organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,2′-Bipyridin-1-ium hemioxalate oxalic acid monohydrate

CROSSMARK_Color_square_no_text.svg

aFaculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
*Correspondence e-mail: bdziuk@uni.opole.pl

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 24 August 2018; accepted 28 August 2018; online 31 August 2018)

The asymmetric unit of the title compound, C10H9N2+·0.5C2O42−·C2H2O4·H2O, consists of a 2,2′-bipyridinium cation, half an oxalate dianion, one oxalic acid and one water mol­ecule. One N atom in 2,2′-bi­pyridine is unprotonated, while the second is protonated and forms an N—H⋯O hydrogen bond. In the crystal, the anions are connected with surrounding acid mol­ecules and water mol­ecules by strong near-linear O—H⋯O hydrogen bonds. The water mol­ecules are located between the anions and oxalic acids; their O atoms participate as donors and acceptors, respectively, in O—H⋯O hydrogen bonds, which form sheets arranged parallel to the ac plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Hydrogen bonds are one of the most important inter­molecular inter­actions in structural chemistry (Desiraju, 2013[Desiraju, G. (2013). J. Am. Chem. Soc. 135, 9952-9967.]). The strong inter­actions between cations and anions have been studied extensively for use in supra­molecular chemistry and crystal engineering. Carb­oxy­lic acids, especially in hydrates, form strong inter­actions that may strongly influence the different forms of structures, usually forming supra­molecular synthons (Dziuk et al., 2014a[Dziuk, B., Zarychta, B. & Ejsmont, K. (2014a). Acta Cryst. E70, o852.],b[Dziuk, B., Zarychta, B. & Ejsmont, K. (2014b). Acta Cryst. E70, o917-o918.], 2017[Dziuk, B., Zarychta, B., Ejsmont, K. & Daszkiewicz, Z. (2017). IUCrData, 2, x171390.]; Braga et al., 2013[Braga, D., Chelazzi, L., Ciabatti, I. & Grepioni, F. (2013). New J. Chem. 37, 97-104.]; Ejsmont & Zaleski, 2006[Ejsmont, K. & Zaleski, J. (2006). Acta Cryst. E62, o3879-o3880.]). 2,2′-Bi­pyridine derivatives are classical bidentate chelating heterocyclic ligands (Steel, 1996[Steel, P. J. (1996). Aromatic Biheterocycles: Syntheses, Structures, and Properties. Advances in Heterocyclic Chemistry, Vol. 67, pp. 49-52. New York: Academic Press.]) employed in transition metal catalysis and inorganic syntheses (e.g. aluminium-initiated polymerization; Blau, 1888[Blau, F. (1888). Ber. Dtsch. Chem. Ges. 21, 1077-1078.]; Mardare & Matyjaszewski, 1994[Mardare, D. & Matyjaszewski, K. (1994). Macromolecules, 27, 3, 645-649.]) because of their robust redox stability and ease of functionalization (Kaes et al., 2000[Kaes, C., Katz, A. & Hosseini, M. W. (2000). Chem. Rev. 100, 3553-3590.]). Many complexes with 2,2′-bi­pyridine have distinctive optical properties and are used in studies of electron and energy transfer, catalysis and supra­molecular chemistry (Balzani et al., 2006[Balzani, V., Bergamini, G., Marchioni, F. & Ceroni, P. (2006). Coord. Chem. Rev. 250, 1254-1266.]). Their use as building blocks for the construction of efficient mol­ecular and macromolecular non-linear optical chromophores is an area of great inter­est (Coe et al., 2005[Coe, B. J., Harris, J. A., Brunschwig, B. S., Asselberghs, I., Clays, K., Garín, J. & Orduna, J. (2005). J. Am. Chem. Soc. 127, 13399-13410.]). 2,2′-Bi­pyridine has been used for more than a century as common chelating ligand in analytical, organometallic and coordination chemistry (Steel, 1996[Steel, P. J. (1996). Aromatic Biheterocycles: Syntheses, Structures, and Properties. Advances in Heterocyclic Chemistry, Vol. 67, pp. 49-52. New York: Academic Press.]).

The crystal structure of the title hydrated salt, (I)[link], consists of a 2,2′-bipyridinium cation, half an oxalate anion, one oxalic acid and one water mol­ecule (Fig. 1[link]). The oxalate anion is planar with an inversion center at the mid-point of the C—C bond. One nitro­gen atom in the 2,2′-bipyridinium cation is unprotonated while second one is protonated and forms a strong N—H⋯O hydrogen bond. In the crystal, two different types of strong hydrogen bonds are observed: N—H⋯O and O—H⋯O (Table 1[link], Fig. 2[link]). The anions are connected with the cations and surrounding acid mol­ecules and water mol­ecules by strong near-linear O—H⋯O hydrogen bonds. The water mol­ecules are located between the anions and oxalic acid mol­ecules; their O atoms participate as donors and acceptors, respectively, in O—H⋯O hydrogen bonds, which form sheets arranged parallel to the ac plane.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O2i 0.84 1.99 2.8192 (12) 170
N1—H1⋯O1 0.86 1.99 2.7586 (13) 148
O4—H4⋯O1 0.94 1.64 2.5795 (11) 176
O4—H4⋯O2 0.94 2.62 3.2259 (12) 122
O6—H6⋯O7 0.92 1.63 2.5467 (11) 169
O7—H7B⋯O2ii 0.93 1.75 2.6802 (12) 174
C8—H8⋯O3 0.93 2.52 3.3132 (18) 144
C10—H10⋯O7iii 0.93 2.43 3.2562 (17) 148
C13—H13⋯O6iv 0.93 2.59 3.3876 (16) 144
Symmetry codes: (i) -x+2, -y, -z+1; (ii) x, y, z-1; (iii) x-1, y+1, z+1; (iv) x, y, z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The packing viewed along the b axis, showing the hydrogen-bonding scheme (dashed lines).

Synthesis and crystallization

Crystals were grown at room temperature by slow evaporation of an aqueous solution containing 2,2′-bi­pyridine and oxalic acid in a 1:1 stoichiometric ratio.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C10H9N2+·0.5C2O42−·C2H2O4·H2O
Mr 309.25
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 7.2618 (4), 8.9419 (6), 11.0001 (7)
α, β, γ (°) 85.545 (5), 86.177 (5), 75.248 (5)
V3) 687.84 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.4 × 0.35 × 0.3
 
Data collection
Diffractometer Oxford Diffraction Xcalibur
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 4712, 2648, 2054
Rint 0.016
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.089, 1.04
No. of reflections 2648
No. of parameters 200
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.16
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.]), SHELXS2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis CCD (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

2,2'-Bipyridin-1-ium hemioxalate oxalic acid monohydrate top
Crystal data top
C10H9N2+·0.5C2O42·C2H2O4·H2OZ = 2
Mr = 309.25F(000) = 322
Triclinic, P1Dx = 1.493 Mg m3
a = 7.2618 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9419 (6) ÅCell parameters from 4712 reflections
c = 11.0001 (7) Åθ = 3.1–26.0°
α = 85.545 (5)°µ = 0.12 mm1
β = 86.177 (5)°T = 293 K
γ = 75.248 (5)°Plate, pink
V = 687.84 (8) Å30.4 × 0.35 × 0.3 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2054 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Detector resolution: 1024 x 1024 with blocks 2 x 2 pixels mm-1θmax = 26.0°, θmin = 3.1°
ω–scanh = 88
4712 measured reflectionsk = 911
2648 independent reflectionsl = 1313
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.051P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.16 e Å3
2648 reflectionsΔρmin = 0.15 e Å3
200 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.138 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were located in a difference map and set to this position. During refinement they were treated as riding on their parent N, O and C atoms, with and Uiso (H) = 1.2Ueq(C, N, O).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.49365 (11)0.08583 (10)0.85141 (7)0.0386 (2)
N10.27452 (14)0.38740 (12)0.84585 (10)0.0408 (3)
H10.33700.29970.87750.049*
C10.56889 (16)0.02093 (13)0.94780 (10)0.0294 (3)
O20.74212 (11)0.01433 (10)0.96493 (8)0.0465 (3)
N20.38268 (15)0.33461 (12)1.07479 (10)0.0406 (3)
C20.68092 (17)0.05604 (14)0.56545 (11)0.0349 (3)
O30.55452 (14)0.17018 (12)0.54737 (8)0.0594 (3)
C30.80116 (17)0.03224 (15)0.46116 (10)0.0339 (3)
O40.73101 (12)0.00942 (11)0.67194 (7)0.0470 (3)
H40.64570.02970.73700.056*
C40.21997 (17)0.50713 (14)0.91815 (12)0.0389 (3)
C50.11417 (19)0.64602 (15)0.86672 (15)0.0510 (4)
H50.07130.73100.91410.061*
O50.91375 (13)0.15528 (11)0.47742 (8)0.0506 (3)
C60.0722 (2)0.65872 (18)0.74540 (17)0.0589 (4)
H6A0.00060.75220.71130.071*
O60.76264 (12)0.04452 (10)0.35664 (7)0.0453 (3)
H60.83980.00280.29340.054*
C70.1354 (2)0.53431 (19)0.67463 (15)0.0591 (4)
H70.10980.54300.59230.071*
O70.94612 (12)0.06711 (10)0.16511 (7)0.0440 (3)
H7A1.03590.03340.13170.053*
H7B0.86730.04780.09910.053*
C80.2373 (2)0.39662 (18)0.72765 (14)0.0524 (4)
H80.28020.31040.68170.063*
C90.27939 (17)0.47844 (14)1.04566 (12)0.0377 (3)
C100.2316 (2)0.59226 (17)1.12833 (15)0.0546 (4)
H100.16230.69171.10470.066*
C110.2885 (2)0.5560 (2)1.24680 (16)0.0633 (4)
H110.25700.63051.30430.076*
C120.3922 (2)0.40849 (19)1.27819 (14)0.0563 (4)
H120.43130.38051.35740.068*
C130.43656 (19)0.30303 (16)1.18919 (13)0.0481 (4)
H130.50860.20371.21040.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0423 (5)0.0424 (5)0.0235 (4)0.0008 (4)0.0009 (4)0.0047 (4)
N10.0347 (6)0.0340 (6)0.0480 (7)0.0002 (5)0.0044 (5)0.0057 (5)
C10.0346 (7)0.0280 (6)0.0231 (6)0.0036 (5)0.0005 (5)0.0022 (5)
O20.0339 (5)0.0719 (7)0.0328 (5)0.0137 (5)0.0012 (4)0.0040 (4)
N20.0397 (6)0.0320 (6)0.0479 (7)0.0060 (5)0.0037 (5)0.0025 (5)
C20.0320 (6)0.0421 (7)0.0286 (6)0.0071 (6)0.0025 (5)0.0027 (5)
O30.0621 (6)0.0590 (7)0.0374 (6)0.0187 (5)0.0016 (5)0.0013 (5)
C30.0303 (6)0.0421 (8)0.0287 (6)0.0083 (6)0.0030 (5)0.0007 (5)
O40.0449 (5)0.0603 (6)0.0252 (5)0.0035 (4)0.0024 (4)0.0038 (4)
C40.0279 (6)0.0304 (7)0.0561 (9)0.0064 (5)0.0018 (6)0.0043 (6)
C50.0404 (7)0.0320 (8)0.0755 (11)0.0041 (6)0.0029 (7)0.0109 (7)
O50.0542 (6)0.0474 (6)0.0384 (5)0.0080 (5)0.0009 (4)0.0006 (4)
C60.0400 (8)0.0480 (10)0.0833 (12)0.0080 (7)0.0128 (8)0.0285 (8)
O60.0493 (5)0.0512 (6)0.0265 (5)0.0015 (4)0.0015 (4)0.0022 (4)
C70.0470 (9)0.0685 (11)0.0592 (10)0.0142 (8)0.0145 (7)0.0217 (8)
O70.0389 (5)0.0597 (6)0.0311 (5)0.0090 (4)0.0007 (4)0.0025 (4)
C80.0464 (8)0.0574 (9)0.0501 (9)0.0077 (7)0.0067 (7)0.0024 (7)
C90.0296 (6)0.0324 (7)0.0507 (8)0.0092 (5)0.0029 (5)0.0001 (6)
C100.0519 (9)0.0371 (8)0.0727 (11)0.0077 (7)0.0052 (8)0.0087 (7)
C110.0676 (10)0.0655 (11)0.0637 (11)0.0268 (9)0.0104 (8)0.0241 (8)
C120.0579 (9)0.0687 (11)0.0495 (9)0.0289 (8)0.0027 (7)0.0048 (8)
C130.0468 (8)0.0463 (8)0.0518 (9)0.0137 (7)0.0076 (7)0.0051 (7)
Geometric parameters (Å, º) top
O1—C11.2569 (13)C5—H50.9300
N1—C81.3375 (17)C6—C71.371 (2)
N1—C41.3453 (17)C6—H6A0.9300
N1—H10.8600O6—H60.9224
C1—O21.2401 (13)C7—C81.3733 (19)
C1—C1i1.559 (2)C7—H70.9300
N2—C131.3306 (16)O7—H7A0.8379
N2—C91.3402 (15)O7—H7B0.9327
C2—O31.1997 (14)C8—H80.9300
C2—O41.2996 (13)C9—C101.380 (2)
C2—C31.5355 (18)C10—C111.383 (2)
C3—O51.2007 (14)C10—H100.9300
C3—O61.3014 (13)C11—C121.373 (2)
O4—H40.9417C11—H110.9300
C4—C51.3841 (17)C12—C131.378 (2)
C4—C91.4791 (19)C12—H120.9300
C5—C61.378 (2)C13—H130.9300
C8—N1—C4123.91 (11)C3—O6—H6112.1
C8—N1—H1118.0C6—C7—C8118.73 (15)
C4—N1—H1118.0C6—C7—H7120.6
O2—C1—O1125.34 (10)C8—C7—H7120.6
O2—C1—C1i118.21 (12)H7A—O7—H7B98.0
O1—C1—C1i116.44 (12)N1—C8—C7119.56 (14)
C13—N2—C9117.25 (12)N1—C8—H8120.2
O3—C2—O4125.59 (12)C7—C8—H8120.2
O3—C2—C3122.43 (11)N2—C9—C10122.62 (13)
O4—C2—C3111.97 (10)N2—C9—C4115.25 (12)
O5—C3—O6126.36 (12)C10—C9—C4122.13 (12)
O5—C3—C2122.97 (11)C9—C10—C11118.92 (14)
O6—C3—C2110.67 (11)C9—C10—H10120.5
C2—O4—H4114.2C11—C10—H10120.5
N1—C4—C5117.27 (13)C12—C11—C10118.99 (14)
N1—C4—C9116.89 (11)C12—C11—H11120.5
C5—C4—C9125.84 (13)C10—C11—H11120.5
C6—C5—C4120.14 (15)C11—C12—C13118.18 (15)
C6—C5—H5119.9C11—C12—H12120.9
C4—C5—H5119.9C13—C12—H12120.9
C7—C6—C5120.36 (13)N2—C13—C12124.03 (13)
C7—C6—H6A119.8N2—C13—H13118.0
C5—C6—H6A119.8C12—C13—H13118.0
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O2ii0.841.992.8192 (12)170
N1—H1···O10.861.992.7586 (13)148
O4—H4···O10.941.642.5795 (11)176
O4—H4···O20.942.623.2259 (12)122
O6—H6···O70.921.632.5467 (11)169
O7—H7B···O2iii0.931.752.6802 (12)174
C8—H8···O30.932.523.3132 (18)144
C10—H10···O7iv0.932.433.2562 (17)148
C13—H13···O6v0.932.593.3876 (16)144
Symmetry codes: (ii) x+2, y, z+1; (iii) x, y, z1; (iv) x1, y+1, z+1; (v) x, y, z+1.
 

References

First citationBalzani, V., Bergamini, G., Marchioni, F. & Ceroni, P. (2006). Coord. Chem. Rev. 250, 1254–1266.  CrossRef Google Scholar
First citationBlau, F. (1888). Ber. Dtsch. Chem. Ges. 21, 1077–1078.  CrossRef Google Scholar
First citationBraga, D., Chelazzi, L., Ciabatti, I. & Grepioni, F. (2013). New J. Chem. 37, 97–104.  Web of Science CSD CrossRef CAS Google Scholar
First citationCoe, B. J., Harris, J. A., Brunschwig, B. S., Asselberghs, I., Clays, K., Garín, J. & Orduna, J. (2005). J. Am. Chem. Soc. 127, 13399–13410.  CrossRef Google Scholar
First citationDesiraju, G. (2013). J. Am. Chem. Soc. 135, 9952–9967.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDziuk, B., Zarychta, B. & Ejsmont, K. (2014a). Acta Cryst. E70, o852.  CSD CrossRef IUCr Journals Google Scholar
First citationDziuk, B., Zarychta, B. & Ejsmont, K. (2014b). Acta Cryst. E70, o917–o918.  CSD CrossRef IUCr Journals Google Scholar
First citationDziuk, B., Zarychta, B., Ejsmont, K. & Daszkiewicz, Z. (2017). IUCrData, 2, x171390.  Google Scholar
First citationEjsmont, K. & Zaleski, J. (2006). Acta Cryst. E62, o3879–o3880.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKaes, C., Katz, A. & Hosseini, M. W. (2000). Chem. Rev. 100, 3553–3590.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMardare, D. & Matyjaszewski, K. (1994). Macromolecules, 27, 3, 645–649.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteel, P. J. (1996). Aromatic Biheterocycles: Syntheses, Structures, and Properties. Advances in Heterocyclic Chemistry, Vol. 67, pp. 49–52. New York: Academic Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds