organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-Butyl-2,3,3-tri­methyl­indol-1-ium iodide

CROSSMARK_Color_square_no_text.svg

aGrupo de Pesquisa em Fotoquímica Orgânica Aplicada, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, and bChemistry Institute, University of Campinas, Brazil
*Correspondence e-mail: luis.duarte@iqm.unicamp.br

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 24 July 2018; accepted 7 August 2018; online 14 August 2018)

In the title mol­ecular salt, C15H22N+·I, the fused-ring system is slightly puckered [dihedral angle between the five- and six-membered rings = 3.43 (8)°]. In the crystal, very weak C—H⋯I inter­actions link the cations to the anions. Photophysical data for the title salt in different solvents are presented.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Recent studies have shown the importance of the indole nucleus with respect to its anti­cancer activities (Singh et al., 2010[Singh, P., Kaur, M. & Holzer, W. (2010). Eur. J. Med. Chem. 45, 4968-4982.]; Shaveta, 2014[Shaveta, S. P. (2014). Eur. J. Med. Chem. 74, 440-450.]) and in its biological applications as biosensors (Saikiran et al., 2017[Saikiran, M., Sato, D., Pandey, S. S., Ohta, T. & Hayase, S. (2017). Dyes Pigm. 140, 6-13.]; Guo et al., 2015[Guo, L., Chan, M. S., Xu, D., Tam, D. Y., Bolze, F., Lo, P. K. & Wong, M. S. (2015). ACS Chem. Biol. 10, 1171-1175.]). As part of our studies of indole derivatives, we report here the crystal structure and optical properties of the title salt, C15H22N+·I, bearing a quaternized indolic N atom with a butyl side chain.

The indole ring system (Fig. 1[link]) is slightly puckered [dihedral angle between the rings = 3.43 (8)°]. The key torsion angles of the butyl side chain are N1—C12—C13–C14 = 76.14 (18)° and C12—C13—C14—C15 = 176.26 (16)°. In the crystal, there are possibly some very weak C—H⋯I inter­actions (Table 1[link]). Given that the van der Waals separation of H and I is 3.18 Å, some of these may barely qualify as directional bonds.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯I1 0.95 3.18 3.899 (2) 134
C12—H12A⋯I1i 0.99 3.29 4.186 (3) 151
C12—H12B⋯I1 0.99 3.28 4.249 (3) 167
C13—H13B⋯I1ii 0.99 3.24 4.172 (3) 158
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids shown at the 50% probability level.

The absorption and emission spectra of the title compound are shown in Fig. 2[link]. The relevant data from UV–Vis absorption spectroscopy in different solvents are presented in Table 2[link]. The compound presents absorption maxima located between 279 and 285 nm related to allowed 1ππ* electronic transitions. The fluorescence emission spectra were obtained by exciting the compounds at the absorption maxima wavelength. The title compound shows emission in the UV-A region (∼365 nm), with a small solvatochromic effect and a Stokes shift higher than 7500 cm−1.

Table 2
Relevant photophysical data of the UV–Vis absorption and fluorescence emission spectroscopy, where λABS and λem are the absorption and emission maxima, respectively (nm), ∊ is the molar absorptivity coefficient (×104 M−1 cm−1) and SS is the Stokes shift (cm−1)

Solvent λABS λem SS
Di­chloro­methane 285 0.79 363 7540
Ethanol 279 2.70 367 8594
Aceto­nitrile 281 0.89 370 8560
[Figure 2]
Figure 2
UV–Vis absorption (a) and fluorescence emission (b) spectra in solution (10−5 M).

Synthesis and crystallization

A mixture of phenyl­hydrazine hydro­chloride (5.56 mmol), 3-methylbutan-2-one (6.67 mmol), H2SO4 (9.36 mmol) and 20 ml of a solution of acetone–ethanol (1:1 v/v) was refluxed under stirring for 4 h (Fig. 3[link]). The progress of the reaction was monitored by thin-layer chromatography (TLC). The solvent was partially evaporated and the pH adjusted to 4. The organic layer was separated from the aqueous phase by liquid–liquid extraction with di­chloro­methane (3 × 30 ml). The organic layer was dried with Na2SO4, filtered and concentrated. It is worth mentioning that it was necessary to perform a salting-out step for the separation of the layers. No additional treatments were performed for the indole quaternization step. The indole quaternization was afforded by addition of indole (1.9 mmol) to an excess of iodo­butane (9.9 mmol) in aceto­nitrile, previously saturated with N2. The reaction was conducted under reflux temperature and stirring under a nitro­gen atmosphere for 18 h. The reaction was monitored by TLC. The reaction crude was poured into ethyl acetate (50 ml) and allowed to stir under heating for 30 min. Thereafter, the supernatant was removed and the process was repeated three times. The resulting solid was filtered off and dried (yield 70%). The crystallization was performed with addition of methanol to dissolve the solid followed by the addition of ethyl acetate (m.p. 490 K).

[Figure 3]
Figure 3
Synthesis scheme for the title compound.

1H NMR (CDCl3, 400 MHz): δ (ppm) 7.65 (m, 1H), 7.56 (m, 3H), 4.65 (t, 2H, J = 8.0 Hz), 3.10 (s, 3H), 1.91 (m, 2H), 1.63 (s, 6H), 1.49 (m, 2H), 0.98 (t, 3H, J = 8.0 Hz). 1H NMR (DMSO-d6, 300 MHz): δ (ppm) 7.74 (m, 1H), 7.61 (m, 1H), 4.67 (t, 2H, J = 7.5 Hz), 3.13 (s, 3H), 1.96 (m, 2H), 1.67 (s, 6H), 1.53 (m, 2H), 1.01 (t, 3H, J = 6.0 Hz) 13C NMR (DMSO-d6, 75 MHz): δ (ppm) 195.5, 141.5, 140.7, 130.0, 129.4, 123.4, 115.3, 54.6, 49.7, 29.8, 23.1, 20.0, 17.0, 13.6.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms were refined as riding on their attached C atoms; the methyl groups were allowed to rotate, but not to tip, to best fit the electron density. The constraint Uiso(H) = kUeq(C), with k = 1.2 for CH and CH2 groups and k = 1.5 for methyl groups was applied.

Table 3
Experimental details

Crystal data
Chemical formula C15H22N+·I
Mr 343.23
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 150
a, b, c (Å) 15.631 (12), 11.614 (8), 16.976 (11)
V3) 3082 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 2.06
Crystal size (mm) 0.37 × 0.10 × 0.09
 
Data collection
Diffractometer Bruker APEX CCD detector
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.637, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 41973, 3784, 3166
Rint 0.037
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.047, 1.03
No. of reflections 3784
No. of parameters 158
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.38
Computer programs: APEX and SAINT (Bruker, 2013[Bruker (2013). APEX and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1-Butyl-2,3,3-trimethylindol-1-ium iodide top
Crystal data top
C15H22N+·IDx = 1.480 Mg m3
Mr = 343.23Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9006 reflections
a = 15.631 (12) Åθ = 2.6–28.2°
b = 11.614 (8) ŵ = 2.06 mm1
c = 16.976 (11) ÅT = 150 K
V = 3082 (4) Å3Needle, light brown
Z = 80.37 × 0.10 × 0.09 mm
F(000) = 1376
Data collection top
Bruker APEX CCD detector
diffractometer
3166 reflections with I > 2σ(I)
φ and ω scansRint = 0.037
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
θmax = 28.3°, θmin = 2.4°
Tmin = 0.637, Tmax = 0.746h = 820
41973 measured reflectionsk = 1515
3784 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.047 w = 1/[σ2(Fo2) + (0.0198P)2 + 1.6747P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3784 reflectionsΔρmax = 0.49 e Å3
158 parametersΔρmin = 0.37 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.30279 (12)0.35676 (13)0.65813 (9)0.0198 (3)
C20.21170 (11)0.31229 (14)0.65947 (9)0.0199 (3)
C30.21293 (11)0.23111 (13)0.59009 (9)0.0179 (3)
C40.29095 (10)0.24303 (13)0.55103 (9)0.0165 (3)
C50.31022 (11)0.18740 (14)0.48120 (9)0.0201 (3)
H50.3627450.1993610.4542650.024*
C60.24721 (12)0.11220 (14)0.45275 (9)0.0222 (4)
H60.2576250.0709400.4053890.027*
C70.16967 (12)0.09619 (14)0.49194 (10)0.0229 (4)
H70.1291180.0430560.4715490.028*
C80.15075 (11)0.15720 (15)0.56079 (10)0.0218 (3)
H80.0972310.1483880.5866260.026*
C90.18792 (12)0.25620 (17)0.73851 (10)0.0286 (4)
H9A0.2309850.1982710.7522970.043*
H9B0.1317750.2192540.7339670.043*
H9C0.1858590.3153080.7796660.043*
C100.15024 (14)0.41470 (17)0.64136 (12)0.0337 (4)
H10A0.1543600.4720010.6835640.050*
H10B0.0913260.3862600.6379860.050*
H10C0.1664150.4501830.5911460.050*
C110.34125 (13)0.42907 (15)0.72083 (10)0.0280 (4)
H11A0.3657900.3794310.7616790.042*
H11B0.2970020.4782110.7441260.042*
H11C0.3863610.4773540.6981170.042*
C120.43452 (11)0.34915 (14)0.57497 (10)0.0204 (3)
H12A0.4475830.4284130.5927360.024*
H12B0.4409740.3468960.5169790.024*
C130.49862 (11)0.26586 (14)0.61218 (10)0.0213 (3)
H13A0.5560430.3017600.6108940.026*
H13B0.4829470.2545170.6681520.026*
C140.50385 (13)0.14869 (16)0.57259 (11)0.0285 (4)
H14A0.5163120.1592410.5158700.034*
H14B0.4478520.1094330.5772000.034*
C150.57325 (15)0.0730 (2)0.60951 (15)0.0459 (6)
H15A0.5741320.0020220.5831030.069*
H15B0.5610020.0621750.6656370.069*
H15C0.6290650.1103990.6034210.069*
N10.34412 (9)0.32083 (11)0.59593 (8)0.0172 (3)
I10.42439 (2)0.38097 (2)0.32579 (2)0.02455 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0245 (9)0.0142 (7)0.0206 (7)0.0005 (7)0.0002 (7)0.0011 (6)
C20.0207 (8)0.0199 (7)0.0190 (7)0.0025 (7)0.0021 (7)0.0027 (6)
C30.0187 (8)0.0179 (7)0.0171 (7)0.0019 (6)0.0002 (6)0.0010 (6)
C40.0167 (8)0.0145 (7)0.0183 (7)0.0003 (6)0.0029 (6)0.0008 (5)
C50.0209 (8)0.0220 (8)0.0175 (7)0.0011 (7)0.0021 (7)0.0009 (6)
C60.0275 (9)0.0223 (8)0.0168 (7)0.0034 (7)0.0052 (7)0.0024 (6)
C70.0234 (9)0.0214 (8)0.0240 (8)0.0029 (7)0.0080 (7)0.0002 (6)
C80.0166 (8)0.0256 (8)0.0231 (8)0.0009 (7)0.0012 (7)0.0017 (6)
C90.0289 (10)0.0345 (9)0.0223 (8)0.0065 (8)0.0055 (8)0.0006 (7)
C100.0342 (11)0.0331 (9)0.0337 (10)0.0159 (9)0.0002 (9)0.0058 (8)
C110.0369 (11)0.0229 (8)0.0242 (8)0.0073 (8)0.0005 (8)0.0061 (7)
C120.0190 (8)0.0192 (7)0.0229 (8)0.0051 (7)0.0015 (7)0.0021 (6)
C130.0180 (8)0.0243 (8)0.0216 (8)0.0032 (7)0.0010 (7)0.0017 (6)
C140.0268 (10)0.0278 (8)0.0309 (9)0.0041 (8)0.0046 (8)0.0028 (7)
C150.0403 (13)0.0395 (12)0.0580 (14)0.0189 (11)0.0151 (11)0.0138 (10)
N10.0183 (7)0.0146 (6)0.0186 (6)0.0018 (5)0.0004 (6)0.0001 (5)
I10.02565 (7)0.02731 (7)0.02070 (6)0.00322 (5)0.00032 (5)0.00084 (4)
Geometric parameters (Å, º) top
C1—C21.515 (3)C10—H10A0.9800
C1—C111.483 (2)C10—H10B0.9800
C1—N11.306 (2)C10—H10C0.9800
C2—C31.509 (2)C11—H11A0.9800
C2—C91.537 (2)C11—H11B0.9800
C2—C101.560 (3)C11—H11C0.9800
C3—C41.395 (2)C12—H12A0.9900
C3—C81.389 (2)C12—H12B0.9900
C4—C51.383 (2)C12—C131.529 (2)
C4—N11.445 (2)C12—N11.494 (2)
C5—H50.9500C13—H13A0.9900
C5—C61.402 (2)C13—H13B0.9900
C6—H60.9500C13—C141.520 (2)
C6—C71.395 (3)C14—H14A0.9900
C7—H70.9500C14—H14B0.9900
C7—C81.398 (2)C14—C151.530 (3)
C8—H80.9500C15—H15A0.9800
C9—H9A0.9800C15—H15B0.9800
C9—H9B0.9800C15—H15C0.9800
C9—H9C0.9800
C11—C1—C2124.28 (15)H10A—C10—H10B109.5
N1—C1—C2111.60 (14)H10A—C10—H10C109.5
N1—C1—C11124.09 (17)H10B—C10—H10C109.5
C1—C2—C9112.64 (14)C1—C11—H11A109.5
C1—C2—C10108.42 (15)C1—C11—H11B109.5
C3—C2—C1100.91 (13)C1—C11—H11C109.5
C3—C2—C9114.81 (15)H11A—C11—H11B109.5
C3—C2—C10109.30 (14)H11A—C11—H11C109.5
C9—C2—C10110.27 (15)H11B—C11—H11C109.5
C4—C3—C2108.68 (14)H12A—C12—H12B107.8
C8—C3—C2131.06 (16)C13—C12—H12A109.1
C8—C3—C4120.19 (15)C13—C12—H12B109.1
C3—C4—N1108.31 (14)N1—C12—H12A109.1
C5—C4—C3123.46 (15)N1—C12—H12B109.1
C5—C4—N1128.23 (15)N1—C12—C13112.46 (14)
C4—C5—H5122.2C12—C13—H13A108.6
C4—C5—C6115.67 (16)C12—C13—H13B108.6
C6—C5—H5122.2H13A—C13—H13B107.6
C5—C6—H6119.0C14—C13—C12114.77 (14)
C7—C6—C5121.94 (16)C14—C13—H13A108.6
C7—C6—H6119.0C14—C13—H13B108.6
C6—C7—H7119.5C13—C14—H14A109.3
C6—C7—C8120.99 (16)C13—C14—H14B109.3
C8—C7—H7119.5C13—C14—C15111.80 (16)
C3—C8—C7117.67 (16)H14A—C14—H14B107.9
C3—C8—H8121.2C15—C14—H14A109.3
C7—C8—H8121.2C15—C14—H14B109.3
C2—C9—H9A109.5C14—C15—H15A109.5
C2—C9—H9B109.5C14—C15—H15B109.5
C2—C9—H9C109.5C14—C15—H15C109.5
H9A—C9—H9B109.5H15A—C15—H15B109.5
H9A—C9—H9C109.5H15A—C15—H15C109.5
H9B—C9—H9C109.5H15B—C15—H15C109.5
C2—C10—H10A109.5C1—N1—C4109.97 (14)
C2—C10—H10B109.5C1—N1—C12126.15 (14)
C2—C10—H10C109.5C4—N1—C12123.79 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···I10.953.183.899 (2)134
C12—H12A···I1i0.993.294.186 (3)151
C12—H12B···I10.993.284.249 (3)167
C13—H13B···I1ii0.993.244.172 (3)158
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2.
Relevant photophysical data of the UV–Vis absorption and fluorescence emission spectroscopy, where λabs and λem are the absorption and emission maxima, respectively (nm), ε is the molar absorptivity coefficient (× 104 M-1 cm-1) and SS is the Stokes shift (cm-1). top
SolventλabsελemSS
Dichloromethane2850.793637540
Ethanol2792.703678594
Acetonitrile2810.893708560
 

Acknowledgements

The authors acknowlege the agencies CAPES, FAPERGS, CNPq and FAPESP for financial support and fellowships. We thank Professor Dr Teresa Dib Zambon Atvars and the Chemistry Institute of the University of Campinas for the infrastructure and Dr Deborah de A. Simoni for all the valuable discussions.

Funding information

Funding for this research was provided by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior ; Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (award No. 470529/2012-1); Fundação de Amparo à Pesquisa do Estado de São Paulo (award Nos. 2009/51605-5 and 2013/16245-2).

References

First citationBruker (2013). APEX and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2015). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGuo, L., Chan, M. S., Xu, D., Tam, D. Y., Bolze, F., Lo, P. K. & Wong, M. S. (2015). ACS Chem. Biol. 10, 1171–1175.  Web of Science CrossRef Google Scholar
First citationSaikiran, M., Sato, D., Pandey, S. S., Ohta, T. & Hayase, S. (2017). Dyes Pigm. 140, 6–13.  Web of Science CrossRef Google Scholar
First citationShaveta, S. P. (2014). Eur. J. Med. Chem. 74, 440–450.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, P., Kaur, M. & Holzer, W. (2010). Eur. J. Med. Chem. 45, 4968–4982.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds