metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146
ADDENDA AND ERRATA
A correction has been published for this article. To view the correction, click here.

Chlorido­(η6-p-cymene)[2-(5-phenyl-4H-1,2,4-triazol-3-yl-κN2)pyridine-κN]ruthenium(II) chloride

CROSSMARK_Color_square_no_text.svg

aVolodymyrska 64 Street, Kiev, Ukraine
*Correspondence e-mail: a.a.sikalov@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 29 March 2018; accepted 24 April 2018; online 4 May 2018)

In the title compound, [RuCl(C10H14)(C13H10N4)]Cl, the pyridyl­triazole fragment of the bidentate ligand is essentially planar [dihedral angle = 0.8 (1)°], while the phenyl substituent is inclined at 19.4 (1)° to the 1,2,4-triazole ring. In the crystal, the complex cations are packed in sheets with no particularly strong inter­actions between them. The Cl anions are bound to the cations by unusually strong N—H⋯Cl hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Recently, ruthenium(II) π-arene complexes have been of increasing inter­est – mostly due to their anti­cancer properties (Süss-Fink, 2010[Süss-Fink, G. (2010). Dalton Trans. 39, 1673-1688.]) and their catalytic activity in transfer hydrogenation reactions (Hohloch et al., 2013[Hohloch, S., Suntrup, L. & Sarkar, B. (2013). Organometallics, 32, 7376-7385.]). Therefore, it is of great importance to know the structural details of these compounds. We have synthesized an example of a ruthenium(II) p-cymene complex with a pyridyl-1,2,4-triazole ligand in the 4H-tautomeric form. The mol­ecular structure of the title compound is shown in Fig. 1[link]. As is traditional for this kind of compounds, the cation exhibits a distorted octa­hedral piano-stool geometry with p-cymene as a π-bound hexa­hapto ligand, a chloride anion as a monodentate ligand and the 3-(2-pyrid­yl)-5-phenyl-1,2,4-triazole as a bidentate chelating N,N-donor ligand. It is inter­esting that while the pyridyl­triazole moiety is virtually planar with a dihedral angle of a mere 0.8 (1)° between the pyridine and triazole rings, the phenyl ring does not lie in this plane and is inclined at 19.4 (1)° to the triazole ring plane, even though there is no apparent steric hindrance to cause this. We surmise that the fact that the 2-(5-phenyl-4H-1,2,4-triazol-3-yl)pyridine ligand is coordinated via N4 arises from unfavourable steric inter­actions (between the phenyl group and the p-cymene ligand), which would take place in a hypothetical analogue of the title compound where the ligand is coordinated via N7.

[Figure 1]
Figure 1
The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

As shown in Fig. 2[link], the title compound features an intriguing hydrogen bond formed between the N—H group of the 1,2,4-triazole ring and the chloride counter-ion (Table 1[link]). The relatively short H⋯Cl distance and an NH⋯Cl angle close to 180° suggest an atypical strength of the bond as compared to other N—H⋯Cl hydrogen bonds, excluding charge-assisted hydrogen bonds (Steed & Atwood, 2009[Steed, J. W. & Atwood, J. L. (2009). Supramolecular Chemistry. Chichester: John Wiley & Sons.]). Unexpectedly, the title compound does not exhibit any significant π-stacking inter­actions [the shortest centroid–centroid distance is 4.122 Å (offset) and the shortest C—H⋯centroid distance is 3.453 Å].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H71⋯Cl3 0.85 2.15 2.984 169
[Figure 2]
Figure 2
A crystal packing diagram (view along the b axis) of the title compound. N—H⋯Cl hydrogen bonds are depicted as blue dashed lines.

It appears that crystal structures of ruthenium(II) p-cymene complexes bearing 3-(2-pyrid­yl)-1,2,4-triazoles have not been published until now. The two most closely related crystal structures are those of η5-cyclo­penta­dienyl analogues, which also differ from the title compound by variations in the 3-(2-pyrid­yl)-1,2,4-triazole ligands and by replacement of the chlorido ligand by PPh3 in the inner coordination sphere. The Ru1—N4 and Ru1—N5 bond lengths [2.072 (3) and 2.132 (2) Å, respectively] in the title compound are comparable to those in the related compounds mentioned above [respective bond distances are 2.069 (3) and 2.125 (3) Å (Gupta et al., 2010[Gupta, G., Prasad, K. T., Das, B. & Rao, K. M. (2010). Polyhedron, 29, 904-910.]) and 2.089 (4) and 2.119 (3) Å (Gupta et al., 2012[Gupta, G., Therrien, B., Park, S., Lee, S. S. & Kim, J. (2012). J. Coord. Chem. 65, 2523-2534.])].

Synthesis and crystallization

The ruthenium(II) p-cymene dichloride dimer (244.8 mg, 0.4 mmol) was dissolved in about 3 ml of methanol. After complete dissolution of the starting compound, 2-(5-phenyl-4H-1,2,4-triazol-3-yl)pyridine (355.2 mg, 0.8 mmol) was added to the clear red solution. Within 30 minutes, the reaction mixture adopted a reddish–orange hue and red prismatic crystals suitable for single-crystal XRD analysis began to form on the bottom and sides of the reaction vessel. Several crystals were harvested, and then the solvent was distilled off with the use of a rotary evaporator. Yield: 93%. Schematic representation of the synthesis is given in Fig. 3[link].

[Figure 3]
Figure 3
Synthesis of the title compound.

1H NMR (400 MHz, DMSO-δ6): δ(p.p.m.) 9.43 (d, J = 4.2 Hz, 1H, pyαH), 8.30–8.08 (m, 3H, pyβH, pyβH and pyγH), 7.83–7.26 (m, 5H, phen­yl), 6.14 (d, J = 5.0 Hz, 1H, p-cymene CH), 6.02 (d, J = 4.9 Hz, 1H, p-cymene CH), 5.93 (d, J = 4.9 Hz, 1H, p-cymene CH), 5.80 (d, J = 5.0 Hz, 1H, p-cymene CH), 2.74–2.63 (m, 1H, CH from iPr), 2.17 (s, 3H, Me from p-cymene), 1.06 (d, J = 6.8 Hz, 3H, Me from iPr), 0.98 (d, J = 6.7 Hz, 3H, Me from iPr).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [RuCl(C10H14)(C13H10N4)]Cl
Mr 528.44
Crystal system, space group Triclinic, P1
Temperature (K) 200
a, b, c (Å) 6.4704 (2), 8.7593 (3), 10.1975 (4)
α, β, γ (°) 101.425 (3), 97.379 (3), 95.337 (3)
V3) 557.62 (3)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.96
Crystal size (mm) 0.35 × 0.20 × 0.20
 
Data collection
Diffractometer Agilent Xcalibur, Eos with CCD area detector
Absorption correction Multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.81, 0.83
No. of measured, independent and observed [I > 2.0σ(I)] reflections 13071, 7295, 7220
Rint 0.028
(sin θ/λ)max−1) 0.760
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.062, 0.98
No. of reflections 7295
No. of parameters 276
No. of restraints 7
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.56, −0.40
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3505 Friedel-pairs
Absolute structure parameter −0.03 (2)
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Chlorido(η6-p-cymene)[2-(5-phenyl-4H-1,2,4-triazol-3-yl-κN2)pyridine-κN]ruthenium(II) chloride top
Crystal data top
[RuCl(C10H14)(C13H10N4)]ClZ = 1
Mr = 528.44F(000) = 267.999
Triclinic, P1Dx = 1.574 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4704 (2) ÅCell parameters from 8029 reflections
b = 8.7593 (3) Åθ = 2–32°
c = 10.1975 (4) ŵ = 0.96 mm1
α = 101.425 (3)°T = 200 K
β = 97.379 (3)°Prism, clear intense red
γ = 95.337 (3)°0.35 × 0.20 × 0.20 mm
V = 557.62 (3) Å3
Data collection top
Agilent Xcalibur, Eos with CCD area detector
diffractometer
7220 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 32.7°, θmin = 2.1°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 99
Tmin = 0.81, Tmax = 0.83k = 1313
13071 measured reflectionsl = 1515
7295 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.02P)2 + 0.15P] ,
where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.062(Δ/σ)max = 0.001
S = 0.98Δρmax = 0.56 e Å3
7295 reflectionsΔρmin = 0.40 e Å3
276 parametersAbsolute structure: Flack (1983), 3505 Friedel-pairs
7 restraintsAbsolute structure parameter: 0.03 (2)
Primary atom site location: other
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.86321 (8)0.38802 (6)0.54014 (6)0.0176
Cl20.67364 (12)0.60046 (10)0.49812 (9)0.0272
Cl30.38532 (13)0.18193 (12)0.10651 (9)0.0382
N40.6317 (4)0.2491 (3)0.3951 (2)0.0217
N50.9711 (4)0.4024 (3)0.3535 (2)0.0205
N60.4495 (3)0.1562 (3)0.3969 (2)0.0224
N70.4792 (3)0.1708 (3)0.1855 (2)0.0220
C81.0648 (5)0.5307 (4)0.7248 (3)0.0242
C90.6471 (4)0.2555 (3)0.2682 (2)0.0197
C100.7853 (5)0.3174 (4)0.7245 (3)0.0269
C111.1560 (4)0.4760 (3)0.3399 (3)0.0252
C120.3595 (4)0.1103 (3)0.2695 (3)0.0212
C130.8319 (4)0.3402 (3)0.2389 (3)0.0217
C141.1769 (4)0.4165 (3)0.6582 (3)0.0266
C150.8723 (4)0.3530 (3)0.1111 (3)0.0294
C160.8650 (4)0.4755 (3)0.7562 (3)0.0269
C170.1609 (4)0.0092 (3)0.2237 (3)0.0227
C180.1477 (6)0.0882 (5)0.0591 (4)0.0390
C191.0659 (4)0.4275 (4)0.0989 (3)0.0318
C201.2075 (4)0.4896 (4)0.2144 (3)0.0299
C210.9010 (4)0.2016 (3)0.6564 (3)0.0276
C221.1445 (4)0.7045 (3)0.7648 (3)0.0300
C230.0847 (5)0.0834 (4)0.3077 (3)0.0350
C241.0990 (4)0.2552 (4)0.6249 (3)0.0279
C250.2238 (5)0.1779 (4)0.1438 (3)0.0421
C260.0434 (4)0.0051 (4)0.0982 (3)0.0310
C271.2355 (5)0.7703 (4)0.6552 (3)0.0395
C280.1071 (5)0.1770 (4)0.2670 (3)0.0433
C290.8085 (6)0.0338 (4)0.6203 (4)0.0445
C301.3064 (6)0.7305 (4)0.8939 (4)0.0505
H710.451 (3)0.160 (3)0.1007 (18)0.0278 (19)*
H1111.25190.51900.41650.0292*
H1411.30380.44990.62260.0345*
H1510.77180.31170.03510.0363*
H1610.77560.55450.78990.0341*
H1810.22630.08940.02320.0473*
H1911.10200.43390.01360.0391*
H2011.33820.53600.20720.0359*
H2211.02430.76110.78740.0381*
H2310.16420.08220.39180.0421*
H2411.17540.18280.57040.0352*
H2510.35430.23960.11810.0508*
H2610.09300.06530.03940.0384*
H2711.35900.72200.63510.0610*
H2721.27640.88130.68600.0609*
H2731.13470.75200.57330.0611*
H2810.15610.23970.32280.0532*
H2910.85110.01890.53820.0682*
H2930.85540.01490.69270.0682*
H2920.65780.02530.60890.0680*
H3011.23980.70330.96680.0790*
H3031.41550.66620.87710.0789*
H3021.36570.83960.91890.0788*
H1010.64090.28530.73690.0348*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01437 (7)0.02394 (8)0.01423 (7)0.00019 (5)0.00201 (5)0.00478 (6)
Cl20.0199 (3)0.0299 (3)0.0327 (4)0.0052 (3)0.0026 (3)0.0090 (3)
Cl30.0336 (4)0.0593 (5)0.0200 (3)0.0087 (3)0.0005 (3)0.0134 (3)
N40.0213 (11)0.0260 (11)0.0172 (12)0.0043 (9)0.0043 (9)0.0054 (9)
N50.0156 (10)0.0278 (12)0.0182 (10)0.0016 (9)0.0031 (8)0.0055 (9)
N60.0204 (10)0.0244 (10)0.0204 (10)0.0055 (8)0.0013 (8)0.0052 (8)
N70.0222 (10)0.0261 (11)0.0165 (10)0.0041 (8)0.0020 (8)0.0052 (8)
C80.0198 (13)0.0308 (15)0.0185 (15)0.0021 (11)0.0049 (10)0.0041 (12)
C90.0194 (11)0.0237 (12)0.0156 (11)0.0009 (9)0.0022 (8)0.0053 (9)
C100.0234 (14)0.0414 (18)0.0177 (12)0.0001 (12)0.0040 (10)0.0121 (13)
C110.0186 (11)0.0336 (14)0.0226 (12)0.0014 (10)0.0041 (9)0.0058 (11)
C120.0193 (11)0.0235 (12)0.0211 (12)0.0004 (9)0.0043 (9)0.0056 (10)
C130.0185 (11)0.0261 (12)0.0198 (12)0.0011 (9)0.0022 (9)0.0055 (10)
C140.0184 (11)0.0393 (15)0.0224 (12)0.0025 (10)0.0030 (9)0.0119 (11)
C150.0288 (14)0.0392 (15)0.0193 (12)0.0043 (12)0.0043 (10)0.0073 (11)
C160.0259 (13)0.0371 (15)0.0159 (11)0.0025 (11)0.0019 (9)0.0030 (11)
C170.0212 (11)0.0231 (12)0.0224 (12)0.0026 (9)0.0029 (9)0.0038 (10)
C180.0271 (14)0.052 (3)0.032 (2)0.0112 (16)0.0040 (14)0.0070 (18)
C190.0312 (14)0.0440 (17)0.0217 (13)0.0024 (12)0.0088 (11)0.0106 (12)
C200.0210 (12)0.0405 (16)0.0293 (14)0.0038 (11)0.0085 (10)0.0103 (12)
C210.0326 (14)0.0282 (13)0.0220 (12)0.0020 (11)0.0011 (10)0.0094 (10)
C220.0247 (13)0.0341 (15)0.0262 (13)0.0011 (11)0.0008 (10)0.0013 (11)
C230.0360 (15)0.0386 (16)0.0280 (14)0.0129 (13)0.0004 (12)0.0127 (12)
C240.0260 (14)0.0356 (16)0.0238 (14)0.0114 (12)0.0006 (11)0.0088 (12)
C250.0306 (15)0.0471 (19)0.0424 (18)0.0161 (13)0.0014 (13)0.0071 (15)
C260.0255 (13)0.0375 (16)0.0279 (14)0.0049 (11)0.0017 (11)0.0073 (12)
C270.0418 (17)0.0321 (15)0.0435 (18)0.0019 (13)0.0135 (14)0.0037 (14)
C280.0392 (17)0.0482 (19)0.0393 (18)0.0180 (15)0.0049 (14)0.0131 (15)
C290.051 (2)0.0342 (16)0.050 (2)0.0026 (15)0.0041 (16)0.0180 (15)
C300.051 (2)0.048 (2)0.0396 (19)0.0053 (17)0.0179 (16)0.0004 (16)
Geometric parameters (Å, º) top
Ru1—Cl22.399 (3)C15—H1510.933
Ru1—N42.072 (3)C16—H1610.981
Ru1—N52.132 (2)C17—C231.394 (4)
Ru1—C82.223 (3)C17—C261.394 (4)
Ru1—C102.195 (3)C18—C251.382 (5)
Ru1—C142.189 (3)C18—C261.383 (5)
Ru1—C162.183 (3)C18—H1810.922
Ru1—C212.213 (3)C19—C201.378 (4)
Ru1—C242.195 (3)C19—H1910.940
N4—N61.373 (3)C20—H2010.922
N4—C91.322 (3)C21—C241.421 (4)
N5—C111.342 (3)C21—C291.490 (4)
N5—C131.363 (4)C22—C271.513 (4)
N6—C121.320 (3)C22—C301.538 (4)
N7—C91.345 (3)C22—H2210.988
N7—C121.374 (3)C23—C281.388 (4)
N7—H710.846 (17)C23—H2310.939
C8—C141.407 (4)C24—H2410.972
C8—C161.435 (4)C25—C281.379 (5)
C8—C221.518 (4)C25—H2510.936
C9—C131.444 (3)C26—H2610.940
C10—C161.391 (4)C27—H2710.964
C10—C211.438 (4)C27—H2720.961
C10—H1010.982C27—H2730.967
C11—C201.388 (4)C28—H2810.930
C11—H1110.924C29—H2910.959
C12—C171.458 (3)C29—H2930.955
C13—C151.386 (3)C29—H2920.961
C14—C241.414 (4)C30—H3010.963
C14—H1410.983C30—H3030.955
C15—C191.390 (4)C30—H3020.967
Cl2—Ru1—N484.77 (8)Ru1—C14—H141122.1
Cl2—Ru1—N583.97 (7)C8—C14—H141119.4
N4—Ru1—N576.14 (9)C24—C14—H141118.0
Cl2—Ru1—C894.13 (9)C13—C15—C19118.5 (3)
N4—Ru1—C8168.20 (9)C13—C15—H151120.5
N5—Ru1—C8115.48 (10)C19—C15—H151121.0
Cl2—Ru1—C10109.97 (9)Ru1—C16—C872.50 (16)
N4—Ru1—C10101.13 (11)Ru1—C16—C1071.95 (16)
N5—Ru1—C10165.66 (9)C8—C16—C10122.3 (3)
C8—Ru1—C1068.16 (12)Ru1—C16—H161121.8
Cl2—Ru1—C14124.65 (8)C8—C16—H161117.5
N4—Ru1—C14148.83 (11)C10—C16—H161119.7
N5—Ru1—C1495.31 (9)C12—C17—C23119.5 (2)
C8—Ru1—C1437.19 (11)C12—C17—C26121.3 (2)
C10—Ru1—C1479.71 (11)C23—C17—C26119.2 (2)
Cl2—Ru1—C1688.32 (8)C25—C18—C26120.5 (4)
N4—Ru1—C16130.20 (10)C25—C18—H181119.6
N5—Ru1—C16151.76 (10)C26—C18—H181119.9
C8—Ru1—C1638.00 (11)C15—C19—C20118.8 (2)
C10—Ru1—C1637.05 (11)C15—C19—H191121.1
Cl2—Ru1—C21146.94 (8)C20—C19—H191120.1
N4—Ru1—C2193.12 (10)C11—C20—C19119.9 (2)
N5—Ru1—C21127.60 (10)C11—C20—H201120.5
C8—Ru1—C2181.38 (11)C19—C20—H201119.6
C10—Ru1—C2138.07 (11)Ru1—C21—C1070.29 (16)
Cl2—Ru1—C24161.72 (8)Ru1—C21—C2470.50 (15)
N4—Ru1—C24113.51 (12)C10—C21—C24117.4 (3)
N5—Ru1—C24100.26 (10)Ru1—C21—C29129.3 (2)
C8—Ru1—C2467.92 (12)C10—C21—C29119.4 (3)
C10—Ru1—C2467.60 (11)C24—C21—C29123.3 (3)
C14—Ru1—C1667.15 (10)C8—C22—C27114.4 (2)
C14—Ru1—C2168.15 (10)C8—C22—C30107.7 (3)
C16—Ru1—C2168.00 (11)C27—C22—C30111.2 (3)
C14—Ru1—C2437.62 (11)C8—C22—H221107.5
C16—Ru1—C2479.57 (11)C27—C22—H221108.0
C21—Ru1—C2437.60 (11)C30—C22—H221107.9
Ru1—N4—N6135.48 (17)C17—C23—C28120.1 (3)
Ru1—N4—C9115.74 (18)C17—C23—H231119.5
N6—N4—C9108.6 (2)C28—C23—H231120.3
Ru1—N5—C11125.85 (19)Ru1—C24—C2171.89 (15)
Ru1—N5—C13116.14 (17)Ru1—C24—C1470.97 (15)
C11—N5—C13117.8 (2)C21—C24—C14121.0 (3)
N4—N6—C12106.0 (2)Ru1—C24—H241123.9
C9—N7—C12105.0 (2)C21—C24—H241120.0
C9—N7—H71127.5 (12)C14—C24—H241118.6
C12—N7—H71127.5 (12)C18—C25—C28120.0 (3)
Ru1—C8—C1470.11 (16)C18—C25—H251120.5
Ru1—C8—C1669.50 (16)C28—C25—H251119.5
C14—C8—C16116.6 (3)C17—C26—C18120.0 (3)
Ru1—C8—C22131.5 (2)C17—C26—H261120.6
C14—C8—C22123.8 (3)C18—C26—H261119.4
C16—C8—C22119.6 (3)C22—C27—H271109.8
N7—C9—N4109.8 (2)C22—C27—H272109.7
N7—C9—C13130.9 (2)H271—C27—H272108.0
N4—C9—C13119.2 (2)C22—C27—H273111.2
Ru1—C10—C1671.00 (16)H271—C27—H273109.1
Ru1—C10—C2171.64 (15)H272—C27—H273109.0
C16—C10—C21120.7 (3)C23—C28—C25120.2 (3)
Ru1—C10—H101122.9C23—C28—H281119.8
C16—C10—H101120.0C25—C28—H281120.0
C21—C10—H101118.8C21—C29—H291110.7
N5—C11—C20122.1 (3)C21—C29—H293108.3
N5—C11—H111118.9H291—C29—H293109.8
C20—C11—H111119.0C21—C29—H292110.6
N7—C12—N6110.7 (2)H291—C29—H292109.1
N7—C12—C17124.4 (2)H293—C29—H292108.3
N6—C12—C17124.9 (2)C22—C30—H301110.0
C9—C13—N5111.6 (2)C22—C30—H303109.2
C9—C13—C15125.5 (2)H301—C30—H303109.5
N5—C13—C15122.8 (2)C22—C30—H302109.4
Ru1—C14—C872.71 (16)H301—C30—H302109.3
Ru1—C14—C2471.41 (15)H303—C30—H302109.5
C8—C14—C24122.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H71···Cl30.852.152.984169
 

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGupta, G., Prasad, K. T., Das, B. & Rao, K. M. (2010). Polyhedron, 29, 904–910.  CSD CrossRef CAS Google Scholar
First citationGupta, G., Therrien, B., Park, S., Lee, S. S. & Kim, J. (2012). J. Coord. Chem. 65, 2523–2534.  CSD CrossRef CAS Google Scholar
First citationHohloch, S., Suntrup, L. & Sarkar, B. (2013). Organometallics, 32, 7376–7385.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteed, J. W. & Atwood, J. L. (2009). Supramolecular Chemistry. Chichester: John Wiley & Sons.  Google Scholar
First citationSüss-Fink, G. (2010). Dalton Trans. 39, 1673–1688.  Web of Science PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds