metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Sodium 1-(4-chloro­phen­yl)-5-methyl-1H-1,2,3-triazole-4-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bDepartment of Chemistry, College of Science and Humanities, Shaqra University, Duwadimi, Saudi Arabia, cApplied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt, dNational Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology, PO Box 6086, Riyadh 11442, Saudi Arabia, eDepartment of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq, and fSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
*Correspondence e-mail: gelhiti@ksu.edu.sa, kariukib@cardiff.ac.uk

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 6 August 2018; accepted 7 August 2018; online 14 August 2018)

In the title mol­ecular salt, Na+·C10H7ClN3O2, the dihedral angles between the planes of adjacent chloro­phenyl, methyl­triazole and carboxyl­ate groups of the anion are 50.2 (1) and 9.0 (3)°, respectively. The shortest distance between sodium cations is 4.0595 (9) Å. The sodium cation is coordinated by two N atoms and three O atoms, generating layers of ions lying parallel to the bc plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1,2,3-Triazole-4-carb­oxy­lic acids are important precursors for various biologically active compounds that act as xanthine oxidase inhibitors (Zhang et al., 2017[Zhang, T. J., Wu, Q. X., Li, S. Y., Wang, L., Sun, Q., Zhang, Y., Meng, F. H. & Gao, H. (2017). Bioorg. Med. Chem. Lett. 27, 3812-3816]; Ojha et al., 2017[Ojha, R., Singh, J., Ojha, A., Singh, H., Sharma, S. & Nepali, K. (2017). Expert Opin. Ther. Pat. 27, 311-345.]) and anti­bacterial (Maji & Haldar, 2017[Maji, K. & Haldar, D. R. (2017). R. Soc. Open Sci. 4, 170684.]) and anti­tubercular (Kamal et al., 2013[Kamal, A., Hussaini, S. M. A., Faazil, S., Poornachandra, Y., Narender Reddy, G., Kumar, C. G., Rajput, V. S., Rani, C., Sharma, R., Khan, I. A. & Jagadeesh Babu, N. (2013). Bioorg. Med. Chem. Lett. 23, 6842-6846.]) agents. As part of our studies in this area, we now describe the synthesis and structure of the title salt.

The asymmetric unit comprises a Na+ cation and a C10H7ClN3O2 anion (Fig. 1[link]). The anion consists of chloro­phenyl, methyl­triazolyl and carboxyl­ate groups, and the twist angles between the planes through adjacent groups are 50.2 (1) and 9.0 (3)°, respectively. The shortest distance between sodium cations is 4.0595 (9) Å and each cation is coordinated by two N atoms, with an average Na—N distance of 2.5654 (6) Å, and by three O atoms, with an average Na⋯O distance of 2.37 (4) Å. The resulting coordination polyhedron is a very distorted trigonal bipyramid with one N atom and one O atom in the axial sites. The extended structure generates layers of ions parallel to the bc plane (Fig. 2[link]). A short C—H⋯N contact is also observed (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯N2i 0.96 2.52 3.432 (3) 159
Symmetry code: (i) x, y-1, z.
[Figure 1]
Figure 1
The asymmetric unit of the title salt, showing 50% probability displacement ellisoids.
[Figure 2]
Figure 2
The crystal packing of the title salt, viewed down the b axis.

Synthesis and crystallization

The title compound was synthesized from the reaction of 1-(4-chloro­phen­yl)-5-methyl-1H-1,2,3-triazole-4-carb­oxy­lic acid and sodium hydroxide (10%) in ethanol under reflux for 4 h. The crude product obtained after work-up was recrystallized from di­methyl­formamide solution to give colourless blocks.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula Na+·C10H7ClN3O2
Mr 259.63
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 11.6462 (8), 6.3754 (4), 14.7003 (9)
β (°) 92.711 (7)
V3) 1090.26 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.38
Crystal size (mm) 0.42 × 0.16 × 0.07
 
Data collection
Diffractometer Rigaku OD SuperNova Dual source diffractometer with an Atlas detector
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.467, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8333, 2665, 1875
Rint 0.030
(sin θ/λ)max−1) 0.696
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.115, 1.05
No. of reflections 2665
No. of parameters 155
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.40
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CHEMDRAW Ultra (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and WinGX (Farrugia, 2012); software used to prepare material for publication: ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

Sodium 1-(4-chlorophenyl)-5-methyl-1H-1,2,3-triazole-4-carboxylate top
Crystal data top
Na+·C10H7ClN3O2F(000) = 528
Mr = 259.63Dx = 1.582 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.6462 (8) ÅCell parameters from 2649 reflections
b = 6.3754 (4) Åθ = 3.5–29.2°
c = 14.7003 (9) ŵ = 0.38 mm1
β = 92.711 (7)°T = 293 K
V = 1090.26 (12) Å3Block, colourless
Z = 40.42 × 0.16 × 0.07 mm
Data collection top
Rigaku OD SuperNova Dual source
diffractometer with an Atlas detector
1875 reflections with I > 2σ(I)
ω scansRint = 0.030
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2015)
θmax = 29.7°, θmin = 3.2°
Tmin = 0.467, Tmax = 1.000h = 1415
8333 measured reflectionsk = 88
2665 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.2829P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2665 reflectionsΔρmax = 0.25 e Å3
155 parametersΔρmin = 0.40 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.08988 (16)0.5137 (3)0.64261 (13)0.0306 (4)
C20.12619 (15)0.6087 (3)0.55520 (12)0.0277 (4)
C30.19398 (17)0.5260 (3)0.48997 (13)0.0304 (4)
C40.2601 (2)0.3285 (3)0.48670 (17)0.0597 (8)
H4A0.2096640.2159670.4678910.090*
H4B0.2941160.2985470.5460450.090*
H4C0.3195620.3428360.4440510.090*
C50.25655 (16)0.6837 (3)0.34347 (13)0.0302 (4)
C60.24624 (18)0.5191 (3)0.28293 (14)0.0378 (5)
H60.2013660.4033430.2960420.045*
C70.30294 (19)0.5273 (4)0.20265 (14)0.0448 (6)
H70.2971190.4165270.1615130.054*
C80.36800 (18)0.7002 (4)0.18405 (14)0.0421 (5)
C90.3785 (2)0.8660 (4)0.24377 (15)0.0481 (6)
H90.4224070.9826530.2300390.058*
C100.32262 (19)0.8562 (3)0.32453 (15)0.0429 (5)
H100.3296000.9659330.3660910.052*
N10.09199 (14)0.8041 (2)0.52889 (11)0.0337 (4)
N20.13405 (15)0.8474 (2)0.45008 (11)0.0355 (4)
N30.19683 (13)0.6783 (2)0.42611 (10)0.0292 (4)
O10.11449 (14)0.3261 (2)0.65583 (10)0.0469 (4)
O20.03699 (12)0.6316 (2)0.69418 (9)0.0406 (4)
Cl10.43802 (6)0.70889 (13)0.08201 (4)0.0687 (3)
Na10.01461 (7)0.49886 (11)0.83416 (5)0.0360 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0339 (11)0.0277 (10)0.0310 (10)0.0038 (8)0.0085 (9)0.0010 (8)
C20.0327 (10)0.0239 (9)0.0269 (9)0.0009 (7)0.0067 (8)0.0022 (7)
C30.0376 (11)0.0241 (9)0.0303 (10)0.0014 (7)0.0100 (9)0.0016 (8)
C40.0875 (19)0.0378 (12)0.0569 (15)0.0222 (12)0.0378 (14)0.0114 (11)
C50.0345 (10)0.0332 (9)0.0234 (9)0.0004 (8)0.0067 (8)0.0006 (8)
C60.0419 (12)0.0384 (11)0.0336 (11)0.0062 (9)0.0081 (9)0.0057 (9)
C70.0498 (14)0.0542 (13)0.0310 (11)0.0016 (10)0.0075 (10)0.0134 (10)
C80.0330 (11)0.0646 (14)0.0293 (11)0.0056 (10)0.0081 (9)0.0040 (10)
C90.0502 (14)0.0527 (13)0.0425 (13)0.0119 (11)0.0142 (11)0.0075 (11)
C100.0533 (14)0.0382 (11)0.0381 (12)0.0091 (10)0.0119 (10)0.0050 (9)
N10.0462 (10)0.0287 (8)0.0271 (8)0.0056 (7)0.0107 (7)0.0023 (7)
N20.0487 (10)0.0299 (8)0.0287 (9)0.0090 (7)0.0103 (8)0.0025 (7)
N30.0363 (9)0.0265 (8)0.0253 (8)0.0013 (6)0.0079 (7)0.0016 (6)
O10.0652 (10)0.0282 (7)0.0494 (9)0.0057 (7)0.0242 (8)0.0101 (7)
O20.0584 (9)0.0334 (7)0.0318 (7)0.0055 (7)0.0205 (7)0.0019 (6)
Cl10.0569 (4)0.1123 (6)0.0390 (3)0.0133 (4)0.0240 (3)0.0101 (3)
Na10.0500 (5)0.0288 (4)0.0300 (4)0.0048 (3)0.0083 (4)0.0008 (3)
Geometric parameters (Å, º) top
Na1—N1i2.5649 (16)C4—H4C0.9600
Na1—N2ii2.5658 (19)C5—C61.377 (3)
Na1—O1iii2.3964 (16)C5—C101.378 (3)
Na1—O22.3299 (14)C5—N31.429 (2)
Na1—O2i2.3902 (15)C6—C71.380 (3)
Na1—Na1i4.0595 (9)C6—H60.9300
Na1—Na1iii4.0595 (9)C7—C81.373 (3)
C1—O11.243 (2)C7—H70.9300
C1—O21.250 (2)C8—C91.376 (3)
C1—C21.499 (2)C8—Cl11.742 (2)
C2—N11.359 (2)C9—C101.382 (3)
C2—C31.375 (2)C9—H90.9300
C3—N31.352 (2)C10—H100.9300
C3—C41.478 (3)N1—N21.308 (2)
C4—H4A0.9600N2—N31.358 (2)
C4—H4B0.9600
O1—C1—O2126.89 (17)N1—N2—N3106.93 (14)
O1—C1—C2116.76 (16)N1—N2—Na1iv113.55 (12)
O2—C1—C2116.34 (16)N3—N2—Na1iv119.04 (12)
O1—C1—Na185.80 (11)C3—N3—N2111.00 (14)
O2—C1—Na141.15 (9)C3—N3—C5129.55 (15)
C2—C1—Na1157.39 (12)N2—N3—C5119.42 (14)
N1—C2—C3108.84 (15)C1—O1—Na1i137.58 (14)
N1—C2—C1121.58 (15)C1—O2—Na1118.17 (12)
C3—C2—C1129.59 (17)C1—O2—Na1iii122.42 (11)
N3—C3—C2104.06 (15)Na1—O2—Na1iii118.64 (6)
N3—C3—C4124.00 (16)O2—Na1—O2i103.44 (4)
C2—C3—C4131.76 (18)O2—Na1—O1iii83.35 (5)
C3—C4—H4A109.5O2i—Na1—O1iii144.50 (7)
C3—C4—H4B109.5O2—Na1—N1i169.72 (6)
H4A—C4—H4B109.5O2i—Na1—N1i67.86 (5)
C3—C4—H4C109.5O1iii—Na1—N1i100.58 (5)
H4A—C4—H4C109.5O2—Na1—N2ii104.69 (6)
H4B—C4—H4C109.5O2i—Na1—N2ii123.69 (6)
C6—C5—C10120.64 (17)O1iii—Na1—N2ii86.61 (6)
C6—C5—N3120.01 (16)N1i—Na1—N2ii85.11 (5)
C10—C5—N3119.33 (16)O2—Na1—C120.68 (5)
C5—C6—C7119.56 (18)O2i—Na1—C185.20 (5)
C5—C6—H6120.2O1iii—Na1—C1103.90 (5)
C7—C6—H6120.2N1i—Na1—C1152.77 (5)
C8—C7—C6119.43 (19)N2ii—Na1—C1107.94 (5)
C8—C7—H7120.3O2—Na1—Na1i73.40 (4)
C6—C7—H7120.3O2i—Na1—Na1i30.25 (3)
C7—C8—C9121.55 (18)O1iii—Na1—Na1i140.89 (6)
C7—C8—Cl1118.84 (17)N1i—Na1—Na1i98.11 (4)
C9—C8—Cl1119.61 (17)N2ii—Na1—Na1i129.16 (5)
C8—C9—C10118.82 (19)C1—Na1—Na1i55.00 (4)
C8—C9—H9120.6O2—Na1—Na1iii31.12 (4)
C10—C9—H9120.6O2i—Na1—Na1iii132.42 (5)
C5—C10—C9119.99 (19)O1iii—Na1—Na1iii53.76 (3)
C5—C10—H10120.0N1i—Na1—Na1iii154.32 (4)
C9—C10—H10120.0N2ii—Na1—Na1iii91.80 (4)
N2—N1—C2109.17 (14)C1—Na1—Na1iii51.60 (4)
N2—N1—Na1iii138.87 (11)Na1i—Na1—Na1iii103.49 (3)
C2—N1—Na1iii109.24 (11)
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y+3/2, z+1/2; (iii) x, y+1/2, z+3/2; (iv) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···N2v0.962.523.432 (3)159
Symmetry code: (v) x, y1, z.
 

Funding information

Funding for this research was provided by: King Abdulaziz City for Science and Technology (award No. 20-0180, to MHA).

References

First citationCambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKamal, A., Hussaini, S. M. A., Faazil, S., Poornachandra, Y., Narender Reddy, G., Kumar, C. G., Rajput, V. S., Rani, C., Sharma, R., Khan, I. A. & Jagadeesh Babu, N. (2013). Bioorg. Med. Chem. Lett. 23, 6842–6846.  Web of Science CrossRef Google Scholar
First citationMaji, K. & Haldar, D. R. (2017). R. Soc. Open Sci. 4, 170684.  Web of Science CrossRef Google Scholar
First citationOjha, R., Singh, J., Ojha, A., Singh, H., Sharma, S. & Nepali, K. (2017). Expert Opin. Ther. Pat. 27, 311–345.  Web of Science CrossRef Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhang, T. J., Wu, Q. X., Li, S. Y., Wang, L., Sun, Q., Zhang, Y., Meng, F. H. & Gao, H. (2017). Bioorg. Med. Chem. Lett. 27, 3812–3816  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds