organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-Benzoyl-4-methyl-2-oxo-2H-chromen-7-yl acetate

aSchool of Material and Chemical Engineering, Henan University of Engineering, Zhengzhou 451191, People's Republic of China
*Correspondence e-mail: yuanjinweigs@126.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 2 January 2018; accepted 3 January 2018; online 9 January 2018)

In the title compound, C19H14O5, the dihedral angle between the coumarin ring system (r.m.s. deviation = 0.026 Å) and the pendant benzoyl group is 81.91 (7)°. In the crystal, weak C—H⋯O inter­actions link the mol­ecules into a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The coumarin nucleus occurs in many natural products (Yu et al., 2003[Yu, D. L., Suzuki, M., Xie, L., Morris-Natschke, S. L. & Lee, K. H. (2003). Med. Res. Rev. 23, 322-345.]) and it is also widely used in materials chemistry (Swanson et al., 2003[Swanson, S. A., Wallraff, G. M., Chen, J. P., Zhang, W. J., Bozano, L. D., Carter, K. R., Salem, J. R., Villa, R. & Scott, J. C. (2003). Chem. Mater. 15, 2305-2312.]). As part of our studies of 3-aroyl coumarins, we report here the synthesis and crystal structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure showing 50% probability displacement ellipsoids

The C7—O1, C8—O2 and C18—O5 bond lengths are 1.216 (2), 1.208 (2) and 1.186 (2) Å, respectively. They are shorter than the standard C=O bond length [1.231 (2) Å; Gao et al., 2014[Gao, Y. J., Deng, X. Y., Peng, H. & He, H. W. (2014). Chin. J. Struct. Chem. 33, 985-989.]]. The C14—O4 [1.393 (2) Å], C18—O4 [1.367 (2) Å], C12—O3 [1.378 (2) Å] and C8—O3 [1.370 (2) Å] bond lengths are obviously longer than the C=O bond length, indicating that they are single bonds. As expected, the coumarin ring is nearly planar (r.m.s. deviation = 0.026 Å) and subtends dihedral angles of 81.91 (7) and 65.35 (9)° with the benzoyl and acetate substituents, respectively.

In the crystal, weak C—H⋯O inter­actions (Table 1[link], Fig. 2[link]) link the mol­ecules into a three-dimensional network. Weak aromatic ππ stacking between inversion-related pairs of C11–C16 rings is also observed [centroid–centroid separation = 3.7482 (10), slippage = 0.98 Å].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.93 2.57 3.475 (3) 164
C4—H4⋯O3ii 0.93 2.56 3.361 (3) 144
C19—H19C⋯O3iii 0.96 2.47 3.409 (2) 165
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) -x, -y, -z+1.
[Figure 2]
Figure 2
The crystal packing viewed down [100].

Synthesis and crystallization

A 25 ml Schlenk tube equipped with a magnetic stirring bar was charged with AgNO3 (0.25 mmol, 42.5 mg), potassium persulfate (1.0 mmol, 270 mg), 4-methyl-2-oxo-2H-chromen-7-yl acetate (0.25 mmol, 54.5 mg), 2-oxo-2-phenyl­acetic acid (0.5 mmol, 75 mg), and 2 ml of CH3CN/H2O (v1/v2 = 1:1) was then added. The reaction mixture was heated in an oil bath at 90°C for 10 h (monitored by TLC). After completion of the reaction, the resulting solution was cooled to room temperature, and the solvent was removed with the aid of a rotary evaporator. The residue was purified by column chromatography on silica gel using ethyl­acetate/petroleum ether (1:4) as eluant to provide the desired product. Yellow blocks of (I)[link] were recrystallized from tri­chloro­methane solution, m.p. 114–115°C. 1H NMR (CDCl3) δ: 7.91 (dd, JH—H = 8.0 Hz, JH—H = 0.8 Hz, 2H), 7.71 (d, JH—H = 8.7 Hz, 1H), 7.61 (td, JH—H = 7.4 Hz, JH—H = 1.2 Hz, 1H), 7.47 (t, JH—H = 8.0 Hz, 2H), 7.18 (d, JH—H = 2.2 Hz, 1H), 7.14 (dd, JH—H = 8.7 Hz, JH—H = 2.2 Hz, 1H), 2.35 (s, 3H), 2.33 (s, 3H). 13C NMR (CDCl3) δ: 192.9 (C=O), 168.6, 158.4 (C=O), 153.7, 153.6, 149.7, 136.0, 134.3 (CH), 129.3 (CH), 129.0 (CH), 126.2 (CH), 125.3, 118.7 (CH), 117.4, 110.5 (CH), 21.1 (CH3), 16.0 (CH3). IR (KBr) ν (cm−1): 3066, 2925, 1768, 1720, 1670, 1614, 1450, 1186. HR MS (ESI) m/z 323.0916 [M + H]+ (calculated for C19H15O5+ 323.0914).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C19H14O5
Mr 322.30
Crystal system, space group Monoclinic, P21/n
Temperature (K) 291
a, b, c (Å) 9.1617 (2), 10.2307 (3), 16.8581 (5)
β (°) 92.812 (3)
V3) 1578.20 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.82
Crystal size (mm) 0.25 × 0.2 × 0.18
 
Data collection
Diffractometer Agilent Xcalibur, Eos, Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.544, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5738, 2817, 2327
Rint 0.037
(sin θ/λ)max−1) 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.138, 1.04
No. of reflections 2817
No. of parameters 220
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.18
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELlXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELlXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

3-Benzoyl-4-methyl-2-oxo-2H-chromen-7-yl acetate top
Crystal data top
C19H14O5F(000) = 672
Mr = 322.30Dx = 1.356 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 9.1617 (2) ÅCell parameters from 2227 reflections
b = 10.2307 (3) Åθ = 5.4–72.2°
c = 16.8581 (5) ŵ = 0.82 mm1
β = 92.812 (3)°T = 291 K
V = 1578.20 (7) Å3Block, yellow
Z = 40.25 × 0.2 × 0.18 mm
Data collection top
Agilent Xcalibur, Eos, Gemini
diffractometer
2817 independent reflections
Radiation source: Enhance (Cu) X-ray Source2327 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 16.2312 pixels mm-1θmax = 67.0°, θmin = 5.1°
ω scansh = 107
Absorption correction: multi-scan
(CrysAlisPro; Agilent, 2013)
k = 1212
Tmin = 0.544, Tmax = 1.000l = 2020
5738 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0713P)2 + 0.2573P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.138(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.26 e Å3
2817 reflectionsΔρmin = 0.18 e Å3
220 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0398 (18)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.42067 (18)0.45664 (18)0.79826 (9)0.0787 (5)
O20.47734 (14)0.30569 (16)0.61932 (10)0.0695 (5)
O30.24925 (13)0.28252 (13)0.57529 (8)0.0549 (4)
O40.23097 (14)0.21970 (13)0.46535 (8)0.0549 (4)
O50.2083 (2)0.03492 (17)0.53544 (11)0.0900 (6)
C10.6308 (2)0.6465 (2)0.76609 (12)0.0563 (5)
H10.62890.61630.81810.068*
C20.7325 (2)0.7391 (2)0.74621 (14)0.0655 (6)
H20.79830.77170.78510.079*
C30.7372 (2)0.7834 (2)0.66899 (14)0.0650 (6)
H30.80580.84580.65600.078*
C40.6407 (2)0.7353 (2)0.61166 (13)0.0605 (5)
H40.64460.76460.55960.073*
C50.5374 (2)0.64341 (18)0.63057 (11)0.0501 (5)
H50.47200.61150.59130.060*
C60.53109 (19)0.59858 (17)0.70822 (10)0.0452 (4)
C70.4219 (2)0.50110 (19)0.73141 (11)0.0505 (5)
C80.35343 (19)0.34511 (19)0.62240 (11)0.0502 (5)
C90.30657 (19)0.45207 (17)0.67102 (10)0.0459 (4)
C100.16730 (19)0.49705 (16)0.66636 (10)0.0446 (4)
C110.06022 (18)0.42967 (16)0.61466 (10)0.0418 (4)
C120.10533 (18)0.32206 (16)0.57183 (10)0.0435 (4)
C130.0120 (2)0.24892 (18)0.52289 (11)0.0482 (4)
H130.04570.17770.49480.058*
C140.13290 (19)0.28508 (17)0.51713 (11)0.0454 (4)
C150.18368 (19)0.39151 (18)0.55818 (11)0.0492 (5)
H150.28190.41450.55340.059*
C160.08818 (19)0.46300 (18)0.60608 (11)0.0481 (5)
H160.12250.53490.63330.058*
C170.1211 (2)0.6136 (2)0.71267 (12)0.0598 (5)
H17A0.08100.67870.67680.090*
H17B0.20420.64900.74220.090*
H17C0.04850.58780.74870.090*
C180.2599 (2)0.09088 (19)0.47921 (12)0.0528 (5)
C190.3583 (3)0.0359 (2)0.41586 (14)0.0674 (6)
H19A0.33600.07400.36580.101*
H19B0.45780.05510.42700.101*
H19C0.34510.05710.41360.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0800 (11)0.0931 (13)0.0617 (9)0.0215 (9)0.0092 (7)0.0224 (8)
O20.0404 (8)0.0679 (10)0.0998 (11)0.0070 (7)0.0007 (7)0.0154 (8)
O30.0417 (7)0.0473 (8)0.0755 (9)0.0053 (5)0.0001 (6)0.0161 (6)
O40.0555 (8)0.0433 (7)0.0641 (8)0.0033 (6)0.0143 (6)0.0026 (6)
O50.1241 (16)0.0584 (10)0.0840 (11)0.0260 (10)0.0321 (10)0.0174 (9)
C10.0539 (11)0.0613 (13)0.0530 (10)0.0007 (9)0.0040 (8)0.0083 (9)
C20.0516 (11)0.0637 (14)0.0804 (14)0.0075 (10)0.0044 (10)0.0229 (11)
C30.0547 (12)0.0505 (12)0.0905 (16)0.0055 (9)0.0108 (10)0.0049 (11)
C40.0622 (12)0.0525 (12)0.0673 (12)0.0034 (9)0.0084 (9)0.0093 (10)
C50.0509 (10)0.0444 (10)0.0541 (10)0.0033 (8)0.0057 (8)0.0002 (8)
C60.0441 (9)0.0403 (9)0.0506 (9)0.0041 (7)0.0030 (7)0.0021 (7)
C70.0500 (10)0.0494 (11)0.0515 (10)0.0017 (8)0.0034 (8)0.0040 (8)
C80.0418 (10)0.0437 (10)0.0648 (11)0.0008 (8)0.0002 (8)0.0009 (8)
C90.0456 (9)0.0401 (9)0.0519 (10)0.0031 (7)0.0001 (7)0.0032 (7)
C100.0506 (10)0.0356 (9)0.0474 (9)0.0006 (7)0.0005 (7)0.0024 (7)
C110.0425 (9)0.0348 (9)0.0482 (9)0.0016 (7)0.0028 (7)0.0034 (7)
C120.0405 (9)0.0347 (9)0.0551 (9)0.0027 (7)0.0019 (7)0.0018 (7)
C130.0496 (10)0.0366 (9)0.0583 (10)0.0020 (7)0.0013 (8)0.0039 (8)
C140.0465 (9)0.0382 (9)0.0508 (9)0.0027 (7)0.0053 (7)0.0061 (7)
C150.0419 (9)0.0467 (10)0.0585 (10)0.0069 (8)0.0016 (7)0.0044 (8)
C160.0470 (10)0.0415 (10)0.0558 (10)0.0091 (8)0.0013 (8)0.0025 (8)
C170.0626 (12)0.0530 (12)0.0625 (12)0.0124 (9)0.0096 (9)0.0134 (9)
C180.0544 (11)0.0425 (10)0.0612 (11)0.0008 (8)0.0013 (8)0.0005 (9)
C190.0685 (14)0.0523 (12)0.0799 (14)0.0022 (10)0.0106 (11)0.0145 (11)
Geometric parameters (Å, º) top
O1—C71.216 (2)C8—C91.445 (3)
O2—C81.208 (2)C9—C101.355 (2)
O3—C81.370 (2)C10—C111.454 (2)
O3—C121.378 (2)C10—C171.497 (2)
O4—C141.393 (2)C11—C121.390 (2)
O4—C181.367 (2)C11—C161.402 (2)
O5—C181.186 (2)C12—C131.379 (2)
C1—H10.9300C13—H130.9300
C1—C21.381 (3)C13—C141.377 (3)
C1—C61.392 (2)C14—C151.383 (3)
C2—H20.9300C15—H150.9300
C2—C31.381 (3)C15—C161.372 (2)
C3—H30.9300C16—H160.9300
C3—C41.369 (3)C17—H17A0.9600
C4—H40.9300C17—H17B0.9600
C4—C51.382 (3)C17—H17C0.9600
C5—H50.9300C18—C191.475 (3)
C5—C61.391 (3)C19—H19A0.9600
C6—C71.479 (3)C19—H19B0.9600
C7—C91.516 (2)C19—H19C0.9600
C8—O3—C12121.69 (14)C12—C11—C16116.77 (15)
C18—O4—C14118.72 (14)C16—C11—C10124.67 (16)
C2—C1—H1120.0O3—C12—C11121.25 (15)
C2—C1—C6119.91 (19)O3—C12—C13115.48 (15)
C6—C1—H1120.0C13—C12—C11123.27 (16)
C1—C2—H2119.8C12—C13—H13121.2
C3—C2—C1120.39 (19)C14—C13—C12117.64 (17)
C3—C2—H2119.8C14—C13—H13121.2
C2—C3—H3120.0C13—C14—O4120.35 (17)
C4—C3—C2119.9 (2)C13—C14—C15121.53 (16)
C4—C3—H3120.0C15—C14—O4117.99 (16)
C3—C4—H4119.8C14—C15—H15120.2
C3—C4—C5120.5 (2)C16—C15—C14119.59 (16)
C5—C4—H4119.8C16—C15—H15120.2
C4—C5—H5119.9C11—C16—H16119.4
C4—C5—C6120.12 (18)C15—C16—C11121.20 (17)
C6—C5—H5119.9C15—C16—H16119.4
C1—C6—C7118.77 (17)C10—C17—H17A109.5
C5—C6—C1119.16 (18)C10—C17—H17B109.5
C5—C6—C7122.08 (16)C10—C17—H17C109.5
O1—C7—C6122.32 (17)H17A—C17—H17B109.5
O1—C7—C9117.43 (18)H17A—C17—H17C109.5
C6—C7—C9120.25 (15)H17B—C17—H17C109.5
O2—C8—O3116.64 (17)O4—C18—C19111.14 (17)
O2—C8—C9125.67 (18)O5—C18—O4121.96 (18)
O3—C8—C9117.69 (15)O5—C18—C19126.90 (19)
C8—C9—C7114.50 (16)C18—C19—H19A109.5
C10—C9—C7123.35 (17)C18—C19—H19B109.5
C10—C9—C8121.97 (16)C18—C19—H19C109.5
C9—C10—C11118.65 (16)H19A—C19—H19B109.5
C9—C10—C17121.98 (16)H19A—C19—H19C109.5
C11—C10—C17119.37 (15)H19B—C19—H19C109.5
C12—C11—C10118.54 (15)
O1—C7—C9—C894.8 (2)C8—O3—C12—C13179.03 (16)
O1—C7—C9—C1080.4 (3)C8—C9—C10—C114.1 (3)
O2—C8—C9—C710.1 (3)C8—C9—C10—C17175.79 (17)
O2—C8—C9—C10174.6 (2)C9—C10—C11—C120.3 (2)
O3—C8—C9—C7170.11 (16)C9—C10—C11—C16177.90 (17)
O3—C8—C9—C105.1 (3)C10—C11—C12—O32.7 (3)
O3—C12—C13—C14179.65 (16)C10—C11—C12—C13178.08 (16)
O4—C14—C15—C16176.12 (16)C10—C11—C16—C15177.57 (16)
C1—C2—C3—C40.1 (3)C11—C12—C13—C140.3 (3)
C1—C6—C7—O13.7 (3)C12—O3—C8—O2177.65 (17)
C1—C6—C7—C9176.75 (17)C12—O3—C8—C92.2 (3)
C2—C1—C6—C51.1 (3)C12—C11—C16—C150.6 (3)
C2—C1—C6—C7179.06 (19)C12—C13—C14—O4176.41 (15)
C2—C3—C4—C50.6 (3)C12—C13—C14—C150.6 (3)
C3—C4—C5—C60.3 (3)C13—C14—C15—C160.2 (3)
C4—C5—C6—C10.6 (3)C14—O4—C18—O52.9 (3)
C4—C5—C6—C7179.57 (18)C14—O4—C18—C19176.37 (17)
C5—C6—C7—O1176.2 (2)C14—C15—C16—C110.4 (3)
C5—C6—C7—C93.4 (3)C16—C11—C12—O3179.04 (16)
C6—C1—C2—C30.8 (3)C16—C11—C12—C130.2 (3)
C6—C7—C9—C884.8 (2)C17—C10—C11—C12179.68 (17)
C6—C7—C9—C10100.1 (2)C17—C10—C11—C162.2 (3)
C7—C9—C10—C11170.69 (15)C18—O4—C14—C1365.0 (2)
C7—C9—C10—C179.4 (3)C18—O4—C14—C15118.98 (19)
C8—O3—C12—C111.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.932.573.475 (3)164
C4—H4···O3ii0.932.563.361 (3)144
C19—H19C···O3iii0.962.473.409 (2)165
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1, y+1, z+1; (iii) x, y, z+1.
 

Funding information

We gratefully acknowledge the National Natural Science Foundation of China (No. 21302042).

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGao, Y. J., Deng, X. Y., Peng, H. & He, H. W. (2014). Chin. J. Struct. Chem. 33, 985–989.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSwanson, S. A., Wallraff, G. M., Chen, J. P., Zhang, W. J., Bozano, L. D., Carter, K. R., Salem, J. R., Villa, R. & Scott, J. C. (2003). Chem. Mater. 15, 2305–2312.  Web of Science CrossRef CAS Google Scholar
First citationYu, D. L., Suzuki, M., Xie, L., Morris-Natschke, S. L. & Lee, K. H. (2003). Med. Res. Rev. 23, 322–345.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]