metal-organic compounds
Bis(4-methylbenzylammonium) tetrabromidozincate
aDepartment of Physics, Government Arts College (Autonomous), Kumbakonam 612 002, Tamilnadu, India, and bPrincipal, Kunthavai Naacchiyaar Government Arts College for Women (Autonomous), Thanjavur 613 007, Tamilnadu, India
*Correspondence e-mail: thiruvalluvar.a@gmail.com
The structure of the non-centrosymmetric organic–inorganic hybrid material, (C8H12N)2[ZnBr4], consists of two 4-methylbenzylammonium cations and one [ZnBr4]2− anion connected by N—H⋯Br and C—H⋯Br hydrogen bonds. The ZnII cation has a slightly distorted tetrahedral coordination environment. No π–π stacking interactions between the phenylene rings but C—H⋯π interactions towards them are observed. The structure was refined as a two-component inversion twin.
Keywords: crystal structure; non-centrosymmetric organic-inorganic hybrid material; C—H⋯Br and N—H⋯Br hydrogen bondings; C—H⋯π interactions.
CCDC reference: 1839864
Structure description
Non-linear optical (NLO) materials play a vital role in the field of photonics as they generate coherent radiation at new frequencies that are not available with conventional laser sources. Organic crystals with non-linear optical properties frequently have poor mechanical and thermal properties due to the presence of weak van der Waals interactions and hydrogen bonds (Dolbecq et al., 2010), whereas inorganic crystals possess good mechanical and thermal properties but have low NLO properties due to the presence of strong covalent or ionic interactions (Jiang & Fang, 1999). Hence, attempts have been made by several groups to synthesize new organic–inorganic materials with NLO properties, combining the features of both organic and inorganic crystals. In this context we report here the synthesis and of a new organic–inorganic hybrid compound, bis(4-methylbenzylammonium) tetrabromidozincate. This salt crystallizes in the non-centrosymmetric type Pna21, and hence could be a potential candidate for second order non-linear optical properties.
The 4]2−, and two 4-methylbenzylammonium cations, (C8H12N)+, as shown in Fig. 1. The Zn2+ cation is tetrahedrally coordinated by four bromide ligands with Zn—Br bond lengths ranging from 2.399 (3) to 2.426 (3) Å, and Br—Zn—Br bond angles varying between 104.90 (12) and 113.82 (13)°.
of the title compound consists of an isolated tetrabromidozincate anion, [ZnBrThe ac plane, as shown in Fig. 2. The cationic units are linked into a two-dimensional network by two weak C—H⋯π interactions (Fig. 3, Table 1). The crystal packing is assured by a complex hydrogen-bonding system, involving the positively charged ammonium groups and to a lesser extent the methylene groups of the cations as donors and the bromide ligands of the isolated tetrahedral [ZnBr4]2− units as acceptors (Table 1), which reinforce the Coulombic interactions, as depicted in Fig. 2.
consists of layers of 4-methylbenzylammonium cations sandwiched between tetrabromidozincate layers extending parallel to theSynthesis and crystallization
Bis(4-methylbenzylammonium) tetrabromidozincate single crystals were obtained by the solution growth solvent evaporation method. A mixture of 4-methylbenzylamine (2 mmol, 2.73 ml), zinc bromide (1 mmol, 1.125 g) and HBr (2 mmol, 2.73 ml) in water (20 ml) was well stirred using a magnetic stirrer for 3 h and left to stand at room temperature. After 15 d, colourless single crystals of the title compound were harvested.
Refinement
Crystal data, data collection and structure . The was finalized under consideration of inversion twinning.
details are summarized in Table 2
|
Structural data
CCDC reference: 1839864
https://doi.org/10.1107/S241431461800648X/wm4078sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431461800648X/wm4078Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S241431461800648X/wm4078Isup3.cdx
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).(C8H12N)2[ZnBr4] | Dx = 1.875 Mg m−3 |
Mr = 629.38 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pna21 | Cell parameters from 9620 reflections |
a = 11.0702 (5) Å | θ = 3.0–27.9° |
b = 26.0585 (13) Å | µ = 8.27 mm−1 |
c = 7.7302 (3) Å | T = 296 K |
V = 2229.95 (17) Å3 | Block, colourless |
Z = 4 | 0.15 × 0.15 × 0.10 mm |
F(000) = 1216 |
Bruker Kappa APEX3 CMOS diffractometer | 3809 independent reflections |
Radiation source: fine-focus sealed tube | 3481 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.056 |
ω and φ scan | θmax = 25.0°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −13→13 |
Tmin = 0.309, Tmax = 0.746 | k = −30→30 |
27881 measured reflections | l = −9→9 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.074 | w = 1/[σ2(Fo2) + 30.013P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.156 | (Δ/σ)max < 0.001 |
S = 1.36 | Δρmax = 1.40 e Å−3 |
3809 reflections | Δρmin = −1.01 e Å−3 |
213 parameters | Absolute structure: Refined as an inversion twin |
1 restraint | Absolute structure parameter: 0.18 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a two-component inversion twin All H atoms were placed geometrically and refined using a riding-model approximation, with C—H distances of 0.93 (aromatic), 0.97 (methylene) or 0.96 Å (methyl), and N—H distances of 0.89 Å. The torsion angles of the methyl and ammonium H atoms were allowed to refine to best fit the experimental electron density map, and the Uiso(H) values of the these groups were constrained to 1.5 times that of their carrier atom. For the other hydrogen atoms Uiso was set to 1.2 times Ueq of the carrier atom. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.732 (2) | 0.2421 (9) | 0.275 (3) | 0.057 (6) | |
C2 | 0.636 (2) | 0.2194 (11) | 0.189 (3) | 0.062 (7) | |
H2 | 0.578512 | 0.239423 | 0.133959 | 0.074* | |
C3 | 0.628 (2) | 0.1666 (11) | 0.187 (3) | 0.056 (6) | |
H3 | 0.565268 | 0.151337 | 0.125072 | 0.067* | |
C4 | 0.7094 (17) | 0.1354 (8) | 0.274 (3) | 0.042 (5) | |
C5 | 0.8041 (18) | 0.1597 (9) | 0.363 (3) | 0.046 (5) | |
H5 | 0.859752 | 0.140149 | 0.424816 | 0.055* | |
C6 | 0.815 (2) | 0.2123 (9) | 0.359 (3) | 0.049 (6) | |
H6 | 0.879008 | 0.227882 | 0.416005 | 0.059* | |
C7 | 0.742 (3) | 0.2997 (9) | 0.270 (5) | 0.103 (12) | |
H7A | 0.776947 | 0.310150 | 0.161771 | 0.154* | |
H7B | 0.793394 | 0.310999 | 0.363177 | 0.154* | |
H7C | 0.663715 | 0.314629 | 0.282620 | 0.154* | |
C8 | 0.705 (2) | 0.0772 (9) | 0.264 (4) | 0.064 (7) | |
H8A | 0.693924 | 0.066588 | 0.144981 | 0.077* | |
H8B | 0.781694 | 0.063220 | 0.304081 | 0.077* | |
C9 | 0.5269 (16) | 0.3365 (8) | 0.850 (3) | 0.043 (5) | |
C10 | 0.617 (2) | 0.3142 (10) | 0.755 (4) | 0.070 (8) | |
H10 | 0.685325 | 0.332821 | 0.725302 | 0.084* | |
C11 | 0.604 (3) | 0.2637 (12) | 0.702 (4) | 0.074 (8) | |
H11 | 0.664217 | 0.249089 | 0.633743 | 0.088* | |
C12 | 0.506 (2) | 0.2346 (8) | 0.747 (3) | 0.053 (6) | |
C13 | 0.4183 (19) | 0.2578 (9) | 0.842 (4) | 0.060 (6) | |
H13 | 0.350192 | 0.239050 | 0.872581 | 0.072* | |
C14 | 0.4268 (17) | 0.3085 (9) | 0.894 (3) | 0.046 (6) | |
H14 | 0.365046 | 0.323451 | 0.958389 | 0.056* | |
C15 | 0.496 (3) | 0.1779 (11) | 0.695 (5) | 0.102 (12) | |
H15A | 0.448471 | 0.159821 | 0.778411 | 0.153* | |
H15B | 0.575688 | 0.163174 | 0.690046 | 0.153* | |
H15C | 0.458851 | 0.175336 | 0.583038 | 0.153* | |
C16 | 0.540 (3) | 0.3897 (10) | 0.913 (3) | 0.070 (8) | |
H16A | 0.468909 | 0.398740 | 0.978443 | 0.084* | |
H16B | 0.608749 | 0.390979 | 0.991197 | 0.084* | |
N1 | 0.6051 (15) | 0.0563 (6) | 0.373 (2) | 0.044 (4) | |
H1A | 0.619536 | 0.063181 | 0.483461 | 0.066* | |
H1B | 0.600284 | 0.022474 | 0.357929 | 0.066* | |
H1C | 0.535699 | 0.070774 | 0.341058 | 0.066* | |
N2 | 0.558 (2) | 0.4277 (8) | 0.780 (4) | 0.091 (9) | |
H2A | 0.636714 | 0.431734 | 0.760790 | 0.136* | |
H2B | 0.526185 | 0.457349 | 0.814056 | 0.136* | |
H2C | 0.522054 | 0.417394 | 0.683012 | 0.136* | |
Zn1 | 0.74939 (18) | 0.47543 (8) | 0.3213 (3) | 0.0353 (5) | |
Br1 | 0.7646 (2) | 0.56660 (8) | 0.2732 (3) | 0.0568 (7) | |
Br2 | 0.8370 (2) | 0.44791 (8) | 0.5903 (3) | 0.0473 (5) | |
Br3 | 0.53762 (18) | 0.45225 (9) | 0.3424 (4) | 0.0561 (6) | |
Br4 | 0.8535 (2) | 0.43435 (8) | 0.0869 (3) | 0.0480 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.069 (16) | 0.056 (14) | 0.046 (13) | 0.003 (12) | 0.001 (12) | 0.008 (12) |
C2 | 0.059 (16) | 0.079 (19) | 0.047 (14) | 0.010 (14) | −0.011 (12) | 0.017 (13) |
C3 | 0.051 (14) | 0.081 (19) | 0.036 (12) | −0.014 (13) | −0.004 (11) | −0.011 (13) |
C4 | 0.031 (10) | 0.049 (12) | 0.048 (12) | −0.003 (9) | 0.010 (9) | −0.008 (11) |
C5 | 0.036 (10) | 0.072 (16) | 0.029 (12) | 0.008 (10) | −0.009 (9) | −0.004 (11) |
C6 | 0.049 (12) | 0.058 (15) | 0.041 (13) | −0.014 (10) | 0.010 (11) | −0.008 (11) |
C7 | 0.16 (3) | 0.032 (14) | 0.12 (3) | −0.010 (18) | −0.01 (3) | 0.023 (18) |
C8 | 0.046 (13) | 0.063 (16) | 0.082 (18) | −0.003 (11) | 0.019 (13) | 0.008 (15) |
C9 | 0.032 (10) | 0.051 (12) | 0.046 (12) | −0.004 (9) | −0.012 (11) | 0.004 (11) |
C10 | 0.049 (14) | 0.071 (18) | 0.09 (2) | −0.004 (13) | 0.016 (14) | −0.025 (16) |
C11 | 0.052 (16) | 0.10 (2) | 0.067 (18) | 0.026 (16) | 0.008 (14) | −0.021 (16) |
C12 | 0.072 (16) | 0.044 (13) | 0.042 (13) | 0.011 (12) | −0.019 (12) | −0.008 (10) |
C13 | 0.048 (12) | 0.068 (16) | 0.063 (14) | −0.013 (11) | −0.011 (15) | −0.005 (15) |
C14 | 0.021 (10) | 0.082 (17) | 0.036 (12) | 0.000 (10) | 0.006 (8) | 0.007 (11) |
C15 | 0.13 (3) | 0.056 (18) | 0.12 (3) | 0.014 (19) | −0.04 (2) | −0.020 (19) |
C16 | 0.082 (19) | 0.073 (18) | 0.055 (15) | −0.012 (16) | −0.020 (15) | 0.013 (15) |
N1 | 0.055 (11) | 0.044 (11) | 0.033 (11) | 0.006 (8) | −0.001 (8) | 0.008 (8) |
N2 | 0.11 (2) | 0.046 (13) | 0.11 (2) | 0.011 (12) | 0.059 (17) | −0.013 (14) |
Zn1 | 0.0342 (10) | 0.0417 (12) | 0.0299 (10) | −0.0021 (9) | 0.0006 (11) | 0.0021 (10) |
Br1 | 0.0774 (17) | 0.0412 (12) | 0.0519 (13) | −0.0059 (11) | 0.0131 (12) | 0.0037 (10) |
Br2 | 0.0508 (12) | 0.0592 (13) | 0.0319 (10) | 0.0072 (10) | −0.0009 (11) | 0.0076 (13) |
Br3 | 0.0352 (10) | 0.0574 (14) | 0.0757 (15) | −0.0107 (9) | 0.0000 (13) | −0.0002 (14) |
Br4 | 0.0532 (13) | 0.0552 (13) | 0.0355 (11) | 0.0062 (10) | 0.0054 (11) | −0.0036 (14) |
C1—C6 | 1.37 (3) | C11—C12 | 1.37 (4) |
C1—C2 | 1.38 (3) | C11—H11 | 0.9300 |
C1—C7 | 1.51 (3) | C12—C13 | 1.36 (3) |
C2—C3 | 1.38 (4) | C12—C15 | 1.54 (3) |
C2—H2 | 0.9300 | C13—C14 | 1.39 (3) |
C3—C4 | 1.39 (3) | C13—H13 | 0.9300 |
C3—H3 | 0.9300 | C14—H14 | 0.9300 |
C4—C5 | 1.41 (3) | C15—H15A | 0.9600 |
C4—C8 | 1.52 (3) | C15—H15B | 0.9600 |
C5—C6 | 1.38 (3) | C15—H15C | 0.9600 |
C5—H5 | 0.9300 | C16—N2 | 1.44 (3) |
C6—H6 | 0.9300 | C16—H16A | 0.9700 |
C7—H7A | 0.9600 | C16—H16B | 0.9700 |
C7—H7B | 0.9600 | N1—H1A | 0.8900 |
C7—H7C | 0.9600 | N1—H1B | 0.8900 |
C8—N1 | 1.49 (3) | N1—H1C | 0.8900 |
C8—H8A | 0.9700 | N2—H2A | 0.8900 |
C8—H8B | 0.9700 | N2—H2B | 0.8900 |
C9—C14 | 1.37 (3) | N2—H2C | 0.8900 |
C9—C10 | 1.37 (3) | Zn1—Br4 | 2.399 (3) |
C9—C16 | 1.47 (3) | Zn1—Br2 | 2.404 (3) |
C10—C11 | 1.38 (4) | Zn1—Br1 | 2.411 (3) |
C10—H10 | 0.9300 | Zn1—Br3 | 2.426 (3) |
C6—C1—C2 | 120 (2) | C13—C12—C11 | 117 (2) |
C6—C1—C7 | 122 (3) | C13—C12—C15 | 122 (3) |
C2—C1—C7 | 118 (3) | C11—C12—C15 | 121 (3) |
C3—C2—C1 | 119 (2) | C12—C13—C14 | 122 (2) |
C3—C2—H2 | 120.5 | C12—C13—H13 | 118.8 |
C1—C2—H2 | 120.5 | C14—C13—H13 | 118.8 |
C2—C3—C4 | 122 (2) | C9—C14—C13 | 119 (2) |
C2—C3—H3 | 118.9 | C9—C14—H14 | 120.3 |
C4—C3—H3 | 118.9 | C13—C14—H14 | 120.3 |
C3—C4—C5 | 117 (2) | C12—C15—H15A | 109.5 |
C3—C4—C8 | 123 (2) | C12—C15—H15B | 109.5 |
C5—C4—C8 | 120 (2) | H15A—C15—H15B | 109.5 |
C6—C5—C4 | 120 (2) | C12—C15—H15C | 109.5 |
C6—C5—H5 | 120.0 | H15A—C15—H15C | 109.5 |
C4—C5—H5 | 120.0 | H15B—C15—H15C | 109.5 |
C1—C6—C5 | 121 (2) | N2—C16—C9 | 115 (2) |
C1—C6—H6 | 119.3 | N2—C16—H16A | 108.4 |
C5—C6—H6 | 119.3 | C9—C16—H16A | 108.4 |
C1—C7—H7A | 109.5 | N2—C16—H16B | 108.4 |
C1—C7—H7B | 109.5 | C9—C16—H16B | 108.4 |
H7A—C7—H7B | 109.5 | H16A—C16—H16B | 107.5 |
C1—C7—H7C | 109.5 | C8—N1—H1A | 109.5 |
H7A—C7—H7C | 109.5 | C8—N1—H1B | 109.5 |
H7B—C7—H7C | 109.5 | H1A—N1—H1B | 109.5 |
N1—C8—C4 | 111.0 (19) | C8—N1—H1C | 109.5 |
N1—C8—H8A | 109.4 | H1A—N1—H1C | 109.5 |
C4—C8—H8A | 109.4 | H1B—N1—H1C | 109.5 |
N1—C8—H8B | 109.4 | C16—N2—H2A | 109.5 |
C4—C8—H8B | 109.4 | C16—N2—H2B | 109.5 |
H8A—C8—H8B | 108.0 | H2A—N2—H2B | 109.5 |
C14—C9—C10 | 120 (2) | C16—N2—H2C | 109.5 |
C14—C9—C16 | 120 (2) | H2A—N2—H2C | 109.5 |
C10—C9—C16 | 120 (2) | H2B—N2—H2C | 109.5 |
C9—C10—C11 | 119 (2) | Br4—Zn1—Br2 | 109.05 (11) |
C9—C10—H10 | 120.3 | Br4—Zn1—Br1 | 106.84 (11) |
C11—C10—H10 | 120.3 | Br2—Zn1—Br1 | 113.53 (12) |
C12—C11—C10 | 122 (2) | Br4—Zn1—Br3 | 113.82 (13) |
C12—C11—H11 | 119.0 | Br2—Zn1—Br3 | 104.90 (12) |
C10—C11—H11 | 119.0 | Br1—Zn1—Br3 | 108.86 (11) |
C6—C1—C2—C3 | −2 (4) | C14—C9—C10—C11 | 1 (4) |
C7—C1—C2—C3 | 178 (3) | C16—C9—C10—C11 | 178 (2) |
C1—C2—C3—C4 | 3 (4) | C9—C10—C11—C12 | −2 (5) |
C2—C3—C4—C5 | −1 (3) | C10—C11—C12—C13 | 2 (4) |
C2—C3—C4—C8 | −177 (2) | C10—C11—C12—C15 | −177 (3) |
C3—C4—C5—C6 | −1 (3) | C11—C12—C13—C14 | −1 (4) |
C8—C4—C5—C6 | 174 (2) | C15—C12—C13—C14 | 178 (3) |
C2—C1—C6—C5 | 0 (4) | C10—C9—C14—C13 | 1 (4) |
C7—C1—C6—C5 | 180 (2) | C16—C9—C14—C13 | −177 (2) |
C4—C5—C6—C1 | 2 (3) | C12—C13—C14—C9 | 0 (4) |
C3—C4—C8—N1 | −76 (3) | C14—C9—C16—N2 | −124 (3) |
C5—C4—C8—N1 | 109 (2) | C10—C9—C16—N2 | 59 (4) |
Cg1 and Cg2 are the centroids of the C1–C6 and C9–C14 benzene rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···Cg2i | 0.93 | 2.94 | 3.73 (3) | 143 |
C14—H14···Cg1ii | 0.93 | 2.94 | 3.72 (2) | 143 |
C8—H8B···Br3iii | 0.97 | 2.88 | 3.81 (2) | 161 |
C8—H8A···Br1iv | 0.97 | 2.91 | 3.82 (3) | 157 |
C16—H16B···Br4v | 0.97 | 3.03 | 3.90 (3) | 150 |
N1—H1A···Br1vi | 0.89 | 2.58 | 3.427 (17) | 159 |
N1—H1B···Br2iv | 0.89 | 2.92 | 3.626 (17) | 137 |
N1—H1B···Br4vi | 0.89 | 2.94 | 3.613 (16) | 133 |
N1—H1C···Br2vii | 0.89 | 2.96 | 3.414 (17) | 113 |
N1—H1C···Br4vii | 0.89 | 2.82 | 3.563 (17) | 142 |
N2—H2A···Br2 | 0.89 | 2.61 | 3.46 (2) | 159 |
N2—H2B···Br3viii | 0.89 | 2.47 | 3.34 (2) | 166 |
N2—H2C···Br3 | 0.89 | 2.79 | 3.45 (3) | 132 |
Symmetry codes: (i) x, y, z−1; (ii) x−1/2, −y+1/2, z+1; (iii) x+1/2, −y+1/2, z; (iv) −x+3/2, y−1/2, z−1/2; (v) x, y, z+1; (vi) −x+3/2, y−1/2, z+1/2; (vii) x−1/2, −y+1/2, z; (viii) −x+1, −y+1, z+1/2. |
Acknowledgements
The authors are thankful to the Sophisticated Analytical Instrument Facility (SAIF), IITM, Chennai 600 036, Tamilnadu, India for the single-crystal X-ray diffraction data.
Funding information
Funding for this research was provided by the Council of Scientific and Industrial Research (CSIR), New Delhi, India [grant No. 03(1301)13/EMR II to CR].
References
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolbecq, A., Dumas, E., Mayer, C. R. & Mialane, P. (2010). Chem. Rev. 110, 6009–6048. Web of Science CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Jiang, M. & Fang, Q. (1999). Adv. Mater. 11, 1147–1151. CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.