metal-organic compounds
Poly[diaquabis(μ-hydrogen benzene-1,2,4-tricarboxylato)copper(II)disodium]: a novel 4,5,6-connected trinodal net
aE-35A Holmes Hall, Michigan State University, 919 E. Shaw Lane, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu
In the title compound, [CuNa2(C9H4O6)2(H2O)4]n, the CuII cations are square-planar coordinated by carboxylate O-atom donors from four different hydrogen benzene-1,2,4-tricarboxylate (btcH) ligands, thereby forming [Cu(btcH)2]n2n− coordination polymer ribbons. These are connected by octahedrally coordinated and hydrated NaI cations within Na2(μ-H2O)2 clusters to construct the full [Na2(H2O)4Cu(btcH)2]n three-dimensional coordination polymer.
Keywords: crystal structure.
CCDC reference: 1841075
Structure description
The title coordination polymer was isolated during an attempt to prepare a copper benzene-1,2,4-tricarboxylate (btc) coordination polymer containing N,N′-bis(pyridin-3-ylmethyl)piperazine (3-bpmp) ligands. The 3-bpmp ligand has been used to construct coordination polymers with rare topologies, such as the (4462)(4466) tcs topology in {[Zn2(hydrogen pyromellitate)2(H2O)2(H2-3-bpmp)]·H2O}n (Blake et al., 2011).
The II cation on a crystallographic inversion center, a protonated hydrogen benzene-1,2,4-tricarboxylate (btcH) ligand, an NaI cation on a general position, and two aqua ligands bound to the Na atom. Operation of the inversion center affords a square-planar coordination geometry at the CuII cation, ligated by carboxylate O-atom donors from four different btcH ligands. The Na atom is coordinated in an octahedral geometry, with a mer disposition of three bound water molecules and a mer disposition of carboxylate O-atom donors from three different btcH ligands. A depiction of the coordination geometries and btcH ligand is shown in Fig. 1. Bond lengths and angles within the coordination spheres at CuII and NaI are listed in Table 1.
of the title compound contains a CuThe CuII cations are conjoined by pairs of btcH ligands via their deprotonated carboxylate termini to construct anionic [Cu(btcH)2]n2n− coordination polymer ribbons oriented parallel to [100] (Fig. 2). Within the [Cu(btcH)2]n2n− ribbons, the Cu⋯Cu internuclear distance of 6.9035 (7) Å coincides with the a lattice parameter. The protonated carboxylate groups of the btcH ligands project towards the periphery of the ribbon motifs.
Pairs of bridging water molecules create cationic Na2(μ-H2O)22+ clusters with an Na⋯Na distance of 3.140 (5) Å (Fig. 3). These clusters conjoin adjacent anionic [Cu(btcH)2]n2n− ribbons into an [Na2(H2O)4Cu(btcH)2]n three-dimensional coordination (Fig. 4). Ancillary structural stabilization is provided by hydrogen bonding between the protonated btcH carboxylate group and non-bridging water molecules bound to the NaI cations (Table 2).
|
Treating the CuII atoms as 4-connected nodes, the btcH ligands as 5-connected nodes, and the Na2(μ-H2O)22+ clusters as 6-connected nodes results in a 4,5,6-connected {42.84}{46.66.83}{48.62}2 topology (Fig. 5) for the underlying network of the [Na2(H2O)4Cu(btcH)2]n three-dimensional coordination polymer, as determined by TOPOS (Blatov et al., 2014).
Synthesis and crystallization
Cu(NO3)2·2.5H2O (86 mg, 0.37 mmol), benzene-1,2,4-tricarboxylic acid (78 mg, 0.37 mol), N,N′-bis(pyridin-3-ylmethyl)piperazine (99 mg, 0.37 mol) and 0.75 ml of a 1.0 M NaOH solution were placed in 10 ml distilled H2O in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 393 K for 24 h, and then cooled slowly to 278 K. Blue crystals of the title compound (47 mg, 21% yield based on copper) were isolated after washing with distilled water and acetone, and drying in air.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 3
|
Structural data
CCDC reference: 1841075
https://doi.org/10.1107/S2414314618006764/lh4034sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618006764/lh4034Isup2.hkl
Data collection: COSMO (Bruker, 2009); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b) within OLEX2 (Dolomanov et al., 2009); molecular graphics: Crystal Maker (Palmer, 2018); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[CuNa2(C9H4O6)2(H2O)4] | Z = 1 |
Mr = 597.83 | F(000) = 301 |
Triclinic, P1 | Dx = 1.913 Mg m−3 |
a = 6.9048 (9) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.0555 (9) Å | Cell parameters from 2453 reflections |
c = 11.8449 (15) Å | θ = 3.2–25.4° |
α = 105.071 (2)° | µ = 1.19 mm−1 |
β = 93.073 (2)° | T = 173 K |
γ = 109.955 (2)° | Needle, blue |
V = 517.26 (11) Å3 | 0.26 × 0.08 × 0.03 mm |
Bruker SMART CCD 1K area detector diffractometer | 1906 independent reflections |
Radiation source: sealed X-ray tube | 1606 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
Detector resolution: 7.9 pixels mm-1 | θmax = 25.4°, θmin = 1.8° |
ω scans | h = −8→8 |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | k = −8→8 |
Tmin = 0.659, Tmax = 0.745 | l = −13→14 |
4640 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.099 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0511P)2 + 0.245P] where P = (Fo2 + 2Fc2)/3 |
1906 reflections | (Δ/σ)max < 0.001 |
199 parameters | Δρmax = 0.48 e Å−3 |
3 restraints | Δρmin = −0.35 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The structure was refined by Least Squares using version 2014/6 of XL (Sheldrick, 2015b) incorporated in Olex2 (Dolomanov et al., 2009). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model, except for the Hydrogen atom on the oxygen atoms which was found by difference Fourier methods and refined isotropically. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.0000 | 0.5000 | 0.0000 | 0.01725 (19) | |
Na1 | 0.38930 (19) | 0.8360 (2) | 0.87662 (11) | 0.0247 (3) | |
O1 | 0.2019 (3) | 0.5155 (3) | 0.12631 (18) | 0.0188 (5) | |
O2 | 0.4758 (4) | 0.7631 (4) | 0.09054 (19) | 0.0265 (6) | |
O3 | 0.8109 (3) | 0.5155 (3) | 0.11767 (18) | 0.0181 (5) | |
O4 | 0.9730 (4) | 0.8616 (4) | 0.1695 (2) | 0.0322 (6) | |
O5 | 0.4966 (4) | 0.7908 (4) | 0.68605 (19) | 0.0248 (6) | |
O6 | 0.2072 (4) | 0.7132 (4) | 0.5602 (2) | 0.0242 (6) | |
H6 | 0.167 (7) | 0.722 (7) | 0.614 (4) | 0.039 (13)* | |
O7 | 0.0503 (4) | 0.7544 (5) | 0.7571 (2) | 0.0221 (6) | |
H7A | 0.032 (6) | 0.846 (6) | 0.770 (3) | 0.021 (12)* | |
H7B | −0.036 (7) | 0.673 (7) | 0.783 (4) | 0.038 (12)* | |
O8 | 0.7418 (4) | 0.9752 (4) | 0.9649 (2) | 0.0264 (6) | |
H8A | 0.836 (5) | 1.038 (5) | 0.931 (3) | 0.028* | |
H8B | 0.770 (5) | 0.877 (4) | 0.973 (3) | 0.028* | |
C1 | 0.5084 (5) | 0.6815 (5) | 0.2697 (3) | 0.0143 (6) | |
C2 | 0.7216 (5) | 0.7167 (5) | 0.2844 (3) | 0.0162 (7) | |
C3 | 0.8280 (5) | 0.7616 (5) | 0.3969 (3) | 0.0188 (7) | |
H3 | 0.965 (6) | 0.780 (5) | 0.411 (3) | 0.020 (9)* | |
C4 | 0.7268 (5) | 0.7724 (5) | 0.4942 (3) | 0.0192 (7) | |
H4 | 0.806 (5) | 0.811 (5) | 0.574 (3) | 0.027 (10)* | |
C5 | 0.5150 (5) | 0.7383 (5) | 0.4802 (3) | 0.0166 (7) | |
C6 | 0.4076 (5) | 0.6917 (5) | 0.3678 (3) | 0.0170 (7) | |
H6A | 0.259 (5) | 0.667 (5) | 0.358 (2) | 0.011 (8)* | |
C7 | 0.3906 (5) | 0.6523 (5) | 0.1510 (3) | 0.0170 (7) | |
C8 | 0.8432 (5) | 0.7000 (5) | 0.1818 (3) | 0.0168 (7) | |
C9 | 0.4075 (5) | 0.7501 (5) | 0.5861 (3) | 0.0185 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0163 (3) | 0.0219 (3) | 0.0148 (3) | 0.0074 (2) | 0.0044 (2) | 0.0065 (2) |
Na1 | 0.0207 (7) | 0.0273 (8) | 0.0196 (7) | 0.0028 (6) | 0.0047 (6) | 0.0038 (6) |
O1 | 0.0145 (12) | 0.0263 (13) | 0.0133 (11) | 0.0032 (10) | 0.0001 (9) | 0.0083 (9) |
O2 | 0.0271 (14) | 0.0285 (14) | 0.0205 (12) | 0.0020 (11) | 0.0016 (10) | 0.0131 (11) |
O3 | 0.0180 (12) | 0.0211 (13) | 0.0141 (11) | 0.0060 (10) | 0.0045 (9) | 0.0045 (9) |
O4 | 0.0325 (15) | 0.0225 (13) | 0.0456 (16) | 0.0085 (12) | 0.0266 (12) | 0.0148 (11) |
O5 | 0.0221 (13) | 0.0342 (14) | 0.0159 (13) | 0.0084 (11) | 0.0031 (10) | 0.0067 (10) |
O6 | 0.0214 (14) | 0.0392 (15) | 0.0161 (13) | 0.0144 (12) | 0.0080 (11) | 0.0095 (11) |
O7 | 0.0241 (14) | 0.0211 (14) | 0.0246 (14) | 0.0096 (12) | 0.0104 (11) | 0.0092 (11) |
O8 | 0.0256 (14) | 0.0350 (16) | 0.0280 (13) | 0.0152 (12) | 0.0114 (11) | 0.0181 (12) |
C1 | 0.0179 (16) | 0.0127 (15) | 0.0137 (15) | 0.0060 (13) | 0.0031 (12) | 0.0052 (12) |
C2 | 0.0173 (16) | 0.0130 (16) | 0.0208 (17) | 0.0054 (13) | 0.0064 (13) | 0.0086 (13) |
C3 | 0.0132 (17) | 0.0218 (18) | 0.0221 (17) | 0.0067 (14) | 0.0022 (13) | 0.0072 (14) |
C4 | 0.0193 (18) | 0.0186 (17) | 0.0166 (17) | 0.0041 (14) | −0.0008 (14) | 0.0047 (14) |
C5 | 0.0202 (17) | 0.0134 (16) | 0.0159 (16) | 0.0047 (13) | 0.0039 (13) | 0.0057 (13) |
C6 | 0.0169 (17) | 0.0150 (16) | 0.0179 (17) | 0.0053 (13) | 0.0026 (13) | 0.0040 (13) |
C7 | 0.0190 (18) | 0.0204 (17) | 0.0162 (16) | 0.0114 (14) | 0.0074 (13) | 0.0068 (13) |
C8 | 0.0138 (16) | 0.0207 (18) | 0.0179 (16) | 0.0072 (14) | 0.0017 (13) | 0.0081 (14) |
C9 | 0.0224 (18) | 0.0156 (16) | 0.0177 (17) | 0.0062 (14) | 0.0064 (14) | 0.0055 (13) |
Cu1—O1 | 1.944 (2) | O6—H6 | 0.70 (4) |
Cu1—O1i | 1.944 (2) | O6—C9 | 1.320 (4) |
Cu1—O3ii | 1.9681 (19) | O7—H7A | 0.68 (4) |
Cu1—O3iii | 1.9681 (19) | O7—H7B | 0.81 (5) |
Na1—O2iv | 2.571 (3) | O8—Na1vi | 2.413 (3) |
Na1—O3v | 2.413 (3) | O8—H8A | 0.842 (18) |
Na1—O5 | 2.390 (2) | O8—H8B | 0.808 (18) |
Na1—O7 | 2.473 (3) | C1—C2 | 1.400 (4) |
Na1—O8 | 2.354 (3) | C1—C6 | 1.385 (4) |
Na1—O8vi | 2.413 (3) | C1—C7 | 1.514 (4) |
O1—C7 | 1.292 (4) | C2—C3 | 1.389 (4) |
O2—Na1vii | 2.787 (3) | C2—C8 | 1.516 (4) |
O2—Na1iv | 2.571 (3) | C3—H3 | 0.91 (4) |
O2—C7 | 1.222 (4) | C3—C4 | 1.379 (4) |
O3—Cu1viii | 1.9681 (19) | C4—H4 | 0.99 (4) |
O3—Na1v | 2.413 (3) | C4—C5 | 1.392 (4) |
O3—C8 | 1.261 (4) | C5—C6 | 1.390 (4) |
O4—C8 | 1.236 (4) | C5—C9 | 1.489 (4) |
O5—C9 | 1.219 (4) | C6—H6A | 0.98 (3) |
O1—Cu1—O1i | 180.0 | Na1—O8—Na1vi | 82.21 (8) |
O1i—Cu1—O3iii | 87.13 (9) | Na1vi—O8—H8A | 122 (2) |
O1i—Cu1—O3ii | 92.88 (9) | Na1—O8—H8A | 121 (3) |
O1—Cu1—O3iii | 92.87 (9) | Na1—O8—H8B | 107 (3) |
O1—Cu1—O3ii | 87.13 (9) | Na1vi—O8—H8B | 118 (3) |
O3iii—Cu1—O3ii | 180.00 (14) | H8A—O8—H8B | 105 (3) |
O3v—Na1—O2iv | 162.81 (9) | C2—C1—C7 | 121.4 (3) |
O3v—Na1—O7 | 77.27 (10) | C6—C1—C2 | 119.1 (3) |
O5—Na1—O2iv | 89.20 (8) | C6—C1—C7 | 119.3 (3) |
O5—Na1—O3v | 105.37 (9) | C1—C2—C8 | 122.9 (3) |
O5—Na1—O7 | 81.70 (9) | C3—C2—C1 | 119.5 (3) |
O5—Na1—O8vi | 150.41 (10) | C3—C2—C8 | 117.5 (3) |
O7—Na1—O2iv | 96.31 (10) | C2—C3—H3 | 123 (2) |
O8vi—Na1—O2iv | 66.08 (9) | C4—C3—C2 | 121.0 (3) |
O8—Na1—O2iv | 72.51 (9) | C4—C3—H3 | 116 (2) |
O8—Na1—O3v | 115.87 (9) | C3—C4—H4 | 120 (2) |
O8vi—Na1—O3v | 97.25 (9) | C3—C4—C5 | 119.8 (3) |
O8—Na1—O5 | 89.37 (9) | C5—C4—H4 | 120 (2) |
O8—Na1—O7 | 165.87 (11) | C4—C5—C9 | 119.2 (3) |
O8vi—Na1—O7 | 85.02 (9) | C6—C5—C4 | 119.4 (3) |
O8—Na1—O8vi | 97.79 (8) | C6—C5—C9 | 121.3 (3) |
C7—O1—Cu1 | 122.27 (19) | C1—C6—C5 | 121.1 (3) |
Na1iv—O2—Na1vii | 71.48 (7) | C1—C6—H6A | 119.4 (17) |
C7—O2—Na1iv | 132.9 (2) | C5—C6—H6A | 119.5 (17) |
C7—O2—Na1vii | 139.5 (2) | O1—C7—C1 | 115.1 (3) |
Cu1viii—O3—Na1v | 109.41 (9) | O2—C7—O1 | 126.2 (3) |
C8—O3—Cu1viii | 114.38 (19) | O2—C7—C1 | 118.6 (3) |
C8—O3—Na1v | 135.22 (19) | O3—C8—C2 | 116.0 (3) |
C9—O5—Na1 | 133.8 (2) | O4—C8—O3 | 124.3 (3) |
C9—O6—H6 | 107 (4) | O4—C8—C2 | 119.6 (3) |
Na1—O7—H7A | 106 (3) | O5—C9—O6 | 123.9 (3) |
Na1—O7—H7B | 106 (3) | O5—C9—C5 | 123.1 (3) |
H7A—O7—H7B | 107 (4) | O6—C9—C5 | 113.0 (3) |
Cu1ix—Na1—O5—C9 | 59.0 (3) | O8—Na1—O5—C9 | −168.1 (3) |
Cu1ix—Na1—O8—Na1vi | −66.87 (8) | O8vi—Na1—O5—C9 | −63.3 (4) |
Cu1—O1—C7—O2 | −12.0 (4) | O8vi—Na1—O8—Na1vi | 0.0 |
Cu1—O1—C7—C1 | 164.65 (18) | C1—C2—C3—C4 | −0.1 (5) |
Cu1viii—O3—C8—O4 | 4.1 (4) | C1—C2—C8—O3 | −74.2 (4) |
Cu1viii—O3—C8—C2 | −171.8 (2) | C1—C2—C8—O4 | 109.7 (4) |
Na1vii—Cu1—O1—C7 | 12.9 (2) | C2—C1—C6—C5 | 0.7 (5) |
Na1x—Cu1—O1—C7 | −167.1 (2) | C2—C1—C7—O1 | 143.0 (3) |
Na1vi—Na1—O5—C9 | −138.8 (3) | C2—C1—C7—O2 | −40.1 (4) |
Na1iv—O2—C7—O1 | 114.2 (3) | C2—C3—C4—C5 | −0.1 (5) |
Na1vii—O2—C7—O1 | −0.6 (5) | C3—C2—C8—O3 | 103.4 (3) |
Na1iv—O2—C7—C1 | −62.4 (4) | C3—C2—C8—O4 | −72.7 (4) |
Na1vii—O2—C7—C1 | −177.12 (19) | C3—C4—C5—C6 | 0.6 (5) |
Na1v—O3—C8—O4 | 171.2 (2) | C3—C4—C5—C9 | 179.9 (3) |
Na1v—O3—C8—C2 | −4.7 (4) | C4—C5—C6—C1 | −1.0 (5) |
Na1—O5—C9—O6 | −2.0 (5) | C4—C5—C9—O5 | 0.8 (5) |
Na1—O5—C9—C5 | 177.6 (2) | C4—C5—C9—O6 | −179.6 (3) |
O1i—Cu1—O1—C7 | 23 (9) | C6—C1—C2—C3 | −0.2 (4) |
O2ix—Na1—O5—C9 | 146.4 (3) | C6—C1—C2—C8 | 177.4 (3) |
O2iv—Na1—O5—C9 | −95.6 (3) | C6—C1—C7—O1 | −42.6 (4) |
O2iv—Na1—O8—Na1vi | 61.83 (8) | C6—C1—C7—O2 | 134.3 (3) |
O2ix—Na1—O8—Na1vi | −60.30 (8) | C6—C5—C9—O5 | −179.9 (3) |
O3iii—Cu1—O1—C7 | 52.4 (2) | C6—C5—C9—O6 | −0.3 (4) |
O3ii—Cu1—O1—C7 | −127.6 (2) | C7—C1—C2—C3 | 174.2 (3) |
O3v—Na1—O5—C9 | 75.2 (3) | C7—C1—C2—C8 | −8.2 (4) |
O3v—Na1—O8—Na1vi | −102.00 (10) | C7—C1—C6—C5 | −173.8 (3) |
O5—Na1—O8—Na1vi | 151.19 (10) | C8—C2—C3—C4 | −177.8 (3) |
O7—Na1—O5—C9 | 0.9 (3) | C9—C5—C6—C1 | 179.8 (3) |
O7—Na1—O8—Na1vi | 100.6 (4) |
Symmetry codes: (i) −x, −y+1, −z; (ii) x−1, y, z; (iii) −x+1, −y+1, −z; (iv) −x+1, −y+2, −z+1; (v) −x+1, −y+1, −z+1; (vi) −x+1, −y+2, −z+2; (vii) x, y, z−1; (viii) x+1, y, z; (ix) x, y, z+1; (x) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H6···O7 | 0.70 (4) | 1.91 (4) | 2.613 (3) | 177 (5) |
O7—H7A···O4iv | 0.68 (4) | 2.01 (4) | 2.685 (4) | 169 (4) |
O7—H7B···O1x | 0.81 (5) | 2.02 (5) | 2.816 (4) | 168 (4) |
O8—H8A···O4xi | 0.84 (2) | 1.90 (2) | 2.736 (3) | 170 (4) |
O8—H8B···O2ix | 0.81 (2) | 2.54 (3) | 2.720 (3) | 94 (3) |
Symmetry codes: (iv) −x+1, −y+2, −z+1; (ix) x, y, z+1; (x) −x, −y+1, −z+1; (xi) −x+2, −y+2, −z+1. |
Funding information
Funding for this work was provided by the Honors College of Michigan State University.
References
Blake, K. M., Lucas, J. S. & LaDuca, R. L. (2011). Cryst. Growth Des. 11, 1287–1293. Web of Science CSD CrossRef CAS Google Scholar
Blatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst. Growth Des. 11, 3576–3586. CrossRef Google Scholar
Bruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2015). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Palmer, D. (2018). CrystalMaker. CrystalMaker Software, Bicester, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.