metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[di­aqua­bis­­(μ-hydrogen benzene-1,2,4-tri­carboxyl­ato)copper(II)disodium]: a novel 4,5,6-connected trinodal net

CROSSMARK_Color_square_no_text.svg

aE-35A Holmes Hall, Michigan State University, 919 E. Shaw Lane, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 19 April 2018; accepted 2 May 2018; online 15 May 2018)

In the title compound, [CuNa2(C9H4O6)2(H2O)4]n, the CuII cations are square-planar coordinated by carboxyl­ate O-atom donors from four different hydrogen benzene-1,2,4-tri­carboxyl­ate (btcH) ligands, thereby forming [Cu(btcH)2]n2n coordination polymer ribbons. These are connected by octa­hedrally coordinated and hydrated NaI cations within Na2(μ-H2O)2 clusters to construct the full [Na2(H2O)4Cu(btcH)2]n three-dimensional coordination polymer.

Keywords: crystal structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title coordination polymer was isolated during an attempt to prepare a copper benzene-1,2,4-tri­carboxyl­ate (btc) coordination polymer containing N,N′-bis­(pyridin-3-ylmeth­yl)piperazine (3-bpmp) ligands. The 3-bpmp ligand has been used to construct coordination polymers with rare topologies, such as the (4462)(4466) tcs topology in {[Zn2(hydrogen pyromellitate)2(H2O)2(H2-3-bpmp)]·H2O}n (Blake et al., 2011[Blake, K. M., Lucas, J. S. & LaDuca, R. L. (2011). Cryst. Growth Des. 11, 1287-1293.]).

The asymmetric unit of the title compound contains a CuII cation on a crystallographic inversion center, a protonated hydrogen benzene-1,2,4-tri­carboxyl­ate (btcH) ligand, an NaI cation on a general position, and two aqua ligands bound to the Na atom. Operation of the inversion center affords a square-planar coordination geometry at the CuII cation, ligated by carboxyl­ate O-atom donors from four different btcH ligands. The Na atom is coordinated in an octa­hedral geometry, with a mer disposition of three bound water mol­ecules and a mer disposition of carboxyl­ate O-atom donors from three different btcH ligands. A depiction of the coordination geometries and btcH ligand is shown in Fig. 1[link]. Bond lengths and angles within the coordination spheres at CuII and NaI are listed in Table 1[link].

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.944 (2) Na1—O3v 2.413 (3)
Cu1—O1i 1.944 (2) Na1—O5 2.390 (2)
Cu1—O3ii 1.9681 (19) Na1—O7 2.473 (3)
Cu1—O3iii 1.9681 (19) Na1—O8 2.354 (3)
Na1—O2iv 2.571 (3) Na1—O8vi 2.413 (3)
       
O1—Cu1—O1i 180 O5—Na1—O8vi 150.41 (10)
O1i—Cu1—O3iii 87.13 (9) O7—Na1—O2iv 96.31 (10)
O1i—Cu1—O3ii 92.88 (9) O8vi—Na1—O2iv 66.08 (9)
O1—Cu1—O3iii 92.87 (9) O8—Na1—O2iv 72.51 (9)
O1—Cu1—O3ii 87.13 (9) O8—Na1—O3v 115.87 (9)
O3iii—Cu1—O3ii 180.00 (14) O8vi—Na1—O3v 97.25 (9)
O3v—Na1—O2iv 162.81 (9) O8—Na1—O5 89.37 (9)
O3v—Na1—O7 77.27 (10) O8—Na1—O7 165.87 (11)
O5—Na1—O2iv 89.20 (8) O8vi—Na1—O7 85.02 (9)
O5—Na1—O3v 105.37 (9) O8—Na1—O8vi 97.79 (8)
O5—Na1—O7 81.70 (9)    
Symmetry codes: (i) -x, -y+1, -z; (ii) x-1, y, z; (iii) -x+1, -y+1, -z; (iv) -x+1, -y+2, -z+1; (v) -x+1, -y+1, -z+1; (vi) -x+1, -y+2, -z+2.
[Figure 1]
Figure 1
The coordination environments within the title compound, showing the octa­hedral coordination at the NaI cation and the square-planar coordination at the CuII cation. Displacement ellipsoids are drawn at the 50% probability level.Symmetry codes are as listed in Table 2[link].

The CuII cations are conjoined by pairs of btcH ligands via their deprotonated carboxyl­ate termini to construct anionic [Cu(btcH)2]n2n coordination polymer ribbons oriented parallel to [100] (Fig. 2[link]). Within the [Cu(btcH)2]n2n ribbons, the Cu⋯Cu inter­nuclear distance of 6.9035 (7) Å coincides with the a lattice parameter. The protonated carboxyl­ate groups of the btcH ligands project towards the periphery of the ribbon motifs.

[Figure 2]
Figure 2
[Cu(btcH)2]n2n coordination polymer ribbon parallel to [100] in the title compound.

Pairs of bridging water mol­ecules create cationic Na2(μ-H2O)22+ clusters with an Na⋯Na distance of 3.140 (5) Å (Fig. 3[link]). These clusters conjoin adjacent anionic [Cu(btcH)2]n2n ribbons into an [Na2(H2O)4Cu(btcH)2]n three-dimensional coordination polymer network (Fig. 4[link]). Ancillary structural stabilization is provided by hydrogen bonding between the protonated btcH carboxyl­ate group and non-bridging water mol­ecules bound to the NaI cations (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯O7 0.70 (4) 1.91 (4) 2.613 (3) 177 (5)
O7—H7A⋯O4iv 0.68 (4) 2.01 (4) 2.685 (4) 169 (4)
O7—H7B⋯O1vii 0.81 (5) 2.02 (5) 2.816 (4) 168 (4)
O8—H8A⋯O4viii 0.84 (2) 1.90 (2) 2.736 (3) 170 (4)
O8—H8B⋯O2ix 0.81 (2) 2.54 (3) 2.720 (3) 94 (3)
Symmetry codes: (iv) -x+1, -y+2, -z+1; (vii) -x, -y+1, -z+1; (viii) -x+2, -y+2, -z+1; (ix) x, y, z+1.
[Figure 3]
Figure 3
Cationic Na2(μ-H2O)22+ cluster in the title compound.
[Figure 4]
Figure 4
Connection of [Cu(btcH)2]n2n coordination polymer ribbons by NaI cations to construct the [Na2(H2O)4Cu(btcH)2]n three-dimensional coordination polymer structure of the title compound. Individual [Cu(btcH)2]n2n ribbons are drawn in red.

Treating the CuII atoms as 4-connected nodes, the btcH ligands as 5-connected nodes, and the Na2(μ-H2O)22+ clusters as 6-connected nodes results in a 4,5,6-connected {42.84}{46.66.83}{48.62}2 topology (Fig. 5[link]) for the underlying network of the [Na2(H2O)4Cu(btcH)2]n three-dimensional coordination polymer, as determined by TOPOS (Blatov et al., 2014[Blatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst. Growth Des. 11, 3576-3586.]).

[Figure 5]
Figure 5
Schematic perspective of the 4,5,6-connected {42.84}{46.66.83}{48.62}2 topology network of the [Na2(H2O)4Cu(btcH)2]n three-dimensional coordination polymer within the title compound. The 4-connected CuII atom nodes are depicted as blue spheres. The 5-connected btcH ligand nodes are depicted as orange spheres. The 6-connected Na2(μ-H2O)22+ cluster modes are depicted as green spheres.

Synthesis and crystallization

Cu(NO3)2·2.5H2O (86 mg, 0.37 mmol), benzene-1,2,4-tri­carb­oxy­lic acid (78 mg, 0.37 mol), N,N′-bis­(pyridin-3-ylmeth­yl)piperazine (99 mg, 0.37 mol) and 0.75 ml of a 1.0 M NaOH solution were placed in 10 ml distilled H2O in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 393 K for 24 h, and then cooled slowly to 278 K. Blue crystals of the title compound (47 mg, 21% yield based on copper) were isolated after washing with distilled water and acetone, and drying in air.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [CuNa2(C9H4O6)2(H2O)4]
Mr 597.83
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 6.9048 (9), 7.0555 (9), 11.8449 (15)
α, β, γ (°) 105.071 (2), 93.073 (2), 109.955 (2)
V3) 517.26 (11)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.19
Crystal size (mm) 0.26 × 0.08 × 0.03
 
Data collection
Diffractometer Bruker SMART CCD 1K area detector
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.659, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 4640, 1906, 1606
Rint 0.031
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.099, 1.07
No. of reflections 1906
No. of parameters 199
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.48, −0.35
Computer programs: COSMO (Bruker, 2009[Bruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) within OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Crystal Maker (Palmer, 2018[Palmer, D. (2018). CrystalMaker. CrystalMaker Software, Bicester, Oxfordshire, England.]).

Structural data


Computing details top

Data collection: COSMO (Bruker, 2009); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b) within OLEX2 (Dolomanov et al., 2009); molecular graphics: Crystal Maker (Palmer, 2018); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[diaquabis(µ-hydrogen benzene-1,2,4-tricarboxylato)copper(II)disodium] top
Crystal data top
[CuNa2(C9H4O6)2(H2O)4]Z = 1
Mr = 597.83F(000) = 301
Triclinic, P1Dx = 1.913 Mg m3
a = 6.9048 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.0555 (9) ÅCell parameters from 2453 reflections
c = 11.8449 (15) Åθ = 3.2–25.4°
α = 105.071 (2)°µ = 1.19 mm1
β = 93.073 (2)°T = 173 K
γ = 109.955 (2)°Needle, blue
V = 517.26 (11) Å30.26 × 0.08 × 0.03 mm
Data collection top
Bruker SMART CCD 1K area detector
diffractometer
1906 independent reflections
Radiation source: sealed X-ray tube1606 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 7.9 pixels mm-1θmax = 25.4°, θmin = 1.8°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 88
Tmin = 0.659, Tmax = 0.745l = 1314
4640 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.245P]
where P = (Fo2 + 2Fc2)/3
1906 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.48 e Å3
3 restraintsΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure was refined by Least Squares using version 2014/6 of XL (Sheldrick, 2015b) incorporated in Olex2 (Dolomanov et al., 2009). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model, except for the Hydrogen atom on the oxygen atoms which was found by difference Fourier methods and refined isotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.50000.00000.01725 (19)
Na10.38930 (19)0.8360 (2)0.87662 (11)0.0247 (3)
O10.2019 (3)0.5155 (3)0.12631 (18)0.0188 (5)
O20.4758 (4)0.7631 (4)0.09054 (19)0.0265 (6)
O30.8109 (3)0.5155 (3)0.11767 (18)0.0181 (5)
O40.9730 (4)0.8616 (4)0.1695 (2)0.0322 (6)
O50.4966 (4)0.7908 (4)0.68605 (19)0.0248 (6)
O60.2072 (4)0.7132 (4)0.5602 (2)0.0242 (6)
H60.167 (7)0.722 (7)0.614 (4)0.039 (13)*
O70.0503 (4)0.7544 (5)0.7571 (2)0.0221 (6)
H7A0.032 (6)0.846 (6)0.770 (3)0.021 (12)*
H7B0.036 (7)0.673 (7)0.783 (4)0.038 (12)*
O80.7418 (4)0.9752 (4)0.9649 (2)0.0264 (6)
H8A0.836 (5)1.038 (5)0.931 (3)0.028*
H8B0.770 (5)0.877 (4)0.973 (3)0.028*
C10.5084 (5)0.6815 (5)0.2697 (3)0.0143 (6)
C20.7216 (5)0.7167 (5)0.2844 (3)0.0162 (7)
C30.8280 (5)0.7616 (5)0.3969 (3)0.0188 (7)
H30.965 (6)0.780 (5)0.411 (3)0.020 (9)*
C40.7268 (5)0.7724 (5)0.4942 (3)0.0192 (7)
H40.806 (5)0.811 (5)0.574 (3)0.027 (10)*
C50.5150 (5)0.7383 (5)0.4802 (3)0.0166 (7)
C60.4076 (5)0.6917 (5)0.3678 (3)0.0170 (7)
H6A0.259 (5)0.667 (5)0.358 (2)0.011 (8)*
C70.3906 (5)0.6523 (5)0.1510 (3)0.0170 (7)
C80.8432 (5)0.7000 (5)0.1818 (3)0.0168 (7)
C90.4075 (5)0.7501 (5)0.5861 (3)0.0185 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0163 (3)0.0219 (3)0.0148 (3)0.0074 (2)0.0044 (2)0.0065 (2)
Na10.0207 (7)0.0273 (8)0.0196 (7)0.0028 (6)0.0047 (6)0.0038 (6)
O10.0145 (12)0.0263 (13)0.0133 (11)0.0032 (10)0.0001 (9)0.0083 (9)
O20.0271 (14)0.0285 (14)0.0205 (12)0.0020 (11)0.0016 (10)0.0131 (11)
O30.0180 (12)0.0211 (13)0.0141 (11)0.0060 (10)0.0045 (9)0.0045 (9)
O40.0325 (15)0.0225 (13)0.0456 (16)0.0085 (12)0.0266 (12)0.0148 (11)
O50.0221 (13)0.0342 (14)0.0159 (13)0.0084 (11)0.0031 (10)0.0067 (10)
O60.0214 (14)0.0392 (15)0.0161 (13)0.0144 (12)0.0080 (11)0.0095 (11)
O70.0241 (14)0.0211 (14)0.0246 (14)0.0096 (12)0.0104 (11)0.0092 (11)
O80.0256 (14)0.0350 (16)0.0280 (13)0.0152 (12)0.0114 (11)0.0181 (12)
C10.0179 (16)0.0127 (15)0.0137 (15)0.0060 (13)0.0031 (12)0.0052 (12)
C20.0173 (16)0.0130 (16)0.0208 (17)0.0054 (13)0.0064 (13)0.0086 (13)
C30.0132 (17)0.0218 (18)0.0221 (17)0.0067 (14)0.0022 (13)0.0072 (14)
C40.0193 (18)0.0186 (17)0.0166 (17)0.0041 (14)0.0008 (14)0.0047 (14)
C50.0202 (17)0.0134 (16)0.0159 (16)0.0047 (13)0.0039 (13)0.0057 (13)
C60.0169 (17)0.0150 (16)0.0179 (17)0.0053 (13)0.0026 (13)0.0040 (13)
C70.0190 (18)0.0204 (17)0.0162 (16)0.0114 (14)0.0074 (13)0.0068 (13)
C80.0138 (16)0.0207 (18)0.0179 (16)0.0072 (14)0.0017 (13)0.0081 (14)
C90.0224 (18)0.0156 (16)0.0177 (17)0.0062 (14)0.0064 (14)0.0055 (13)
Geometric parameters (Å, º) top
Cu1—O11.944 (2)O6—H60.70 (4)
Cu1—O1i1.944 (2)O6—C91.320 (4)
Cu1—O3ii1.9681 (19)O7—H7A0.68 (4)
Cu1—O3iii1.9681 (19)O7—H7B0.81 (5)
Na1—O2iv2.571 (3)O8—Na1vi2.413 (3)
Na1—O3v2.413 (3)O8—H8A0.842 (18)
Na1—O52.390 (2)O8—H8B0.808 (18)
Na1—O72.473 (3)C1—C21.400 (4)
Na1—O82.354 (3)C1—C61.385 (4)
Na1—O8vi2.413 (3)C1—C71.514 (4)
O1—C71.292 (4)C2—C31.389 (4)
O2—Na1vii2.787 (3)C2—C81.516 (4)
O2—Na1iv2.571 (3)C3—H30.91 (4)
O2—C71.222 (4)C3—C41.379 (4)
O3—Cu1viii1.9681 (19)C4—H40.99 (4)
O3—Na1v2.413 (3)C4—C51.392 (4)
O3—C81.261 (4)C5—C61.390 (4)
O4—C81.236 (4)C5—C91.489 (4)
O5—C91.219 (4)C6—H6A0.98 (3)
O1—Cu1—O1i180.0Na1—O8—Na1vi82.21 (8)
O1i—Cu1—O3iii87.13 (9)Na1vi—O8—H8A122 (2)
O1i—Cu1—O3ii92.88 (9)Na1—O8—H8A121 (3)
O1—Cu1—O3iii92.87 (9)Na1—O8—H8B107 (3)
O1—Cu1—O3ii87.13 (9)Na1vi—O8—H8B118 (3)
O3iii—Cu1—O3ii180.00 (14)H8A—O8—H8B105 (3)
O3v—Na1—O2iv162.81 (9)C2—C1—C7121.4 (3)
O3v—Na1—O777.27 (10)C6—C1—C2119.1 (3)
O5—Na1—O2iv89.20 (8)C6—C1—C7119.3 (3)
O5—Na1—O3v105.37 (9)C1—C2—C8122.9 (3)
O5—Na1—O781.70 (9)C3—C2—C1119.5 (3)
O5—Na1—O8vi150.41 (10)C3—C2—C8117.5 (3)
O7—Na1—O2iv96.31 (10)C2—C3—H3123 (2)
O8vi—Na1—O2iv66.08 (9)C4—C3—C2121.0 (3)
O8—Na1—O2iv72.51 (9)C4—C3—H3116 (2)
O8—Na1—O3v115.87 (9)C3—C4—H4120 (2)
O8vi—Na1—O3v97.25 (9)C3—C4—C5119.8 (3)
O8—Na1—O589.37 (9)C5—C4—H4120 (2)
O8—Na1—O7165.87 (11)C4—C5—C9119.2 (3)
O8vi—Na1—O785.02 (9)C6—C5—C4119.4 (3)
O8—Na1—O8vi97.79 (8)C6—C5—C9121.3 (3)
C7—O1—Cu1122.27 (19)C1—C6—C5121.1 (3)
Na1iv—O2—Na1vii71.48 (7)C1—C6—H6A119.4 (17)
C7—O2—Na1iv132.9 (2)C5—C6—H6A119.5 (17)
C7—O2—Na1vii139.5 (2)O1—C7—C1115.1 (3)
Cu1viii—O3—Na1v109.41 (9)O2—C7—O1126.2 (3)
C8—O3—Cu1viii114.38 (19)O2—C7—C1118.6 (3)
C8—O3—Na1v135.22 (19)O3—C8—C2116.0 (3)
C9—O5—Na1133.8 (2)O4—C8—O3124.3 (3)
C9—O6—H6107 (4)O4—C8—C2119.6 (3)
Na1—O7—H7A106 (3)O5—C9—O6123.9 (3)
Na1—O7—H7B106 (3)O5—C9—C5123.1 (3)
H7A—O7—H7B107 (4)O6—C9—C5113.0 (3)
Cu1ix—Na1—O5—C959.0 (3)O8—Na1—O5—C9168.1 (3)
Cu1ix—Na1—O8—Na1vi66.87 (8)O8vi—Na1—O5—C963.3 (4)
Cu1—O1—C7—O212.0 (4)O8vi—Na1—O8—Na1vi0.0
Cu1—O1—C7—C1164.65 (18)C1—C2—C3—C40.1 (5)
Cu1viii—O3—C8—O44.1 (4)C1—C2—C8—O374.2 (4)
Cu1viii—O3—C8—C2171.8 (2)C1—C2—C8—O4109.7 (4)
Na1vii—Cu1—O1—C712.9 (2)C2—C1—C6—C50.7 (5)
Na1x—Cu1—O1—C7167.1 (2)C2—C1—C7—O1143.0 (3)
Na1vi—Na1—O5—C9138.8 (3)C2—C1—C7—O240.1 (4)
Na1iv—O2—C7—O1114.2 (3)C2—C3—C4—C50.1 (5)
Na1vii—O2—C7—O10.6 (5)C3—C2—C8—O3103.4 (3)
Na1iv—O2—C7—C162.4 (4)C3—C2—C8—O472.7 (4)
Na1vii—O2—C7—C1177.12 (19)C3—C4—C5—C60.6 (5)
Na1v—O3—C8—O4171.2 (2)C3—C4—C5—C9179.9 (3)
Na1v—O3—C8—C24.7 (4)C4—C5—C6—C11.0 (5)
Na1—O5—C9—O62.0 (5)C4—C5—C9—O50.8 (5)
Na1—O5—C9—C5177.6 (2)C4—C5—C9—O6179.6 (3)
O1i—Cu1—O1—C723 (9)C6—C1—C2—C30.2 (4)
O2ix—Na1—O5—C9146.4 (3)C6—C1—C2—C8177.4 (3)
O2iv—Na1—O5—C995.6 (3)C6—C1—C7—O142.6 (4)
O2iv—Na1—O8—Na1vi61.83 (8)C6—C1—C7—O2134.3 (3)
O2ix—Na1—O8—Na1vi60.30 (8)C6—C5—C9—O5179.9 (3)
O3iii—Cu1—O1—C752.4 (2)C6—C5—C9—O60.3 (4)
O3ii—Cu1—O1—C7127.6 (2)C7—C1—C2—C3174.2 (3)
O3v—Na1—O5—C975.2 (3)C7—C1—C2—C88.2 (4)
O3v—Na1—O8—Na1vi102.00 (10)C7—C1—C6—C5173.8 (3)
O5—Na1—O8—Na1vi151.19 (10)C8—C2—C3—C4177.8 (3)
O7—Na1—O5—C90.9 (3)C9—C5—C6—C1179.8 (3)
O7—Na1—O8—Na1vi100.6 (4)
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x+1, y+2, z+1; (v) x+1, y+1, z+1; (vi) x+1, y+2, z+2; (vii) x, y, z1; (viii) x+1, y, z; (ix) x, y, z+1; (x) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O70.70 (4)1.91 (4)2.613 (3)177 (5)
O7—H7A···O4iv0.68 (4)2.01 (4)2.685 (4)169 (4)
O7—H7B···O1x0.81 (5)2.02 (5)2.816 (4)168 (4)
O8—H8A···O4xi0.84 (2)1.90 (2)2.736 (3)170 (4)
O8—H8B···O2ix0.81 (2)2.54 (3)2.720 (3)94 (3)
Symmetry codes: (iv) x+1, y+2, z+1; (ix) x, y, z+1; (x) x, y+1, z+1; (xi) x+2, y+2, z+1.
 

Funding information

Funding for this work was provided by the Honors College of Michigan State University.

References

First citationBlake, K. M., Lucas, J. S. & LaDuca, R. L. (2011). Cryst. Growth Des. 11, 1287–1293.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst. Growth Des. 11, 3576–3586.  CrossRef Google Scholar
First citationBruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2015). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalmer, D. (2018). CrystalMaker. CrystalMaker Software, Bicester, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds