organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-Methyl-1-(4-methyl­phen­yl)-N′-[1-(1H-pyrrol-2-yl)ethyl­­idene]-1H-1,2,3-triazole-4-carbohydrazide monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bDepartment of Chemistry, College of Science and Humanities, Shaqra University, Duwadimi, Saudi Arabia, cApplied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt, dNational Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology, PO Box 6086, Riyadh 11442, Saudi Arabia, eDepartment of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq, and fSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
*Correspondence e-mail: gelhiti@ksu.edu.sa

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 6 August 2018; accepted 16 August 2018; online 21 August 2018)

In the title hydrate, C17H18N6O·H2O, the twist angles between the least-squares planes of the pyrol­yl/methyl­triazol­yl/tolyl groups are 11.4 (2) and 7.9 (1)°, respectively. In the crystal, centrosymmetric tetra­mers (two organic mol­ecules and two water mol­ecules) are linked by N—H⋯O and O—H⋯O hydrogen bonds. Weak aromatic ππ stacking inter­actions between the triazolyl rings [centroid–centroid separation = 3.6422 (10) Å] link the tetra­mers.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Aryl­idene carbohydrazides have various biological activities (Almasirad et al., 2005[Almasirad, A., Tajik, M., Bakhtiari, D., Shafiee, A., Abdollahi, M., Zamani, M. J., Khorasani, R. & Esmaily, H. (2005). J. Pharm. Pharm. Sci. 8, 419-425.]; Bonacorso et al., 2012[Bonacorso, H. G., Cavinatto, S., Campos, P. T., Porte, L. M. F., Navarini, J., Paim, G. R., Martins, M. A. P., Zanatta, N. & Stuker, C. Z. (2012). J. Fluor. Chem. 135, 303-314.]; Hernández-Vázquez et al., 2016[Hernández-Vázquez, E., Salgado-Barrera, S., Ramírez-Espinosa, J. J., Estrada-Soto, S. & Hernández-Luis, F. (2016). Bioorg. Med. Chem. 24, 2298-2306.]; Leite et al., 1999[Leite, L. F., Ramos, M. N., da Silva, J. B., Miranda, A. L., Fraga, C. A. & Barreiro, E. J. (1999). Farmaco, 54, 747-757.]; Lima et al., 2000[Lima, P. C., Lima, L. M., da Silva, K. C., Léda, P. H., de Miranda, A. L., Fraga, C. A. & Barreiro, E. J. (2000). Eur. J. Med. Chem. 35, 187-203.]). As part of our studies in this area, we now describe the synthesis and structure of the title hydrate.

The asymmetric unit consists of a 1,2,3-triazole-4-carbohydrazide mol­ecule and a water mol­ecule (Fig. 1[link]). The twist angles between the least-squares planes of the pyrol­yl/methyl­triazol­yl/tolyl groups are 11.4 (2) and 7.9 (1)°, respectively. In the crystal, the pyrolyl group donates an N—H⋯O hydrogen bond to the water mol­ecule, which in turn donates O—H hydrogen bonds to two neighbouring mol­ecules, thereby linking them (Table 1[link], Fig. 2[link]) into a centrosymmetric tetra­mer. Organic mol­ecules related by inversion symmetry are arranged in pairs with the centroids of their triazolyl rings 3.6422 (10) Å apart. The pairs are stacked such that the closest distance between the centroids of triazolyl groups of neighbouring pairs is 3.967 (2) Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 1.98 2.838 (2) 176
O2—H1O⋯O1ii 0.87 (4) 1.96 (4) 2.822 (2) 174 (3)
O2—H2O⋯N2i 0.79 (4) 2.43 (4) 2.966 (3) 126 (3)
O2—H2O⋯O1i 0.79 (4) 2.20 (4) 2.961 (2) 162 (3)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x-1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure, showing 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
A segment of the crystal structure, showing N—H⋯O and O—H⋯O hydrogen bonds and centroid–centroid contacts as dashed lines. Some H atoms have been omitted for clarity.

Synthesis and crystallization

The title compound (yield 85%) was synthesized from reaction of a mixture of 5-methyl-1-(4-methyl­phen­yl)-1H-1,2,3-triazole-4-carbohydrazide and 1-(1H-pyrrol-2-yl)ethanone in boiling ethanol containing a few drops of acetic acid for 4 h. The crude product obtained was recrystallized from di­methyl­formamide solution to give colourless crystals. The water mol­ecule of crystallization was presumably absorbed from the atmosphere.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H18N6O·H2O
Mr 340.39
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 7.3968 (8), 10.6475 (9), 12.7769 (13)
α, β, γ (°) 106.577 (9), 100.809 (9), 108.208 (9)
V3) 872.83 (16)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.26 × 0.18 × 0.15
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.497, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7305, 4129, 2871
Rint 0.022
(sin θ/λ)max−1) 0.699
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.155, 1.05
No. of reflections 4129
No. of parameters 237
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.27
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CHEMDRAW Ultra (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows and WinGX (Farrugia, 2012); software used to prepare material for publication: ORTEP-3 for Windows and WinGX (Farrugia, 2012), and CHEMDRAW Ultra (Cambridge Soft, 2001).

5-Methyl-1-(4-methylphenyl)-N'-[1-(1H-pyrrol-2-yl)ethylidene]-1H-1,2,3-triazole-4-carbohydrazide monohydrate top
Crystal data top
C17H18N6O·H2OZ = 2
Mr = 340.39F(000) = 360
Triclinic, P1Dx = 1.295 Mg m3
a = 7.3968 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6475 (9) ÅCell parameters from 2273 reflections
c = 12.7769 (13) Åθ = 3.4–28.7°
α = 106.577 (9)°µ = 0.09 mm1
β = 100.809 (9)°T = 296 K
γ = 108.208 (9)°Block, colourless
V = 872.83 (16) Å30.26 × 0.18 × 0.15 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
diffractometer
2871 reflections with I > 2σ(I)
ω scansRint = 0.022
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2015)
θmax = 29.8°, θmin = 3.0°
Tmin = 0.497, Tmax = 1.000h = 99
7305 measured reflectionsk = 1413
4129 independent reflectionsl = 1614
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.155 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.2675P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4129 reflectionsΔρmax = 0.21 e Å3
237 parametersΔρmin = 0.27 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Water H atoms were located on the difference Fourier map and refined freely. The rest of the H atoms were placed in calculated positions and refined using a riding model. Methyl C—H bonds were fixed at 0.96 Å, with displacement parameters 1.5 times Ueq(C), and were allowed to spin about the C—C bond. N—H bonds were fixed at 0.86 Å and aromatic C—H distances were set at 0.93 Å and their Uiso values set at 1.2 times the Ueq for the atoms to which they are bonded.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4498 (4)0.5591 (2)0.34752 (19)0.0624 (6)
H10.5520680.6142900.3676210.075*
C20.2509 (4)0.5212 (3)0.3952 (2)0.0674 (7)
H20.1929870.5456820.4533690.081*
C30.1493 (3)0.4384 (2)0.34062 (18)0.0582 (6)
H30.0115550.3978980.3558710.070*
C40.2908 (3)0.4282 (2)0.26023 (15)0.0449 (4)
C50.2718 (3)0.3527 (2)0.18161 (15)0.0435 (4)
C60.0678 (3)0.2643 (3)0.1852 (2)0.0661 (6)
H6A0.0509980.1663040.2082780.099*
H6B0.0304200.2747800.2391340.099*
H6C0.0516490.2951010.1104930.099*
C70.5842 (3)0.28246 (19)0.01528 (15)0.0427 (4)
C80.5431 (3)0.19870 (19)0.08797 (15)0.0437 (4)
C90.6700 (3)0.1633 (2)0.15650 (15)0.0447 (4)
C100.8839 (3)0.1866 (3)0.1746 (2)0.0644 (6)
H10A0.9654360.2776220.2339660.097*
H10B0.9158670.1840610.1047860.097*
H10C0.9088640.1132370.1967940.097*
C110.5936 (3)0.02833 (19)0.28757 (15)0.0423 (4)
C120.4664 (3)0.1064 (2)0.27027 (16)0.0473 (5)
H120.3578860.1580250.2041420.057*
C130.5012 (3)0.1642 (2)0.35192 (17)0.0510 (5)
H130.4148850.2552870.3401560.061*
C140.6612 (3)0.0901 (2)0.45079 (17)0.0493 (5)
C150.7877 (3)0.0454 (2)0.46619 (17)0.0537 (5)
H150.8973380.0964690.5317710.064*
C160.7543 (3)0.1060 (2)0.38601 (17)0.0514 (5)
H160.8386640.1978050.3981390.062*
C170.6964 (4)0.1568 (3)0.5383 (2)0.0680 (6)
H17A0.5746890.1944560.5558080.102*
H17B0.7978740.0861740.6069170.102*
H17C0.7389520.2323030.5078970.102*
N10.4733 (3)0.50299 (17)0.26600 (14)0.0512 (4)
H1A0.5861280.5129270.2240960.061*
N20.4359 (2)0.36382 (16)0.11682 (13)0.0447 (4)
N30.4194 (2)0.28847 (17)0.04530 (13)0.0463 (4)
H3A0.3044510.2454520.0393290.056*
N40.3558 (2)0.14459 (19)0.09563 (14)0.0528 (4)
N50.3573 (2)0.07814 (19)0.16659 (15)0.0539 (4)
N60.5496 (2)0.08967 (17)0.20462 (13)0.0455 (4)
O10.75210 (19)0.33899 (15)0.00833 (11)0.0534 (4)
O20.1638 (3)0.4799 (3)0.1289 (2)0.1062 (9)
H1O0.036 (6)0.435 (4)0.097 (3)0.130 (13)*
H2O0.211 (5)0.529 (4)0.097 (3)0.109 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0743 (16)0.0615 (13)0.0618 (13)0.0252 (12)0.0203 (11)0.0391 (11)
C20.0841 (18)0.0699 (15)0.0594 (13)0.0369 (13)0.0114 (12)0.0388 (12)
C30.0546 (13)0.0656 (14)0.0585 (12)0.0275 (11)0.0077 (10)0.0301 (11)
C40.0470 (11)0.0474 (11)0.0436 (10)0.0207 (9)0.0111 (8)0.0205 (8)
C50.0409 (10)0.0469 (10)0.0433 (9)0.0165 (8)0.0106 (8)0.0196 (8)
C60.0405 (12)0.0849 (16)0.0720 (14)0.0128 (11)0.0108 (10)0.0445 (13)
C70.0401 (10)0.0453 (10)0.0398 (9)0.0114 (8)0.0089 (7)0.0192 (8)
C80.0391 (10)0.0479 (11)0.0435 (9)0.0120 (8)0.0099 (7)0.0233 (8)
C90.0410 (10)0.0489 (11)0.0462 (10)0.0129 (8)0.0121 (8)0.0262 (8)
C100.0452 (12)0.0883 (17)0.0806 (15)0.0278 (11)0.0224 (11)0.0565 (14)
C110.0425 (10)0.0481 (10)0.0459 (10)0.0197 (8)0.0165 (8)0.0268 (8)
C120.0466 (11)0.0469 (11)0.0493 (10)0.0147 (9)0.0176 (8)0.0212 (9)
C130.0554 (12)0.0463 (11)0.0635 (12)0.0203 (9)0.0286 (10)0.0302 (10)
C140.0599 (12)0.0588 (12)0.0545 (11)0.0358 (10)0.0305 (10)0.0342 (10)
C150.0567 (12)0.0567 (12)0.0508 (11)0.0242 (10)0.0111 (9)0.0252 (10)
C160.0511 (12)0.0452 (11)0.0563 (11)0.0137 (9)0.0104 (9)0.0256 (9)
C170.0860 (17)0.0842 (17)0.0734 (15)0.0506 (14)0.0406 (13)0.0550 (13)
N10.0508 (10)0.0571 (10)0.0542 (9)0.0212 (8)0.0144 (7)0.0332 (8)
N20.0423 (9)0.0525 (9)0.0456 (8)0.0172 (7)0.0126 (7)0.0287 (7)
N30.0361 (8)0.0582 (10)0.0503 (9)0.0141 (7)0.0125 (7)0.0333 (8)
N40.0420 (9)0.0660 (11)0.0572 (10)0.0171 (8)0.0131 (7)0.0382 (9)
N50.0401 (9)0.0675 (11)0.0618 (10)0.0165 (8)0.0142 (7)0.0405 (9)
N60.0388 (9)0.0521 (9)0.0504 (9)0.0147 (7)0.0123 (7)0.0298 (7)
O10.0375 (7)0.0699 (9)0.0561 (8)0.0135 (7)0.0118 (6)0.0375 (7)
O20.0396 (10)0.147 (2)0.1405 (19)0.0047 (11)0.0041 (11)0.1141 (18)
Geometric parameters (Å, º) top
C1—N11.351 (2)C10—H10C0.9600
C1—C21.360 (3)C11—C121.375 (3)
C1—H10.9300C11—C161.382 (3)
C2—C31.400 (3)C11—N61.433 (2)
C2—H20.9300C12—C131.377 (3)
C3—C41.377 (3)C12—H120.9300
C3—H30.9300C13—C141.380 (3)
C4—N11.364 (3)C13—H130.9300
C4—C51.455 (2)C14—C151.386 (3)
C5—N21.285 (2)C14—C171.511 (3)
C5—C61.492 (3)C15—C161.382 (3)
C6—H6A0.9600C15—H150.9300
C6—H6B0.9600C16—H160.9300
C6—H6C0.9600C17—H17A0.9600
C7—O11.232 (2)C17—H17B0.9600
C7—N31.346 (2)C17—H17C0.9600
C7—C81.470 (2)N1—H1A0.8600
C8—N41.359 (2)N2—N31.376 (2)
C8—C91.375 (2)N3—H3A0.8600
C9—N61.353 (2)N4—N51.300 (2)
C9—C101.484 (3)N5—N61.368 (2)
C10—H10A0.9600O2—H1O0.87 (4)
C10—H10B0.9600O2—H2O0.79 (4)
N1—C1—C2108.3 (2)C12—C11—N6118.61 (16)
N1—C1—H1125.8C16—C11—N6120.64 (16)
C2—C1—H1125.8C11—C12—C13119.31 (18)
C1—C2—C3107.43 (18)C11—C12—H12120.3
C1—C2—H2126.3C13—C12—H12120.3
C3—C2—H2126.3C12—C13—C14121.59 (18)
C4—C3—C2107.4 (2)C12—C13—H13119.2
C4—C3—H3126.3C14—C13—H13119.2
C2—C3—H3126.3C13—C14—C15118.07 (17)
N1—C4—C3107.16 (17)C13—C14—C17120.34 (19)
N1—C4—C5121.31 (16)C15—C14—C17121.6 (2)
C3—C4—C5131.50 (19)C16—C15—C14121.31 (19)
N2—C5—C4116.18 (17)C16—C15—H15119.3
N2—C5—C6125.02 (17)C14—C15—H15119.3
C4—C5—C6118.75 (16)C11—C16—C15119.06 (18)
C5—C6—H6A109.5C11—C16—H16120.5
C5—C6—H6B109.5C15—C16—H16120.5
H6A—C6—H6B109.5C14—C17—H17A109.5
C5—C6—H6C109.5C14—C17—H17B109.5
H6A—C6—H6C109.5H17A—C17—H17B109.5
H6B—C6—H6C109.5C14—C17—H17C109.5
O1—C7—N3123.18 (16)H17A—C17—H17C109.5
O1—C7—C8123.42 (16)H17B—C17—H17C109.5
N3—C7—C8113.38 (16)C1—N1—C4109.67 (17)
N4—C8—C9109.63 (15)C1—N1—H1A125.2
N4—C8—C7120.37 (16)C4—N1—H1A125.2
C9—C8—C7129.99 (17)C5—N2—N3116.60 (16)
N6—C9—C8103.14 (16)C7—N3—N2119.63 (15)
N6—C9—C10124.59 (16)C7—N3—H3A120.2
C8—C9—C10132.18 (17)N2—N3—H3A120.2
C9—C10—H10A109.5N5—N4—C8109.18 (15)
C9—C10—H10B109.5N4—N5—N6106.59 (15)
H10A—C10—H10B109.5C9—N6—N5111.46 (14)
C9—C10—H10C109.5C9—N6—C11130.64 (16)
H10A—C10—H10C109.5N5—N6—C11117.88 (14)
H10B—C10—H10C109.5H1O—O2—H2O111 (3)
C12—C11—C16120.66 (16)
N1—C1—C2—C30.1 (3)N6—C11—C16—C15177.54 (18)
C1—C2—C3—C40.0 (3)C14—C15—C16—C111.4 (3)
C2—C3—C4—N10.1 (2)C2—C1—N1—C40.2 (3)
C2—C3—C4—C5178.0 (2)C3—C4—N1—C10.2 (2)
N1—C4—C5—N21.6 (3)C5—C4—N1—C1178.16 (18)
C3—C4—C5—N2179.5 (2)C4—C5—N2—N3177.59 (16)
N1—C4—C5—C6175.7 (2)C6—C5—N2—N30.5 (3)
C3—C4—C5—C62.2 (3)O1—C7—N3—N21.8 (3)
O1—C7—C8—N4177.01 (19)C8—C7—N3—N2179.80 (15)
N3—C7—C8—N44.5 (3)C5—N2—N3—C7172.56 (17)
O1—C7—C8—C92.0 (3)C9—C8—N4—N50.8 (2)
N3—C7—C8—C9176.40 (19)C7—C8—N4—N5178.43 (17)
N4—C8—C9—N61.0 (2)C8—N4—N5—N60.2 (2)
C7—C8—C9—N6178.14 (19)C8—C9—N6—N50.9 (2)
N4—C8—C9—C10175.6 (2)C10—C9—N6—N5176.1 (2)
C7—C8—C9—C105.2 (4)C8—C9—N6—C11177.44 (18)
C16—C11—C12—C130.5 (3)C10—C9—N6—C115.6 (3)
N6—C11—C12—C13176.89 (17)N4—N5—N6—C90.4 (2)
C11—C12—C13—C140.1 (3)N4—N5—N6—C11178.13 (16)
C12—C13—C14—C150.1 (3)C12—C11—N6—C9136.0 (2)
C12—C13—C14—C17179.51 (19)C16—C11—N6—C947.6 (3)
C13—C14—C15—C160.8 (3)C12—C11—N6—N545.8 (2)
C17—C14—C15—C16179.7 (2)C16—C11—N6—N5130.6 (2)
C12—C11—C16—C151.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.861.982.838 (2)176
O2—H1O···O1ii0.87 (4)1.96 (4)2.822 (2)174 (3)
O2—H2O···N2i0.79 (4)2.43 (4)2.966 (3)126 (3)
O2—H2O···O1i0.79 (4)2.20 (4)2.961 (2)162 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z.
 

Footnotes

Additional corresponding author, e-mail: kariukib@cardiff.ac.uk.

Funding information

MHA thanks King Abdulaziz City for Science and Technology (KACST), Saudi Arabia for financial support (award No. 020-0180).

References

First citationAlmasirad, A., Tajik, M., Bakhtiari, D., Shafiee, A., Abdollahi, M., Zamani, M. J., Khorasani, R. & Esmaily, H. (2005). J. Pharm. Pharm. Sci. 8, 419–425.  Google Scholar
First citationBonacorso, H. G., Cavinatto, S., Campos, P. T., Porte, L. M. F., Navarini, J., Paim, G. R., Martins, M. A. P., Zanatta, N. & Stuker, C. Z. (2012). J. Fluor. Chem. 135, 303–314.  CrossRef Google Scholar
First citationCambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHernández-Vázquez, E., Salgado-Barrera, S., Ramírez-Espinosa, J. J., Estrada-Soto, S. & Hernández-Luis, F. (2016). Bioorg. Med. Chem. 24, 2298–2306.  Google Scholar
First citationLeite, L. F., Ramos, M. N., da Silva, J. B., Miranda, A. L., Fraga, C. A. & Barreiro, E. J. (1999). Farmaco, 54, 747–757.  CrossRef Google Scholar
First citationLima, P. C., Lima, L. M., da Silva, K. C., Léda, P. H., de Miranda, A. L., Fraga, C. A. & Barreiro, E. J. (2000). Eur. J. Med. Chem. 35, 187–203.  CrossRef Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds