001 (8)0.0016 (8)
N20.0203 (11)0.0242 (11)0.0197 (10)0.0044 (9)0.0035 (9)0.0010 (9)
N30.0204 (11)0.0223 (11)0.0216 (11)0.0008 (8)0.0010 (8)0.0053 (9)
N40.0221 (11)0.0277 (12)0.0228 (11)0.0028 (9)0.0008 (9)0.0027 (9)
Co10.02076 (18)0.02356 (17)0.02092 (17)0.00132 (14)0.00261 (14)0.00084 (14)
Br10.02704 (14)0.02493 (13)0.04071 (16)0.00168 (11)0.01153 (12)0.00564 (12)
Br20.02183 (14)0.04087 (16)0.02428 (13)0.00203 (11)0.00018 (10)0.00796 (11)
Br30.02163 (13)0.02442 (13)0.02722 (14)0.00184 (10)0.00359 (10)0.00110 (10)
Br40.03414 (16)0.03955 (16)0.02469 (14)0.01065 (12)0.00624 (11)0.00815 (12)
Geometric parameters (Å, º) top
C1—N21.324 (3)C6—N41.316 (3)
C1—N11.330 (3)C6—N31.343 (3)
C1—H10.9500C6—H60.9500
C2—C31.340 (4)C7—C81.339 (4)
C2—N11.375 (3)C7—N31.382 (3)
C2—H20.9500C7—H70.9500
C3—N21.367 (3)C8—N41.376 (3)
C3—H30.9500C8—H80.9500
C4—N21.461 (3)C9—N41.469 (3)
C4—H4A0.9800C9—H9A0.9800
C4—H4B0.9800C9—H9B0.9800
C4—H4C0.9800C9—H9C0.9800
C5—N31.452 (3)Co1—Br42.4025 (5)
C5—N11.462 (3)Co1—Br12.4055 (4)
C5—H5A0.9900Co1—Br22.4067 (5)
C5—H5B0.9900Co1—Br32.4091 (5)
N2—C1—N1108.3 (2)C7—C8—N4107.7 (2)
N2—C1—H1125.9C7—C8—H8126.1
N1—C1—H1125.9N4—C8—H8126.1
C3—C2—N1106.9 (2)N4—C9—H9A109.5
C3—C2—H2126.5N4—C9—H9B109.5
N1—C2—H2126.5H9A—C9—H9B109.5
C2—C3—N2107.5 (2)N4—C9—H9C109.5
C2—C3—H3126.3H9A—C9—H9C109.5
N2—C3—H3126.3H9B—C9—H9C109.5
N2—C4—H4A109.5C1—N1—C2108.5 (2)
N2—C4—H4B109.5C1—N1—C5126.3 (2)
H4A—C4—H4B109.5C2—N1—C5125.1 (2)
N2—C4—H4C109.5C1—N2—C3108.8 (2)
H4A—C4—H4C109.5C1—N2—C4126.5 (2)
H4B—C4—H4C109.5C3—N2—C4124.7 (2)
N3—C5—N1111.7 (2)C6—N3—C7108.6 (2)
N3—C5—H5A109.3C6—N3—C5125.8 (2)
N1—C5—H5A109.3C7—N3—C5125.6 (2)
N3—C5—H5B109.3C6—N4—C8109.0 (2)
N1—C5—H5B109.3C6—N4—C9125.3 (2)
H5A—C5—H5B107.9C8—N4—C9125.7 (2)
N4—C6—N3108.1 (2)Br4—Co1—Br1107.348 (17)
N4—C6—H6126.0Br4—Co1—Br2109.197 (18)
N3—C6—H6126.0Br1—Co1—Br2106.224 (17)
C8—C7—N3106.6 (2)Br4—Co1—Br3108.743 (17)
C8—C7—H7126.7Br1—Co1—Br3113.893 (17)
N3—C7—H7126.7Br2—Co1—Br3111.280 (16)
N1—C2—C3—N20.1 (3)C2—C3—N2—C4178.0 (3)
N3—C7—C8—N40.6 (3)N4—C6—N3—C70.2 (3)
N2—C1—N1—C21.6 (3)N4—C6—N3—C5177.9 (2)
N2—C1—N1—C5179.0 (2)C8—C7—N3—C60.3 (3)
C3—C2—N1—C11.0 (3)C8—C7—N3—C5178.3 (2)
C3—C2—N1—C5178.4 (2)N1—C5—N3—C674.8 (3)
N3—C5—N1—C183.8 (3)N1—C5—N3—C7102.9 (3)
N3—C5—N1—C293.2 (3)N3—C6—N4—C80.6 (3)
N1—C1—N2—C31.5 (3)N3—C6—N4—C9177.7 (2)
N1—C1—N2—C4178.6 (2)C7—C8—N4—C60.8 (3)
C2—C3—N2—C10.9 (3)C7—C8—N4—C9177.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Br20.952.923.829 (3)161
C2—H2···Br4i0.952.843.679 (3)148
C4—H4A···Br1ii0.982.903.560 (3)126
C5—H5A···Br10.992.783.705 (3)156
C5—H5B···Br3i0.992.923.578 (3)124
C6—H6···Br1iii0.952.883.558 (2)129
C7—H7···Br20.952.873.665 (3)142
C8—H8···Br3iv0.952.833.699 (3)153
Symmetry codes: (i) x1/2, y1/2, z; (ii) x, y+1, z; (iii) x1/2, y+1/2, z; (iv) x+1/2, y+1/2, z.
 

Acknowledgements

Professor J. Strunk (LIKAT, Rostock) and A. Wotzka (LIKAT, Rostock) are gratefully acknowledged for their support. The publication of this article was funded by the Open Access Fund of the Leibniz Association.

References

First citationAhrens, S. & Strassner, T. (2006). Inorg. Chim. Acta, 359, 4789–4796.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, Q., Hughes, N. L. & Muldoon, M. J. (2016). Chem. Eur. J. 22, 11982–11985.  CrossRef Google Scholar
First citationGarcía-Fernández, A., Marcos-Cives, I., Platas-Iglesias, C., Castro-García, S., Vázquez-García, D., Fernández, A. & Sánchez-Andújar, M. (2018). Inorg. Chem. 57, 7655–7664.  Google Scholar
First citationKozlova, S. A., Verevkin, S. P., Heintz, A., Peppel, T. & Köckerling, M. (2009). J. Chem. Eng. Data, 54, 1524–1528.  CrossRef Google Scholar
First citationMoustakas, N. G. & Strunk, J. (2018). Chem. Eur. J. 24 doi: 10.1002/chem.201706178.  Google Scholar
First citationNirmala, M., Saranya, G., Viswanathamurthi, P., Bertani, R., Sgarbossa, P. & Malecki, J. G. (2017). J. Organomet. Chem. 831, 1–10.  CrossRef Google Scholar
First citationPeppel, T., Hinz, A., Thiele, P., Geppert-Rybczyńska, M., Lehmann, J. K. & Köckerling, M. (2017). Eur. J. Inorg. Chem. pp. 885–893.  CrossRef Google Scholar
First citationPeppel, T. & Köckerling, M. (2010). Z. Anorg. Allg. Chem. 636, 2439–2446.  CrossRef Google Scholar
First citationPuerta-Oteo, R., Hölscher, M., Jiménez, M. V., Leitner, W., Passarelli, V. & Pérez-Torrente, J. (2018). Organometallics, 37, 684–696.  Google Scholar
First citationPuerta-Oteo, R., Jiménez, M. V., Lahoz, F. J., Modrego, F. J., Passarelli, V. & Pérez-Torrente, J. (2018). Inorg. Chem. 57, 5526–5543.  Google Scholar
First citationPutz, H. & Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds