organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-Hy­dr­oxy-2-(4-methyl­phen­yl)-4H-chromen-4-one

CROSSMARK_Color_square_no_text.svg

aGeorgia Southern University, 11935 Abercorn St., Department of Chemistry and Biochemistry, Savannah GA 31419, USA
*Correspondence e-mail: cpadgett@georgiasouthern.edu

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 27 June 2018; accepted 9 August 2018; online 16 August 2018)

Our work in the area of carbon-monoxide-releasing mol­ecules led to the synthesis and crystallization of new flavone derivatives as inter­mediates. Herein we report the first crystal structure of the title compound, C16H12O3, a hy­droxy-substituted flavone where the 2-phenyl group has been replaced by a p-tolyl group. The introduction of the 3-hy­droxy group allows the formation of inter­molecular O—H⋯O=C hydrogen bonds, used to build centrosymmetric R22(10) ring motifs in the crystal.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Flavones contain the 2-phenyl­benzo­pyran pharmacophore and are secondary metabolites of plants. They possess many biological activities, including anti­biotic, anti­cancer, and anti­oxidant behavior. Recently, there has been inter­est in flavones as carbon-monoxide-releasing mol­ecules (CORMs; Anderson et al., 2015[Anderson, S. N., Richards, J. M., Esquer, H. J., Benninghoff, A. D., Arif, A. M. & Berreau, L. M. (2015). ChemistryOpen, 4, 590-594.]). Our work in this area led to the synthesis and crystallization of flavones as inter­mediates. Herein we report the first crystal structure of a new 3-hy­droxy­flavone (Fig. 1[link]), which forms a hydrogen-bonded dimer. The hydrogen bonding occurs between O atoms of the benzo­pyran­one ring with an R(10) synthon. The hydrogen bond between O2 and O3i is characterized by an O⋯O separation of 2.721 (2) Å [symmetry code: (i) −x + 2, −y + 2, −z + 1; Table 1[link]], and the ring motifs R22(10) are placed on inversion centers in the space group P21/n (Fig. 2[link]). A secondary intra­molecular C—H⋯O hydrogen bond (Table 1[link], entry 2) also involves the hy­droxy O2 atom as an acceptor group, forming an S(6) motif. The centroid Cg1 of the tolyl ring (C10–C15) and the centroid Cg2 of a symmetry-related pyran­one ring (C1–C4/C9/O1; symmetry code: x, y − 1, z) are separated by 3.7525 (15) Å, with both rings almost parallel. This is the only significant ππ inter­action observed in the crystal. The mol­ecule is nearly planar, with the tolyl and benzo­pyran­one rings forming a dihedral angle of 18.27 (8)°. This is consistent with several other similar flavonoids, for example, 2-(4-chloro­phen­yl)-3-hy­droxy-4H-chromen-4-one is nearly planar, with the phenyl ring tilted by 15.92 (8)° with respect to the benzo­pyran­one ring (Zingales & Padgett, 2017[Zingales, S. & Padgett, C. (2017). IUCrData, 2, x170996.]), 3-hy­droxy-2-(4-hy­droxy­phen­yl)-4H-chromen-4-one, where the angle is 18.9 (4)° (Wera et al., 2011a[Wera, M., Pivovarenko, V. G. & Błażejowski, J. (2011a). Acta Cryst. E67, o264-o265.]), and 3-hy­droxy-2-(4-meth­oxy­phen­yl)-4H-chromen-4-one, where the corresponding angle is 12.3 (1)° (Wera et al., 2011b[Wera, M., Serdiuk, I. E., Roshal, A. D. & Błażejowski, J. (2011b). Acta Cryst. E67, o440.]). The crystal structure exhibits a classic herringbone pattern (Fig. 2[link]) with the blocks consisting of the hydrogen-bonded dimers.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.88 (2) 1.92 (2) 2.721 (2) 151 (3)
C11—H11⋯O2 0.93 2.24 2.838 (3) 122
Symmetry code: (i) -x+2, -y+2, -z+1.
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Crystal packing diagram of the title compound, viewed along the a axis. H atoms have been omitted for clarity and O⋯O bonds represent hydrogen-bonded O-atom sites.

Synthesis and crystallization

The title compound was synthesized (Fig. 3[link]) by the aldol condensation of 2-hy­droxy­aceto­phenone and 4-methyl­benzaldehyde to yield the chalcone (E)-1-(2-hy­droxy­phen­yl)-3-(p-tol­yl)prop-2-en-1-one, followed by its oxidative cyclization to the flavone, as reported in the literature (Kurzwernhart et al., 2012[Kurzwernhart, A., Kandioller, W., Bächler, S., Bartel, C., Martic, S., Buczkowska, M., Mühlgassner, G., Jakupec, M. A., Kraatz, H.-B., Bednarski, P. J., Arion, V. B., Marko, D., Keppler, B. K. & Hartinger, C. G. (2012). J. Med. Chem. 55, 10512-10522.]). 2-Hy­droxy­aceto­phenone (4.8 g, 36 mmol) and 4-methyl­benzaldehyde (4.3 g, 36 mmol) were dissolved in ethanol (90 ml). An NaOH solution (5 M, 30 ml) was added and the reaction was stirred until a precipitate formed. The reaction mixture was acidified to pH 6 with dilute acetic acid. The solids were filtered off and taken directly to the next step. (E)-1-(2-Hy­droxy­phen­yl)-3-(p-tol­yl)prop-2-en-1-one (3.5 g, 14 mmol) was then suspended in EtOH (30 ml) and cooled in an ice water bath. An NaOH solution (5 M, 5 ml) and H2O2 (30%, 2.2 equiv., 3 ml) were added and the reaction stirred overnight, warming to room temperature. The reaction mixture was acidified to pH 1 with HCl (6 M) and poured into cold water (400 ml). The white solid was collected by filtration and recrystallization of an MeOH solution afforded yellow crystals (1.7 g, 19% yield over two steps). The structure was confirmed to match the literature (Kurzwernhart et al., 2012[Kurzwernhart, A., Kandioller, W., Bächler, S., Bartel, C., Martic, S., Buczkowska, M., Mühlgassner, G., Jakupec, M. A., Kraatz, H.-B., Bednarski, P. J., Arion, V. B., Marko, D., Keppler, B. K. & Hartinger, C. G. (2012). J. Med. Chem. 55, 10512-10522.]). 1H NMR (300 MHz, CDCl3, p.p.m.): δ 8.26 (dd, J = 1.2, 8.1 Hz, 1H, Ar—H), 8.17 (d, J = 8.2 Hz, 2H, Ar—H), 7.72 (td, J = 1.7, 8.6 Hz, 1H, Ar—H), 7.6 (d, J = 8.2 Hz, 1H, Ar—H), 7.42 (t, J = 7.6 Hz, 1H, Ar—H), 7.36 (d, J = 8.2 Hz, 2H, Ar—H), 7.01 (bs, 1H, OH), 2.45 (s, 3H, CH3).

[Figure 3]
Figure 3
Synthesis of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H12O3
Mr 252.26
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 13.2958 (13), 5.1981 (4), 18.8162 (15)
β (°) 109.212 (9)
V3) 1228.02 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.50 × 0.20 × 0.05
 
Data collection
Diffractometer Rigaku XtaLAB mini
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Oxford Diffraction/Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.838, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12529, 2252, 1394
Rint 0.056
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.170, 1.04
No. of reflections 2252
No. of parameters 176
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.20
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Oxford Diffraction/Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO; cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXT-2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2.

3-Hydroxy-2-(4-methylphenyl)-4H-chromen-4-one top
Crystal data top
C16H12O3F(000) = 528
Mr = 252.26Dx = 1.364 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.2958 (13) ÅCell parameters from 1203 reflections
b = 5.1981 (4) Åθ = 2.3–21.8°
c = 18.8162 (15) ŵ = 0.09 mm1
β = 109.212 (9)°T = 293 K
V = 1228.02 (19) Å3Needle, yellow
Z = 40.50 × 0.20 × 0.05 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
2252 independent reflections
Radiation source: Sealed Tube, Rigaku (Mo) X-ray Source1394 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.056
Detector resolution: 13.6612 pixels mm-1θmax = 25.3°, θmin = 2.3°
profile data from ω–scansh = 1516
Absorption correction: multi-scan
CrysAlisPro (Rigaku OD, 2018)
k = 56
Tmin = 0.838, Tmax = 1.000l = 2222
12529 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: mixed
wR(F2) = 0.170H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0872P)2 + 0.0826P]
where P = (Fo2 + 2Fc2)/3
2252 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = 0.19 e Å3
Special details top

Refinement. All C-bound H atoms were positioned geometrically and refined as riding, with C—H = 0.93 or 0.96 Å and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C) for C(H) and CH3 groups, respectively. H atoms involved in O—H···O hydrogen bonds were located on a difference Fourier map and refined isotropically with Uiso(H) = 1.5Ueq(O). The H2—O2 distance was restrained to a target value of 0.84 (2) Å, using a DFIX command in SHELXL (Sheldrick, 2015b).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.64822 (13)0.5830 (3)0.41165 (9)0.0524 (5)
O20.92078 (14)0.6646 (4)0.53130 (10)0.0596 (5)
H20.965 (2)0.788 (5)0.5307 (17)0.089*
O30.90470 (15)1.0256 (4)0.42282 (10)0.0690 (6)
C10.74245 (18)0.5511 (4)0.46966 (12)0.0432 (6)
C20.82869 (18)0.6966 (5)0.47341 (13)0.0454 (6)
C30.82503 (19)0.8942 (5)0.41869 (13)0.0475 (6)
C40.72316 (19)0.9250 (4)0.35938 (13)0.0444 (6)
C50.7068 (2)1.1130 (5)0.30258 (14)0.0542 (7)
H50.7617411.2243930.3031200.065*
C60.6103 (2)1.1322 (5)0.24672 (15)0.0633 (8)
H60.5999021.2562390.2093690.076*
C70.5278 (2)0.9665 (6)0.24576 (16)0.0652 (8)
H70.4627080.9795950.2073360.078*
C80.5412 (2)0.7834 (5)0.30083 (14)0.0609 (8)
H80.4858760.6728060.3000540.073*
C90.6391 (2)0.7672 (5)0.35765 (13)0.0474 (6)
C100.73289 (19)0.3510 (4)0.52236 (12)0.0448 (6)
C110.8214 (2)0.2358 (5)0.57398 (13)0.0537 (7)
H110.8894640.2840540.5754910.064*
C120.8091 (2)0.0512 (5)0.62279 (15)0.0601 (7)
H120.8694130.0240430.6565930.072*
C130.7094 (2)0.0264 (5)0.62317 (14)0.0569 (7)
C140.6227 (2)0.0887 (5)0.57241 (15)0.0641 (8)
H140.5550150.0413150.5718650.077*
C150.6321 (2)0.2730 (5)0.52190 (15)0.0599 (7)
H150.5713130.3449400.4876570.072*
C160.6976 (3)0.2350 (6)0.67638 (15)0.0745 (9)
H16A0.7096760.4002000.6578520.112*
H16B0.6269820.2292990.6794620.112*
H16C0.7486560.2073340.7254490.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0470 (10)0.0573 (11)0.0434 (10)0.0100 (8)0.0021 (8)0.0074 (8)
O20.0438 (11)0.0700 (13)0.0563 (11)0.0092 (9)0.0045 (9)0.0091 (10)
O30.0565 (12)0.0855 (14)0.0582 (12)0.0253 (11)0.0099 (9)0.0103 (10)
C10.0399 (14)0.0497 (14)0.0345 (12)0.0004 (11)0.0048 (10)0.0002 (10)
C20.0389 (14)0.0545 (15)0.0399 (13)0.0022 (11)0.0089 (11)0.0050 (11)
C30.0456 (15)0.0565 (16)0.0393 (13)0.0089 (12)0.0123 (12)0.0036 (11)
C40.0466 (14)0.0485 (14)0.0374 (13)0.0045 (11)0.0130 (11)0.0046 (10)
C50.0595 (17)0.0555 (16)0.0478 (15)0.0037 (13)0.0179 (14)0.0028 (12)
C60.074 (2)0.0633 (18)0.0525 (17)0.0055 (15)0.0211 (16)0.0145 (13)
C70.0559 (18)0.077 (2)0.0538 (16)0.0015 (15)0.0057 (14)0.0140 (14)
C80.0465 (16)0.0712 (18)0.0551 (16)0.0122 (13)0.0032 (13)0.0087 (14)
C90.0491 (15)0.0487 (14)0.0401 (13)0.0023 (12)0.0089 (11)0.0040 (11)
C100.0508 (15)0.0422 (13)0.0368 (13)0.0047 (11)0.0082 (11)0.0039 (10)
C110.0517 (16)0.0588 (16)0.0445 (14)0.0024 (13)0.0077 (12)0.0025 (12)
C120.0697 (19)0.0577 (17)0.0427 (14)0.0055 (14)0.0047 (13)0.0064 (12)
C130.081 (2)0.0459 (15)0.0391 (14)0.0079 (14)0.0129 (14)0.0024 (11)
C140.0619 (19)0.0672 (18)0.0596 (17)0.0179 (14)0.0153 (15)0.0034 (14)
C150.0508 (16)0.0649 (18)0.0542 (15)0.0108 (14)0.0042 (12)0.0100 (13)
C160.110 (3)0.0560 (18)0.0596 (18)0.0103 (17)0.0310 (18)0.0045 (14)
Geometric parameters (Å, º) top
O1—C91.372 (3)C8—C91.389 (3)
O1—C11.374 (3)C8—H80.9300
O2—C21.355 (3)C10—C111.391 (3)
O2—H20.878 (18)C10—C151.398 (4)
O3—C31.241 (3)C11—C121.375 (4)
C1—C21.356 (3)C11—H110.9300
C1—C101.471 (3)C12—C131.387 (4)
C2—C31.444 (3)C12—H120.9300
C3—C41.453 (3)C13—C141.369 (4)
C4—C91.378 (3)C13—C161.518 (4)
C4—C51.411 (3)C14—C151.384 (4)
C5—C61.368 (4)C14—H140.9300
C5—H50.9300C15—H150.9300
C6—C71.390 (4)C16—H16A0.9600
C6—H60.9300C16—H16B0.9600
C7—C81.375 (4)C16—H16C0.9600
C7—H70.9300
C9—O1—C1120.49 (18)O1—C9—C8116.4 (2)
C2—O2—H2110 (2)C4—C9—C8122.0 (2)
C2—C1—O1120.6 (2)C11—C10—C15118.0 (2)
C2—C1—C10128.2 (2)C11—C10—C1122.3 (2)
O1—C1—C10111.23 (19)C15—C10—C1119.8 (2)
O2—C2—C1119.9 (2)C12—C11—C10120.5 (3)
O2—C2—C3118.0 (2)C12—C11—H11119.8
C1—C2—C3122.0 (2)C10—C11—H11119.8
O3—C3—C2121.3 (2)C11—C12—C13122.0 (3)
O3—C3—C4123.3 (2)C11—C12—H12119.0
C2—C3—C4115.5 (2)C13—C12—H12119.0
C9—C4—C5118.2 (2)C14—C13—C12117.1 (2)
C9—C4—C3119.8 (2)C14—C13—C16121.7 (3)
C5—C4—C3122.0 (2)C12—C13—C16121.1 (3)
C6—C5—C4120.3 (2)C13—C14—C15122.4 (3)
C6—C5—H5119.9C13—C14—H14118.8
C4—C5—H5119.9C15—C14—H14118.8
C5—C6—C7120.1 (2)C14—C15—C10120.0 (3)
C5—C6—H6120.0C14—C15—H15120.0
C7—C6—H6120.0C10—C15—H15120.0
C8—C7—C6120.9 (3)C13—C16—H16A109.5
C8—C7—H7119.6C13—C16—H16B109.5
C6—C7—H7119.6H16A—C16—H16B109.5
C7—C8—C9118.6 (2)C13—C16—H16C109.5
C7—C8—H8120.7H16A—C16—H16C109.5
C9—C8—H8120.7H16B—C16—H16C109.5
O1—C9—C4121.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.88 (2)1.92 (2)2.721 (2)151 (3)
C11—H11···O20.932.242.838 (3)122
Symmetry code: (i) x+2, y+2, z+1.
 

Acknowledgements

The authors would like to thank Georgia Southern University for support of this work.

References

First citationAnderson, S. N., Richards, J. M., Esquer, H. J., Benninghoff, A. D., Arif, A. M. & Berreau, L. M. (2015). ChemistryOpen, 4, 590–594.  Web of Science CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKurzwernhart, A., Kandioller, W., Bächler, S., Bartel, C., Martic, S., Buczkowska, M., Mühlgassner, G., Jakupec, M. A., Kraatz, H.-B., Bednarski, P. J., Arion, V. B., Marko, D., Keppler, B. K. & Hartinger, C. G. (2012). J. Med. Chem. 55, 10512–10522.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Oxford Diffraction/Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWera, M., Pivovarenko, V. G. & Błażejowski, J. (2011a). Acta Cryst. E67, o264–o265.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWera, M., Serdiuk, I. E., Roshal, A. D. & Błażejowski, J. (2011b). Acta Cryst. E67, o440.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZingales, S. & Padgett, C. (2017). IUCrData, 2, x170996.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds