organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-3-[4-(Benzo[d]oxazol-2-yl)styr­yl]-1-methyl­pyridin-1-ium hexa­fluorido­phosphate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Anhui University, Hefei 230601, People's Republic of China, and bKey Laboratory of Functional Inorganic Materials Chemistry, Hefei 230601, People's Republic of China
*Correspondence e-mail: kong_lin2009@126.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 18 August 2017; accepted 4 December 2017; online 8 December 2017)

In the cation of the title mol­ecular salt, C21H17N2O+·PF6, the pyridine ring and benzoxazole ring system are twisted with respect to the central benzene ring at dihedral angles of 23.75 (18) and 5.53 (16)°. In the crystal, the hexa­fluorido­phosphate anion accepts a weak C—H⋯F hydrogen bond from the cation to form an ion-pair.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In this study, we report the crystal structure of title salt (Fig. 1[link]). In the cation, the benzoxazole ring system and the pyridine ring are twisted by 23.75 (18) and 5.53 (16)°, respectively, to the central benzene ring, similar to the values found in a related structure (Qu et al., 2008[Qu, Y., Zhang, S., Teng, L., Xia, X. & Zhang, Y. (2008). Acta Cryst. E64, o1210.]). In the crystal, the hexa­fluorido­phosphate anion accepts a weak C—H⋯F hydrogen bond from the cation to form an ion-pair (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18A⋯F6i 0.96 2.51 3.228 (7) 132
Symmetry code: (i) -x+2, -y, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title salt with displacement ellipsoids drawn at the 50% probability level.

Synthesis and crystallization

To a solution of silver hexa­fluorido­phosphate (0.17 g, 0.68 mmol) in aceto­nitrile was added (E)-3-[4-(benzo[d]oxazol-2-yl)styr­yl]-1-methyl­pyridin-1-ium iodide (0.3 g, 0.68 mmol). The mixture was refluxed for 4 h, then filtered and evaporated, and concentrated in vacuo to give a solid product. Yellow single crystals were obtained in a 15% yield by recrystallization from acetonitrile solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C21H17N2O+·PF6
Mr 458.33
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 6.717 (2), 8.155 (3), 19.936 (6)
α, β, γ (°) 85.032 (3), 85.188 (3), 65.893 (3)
V3) 991.6 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.25 × 0.2 × 0.18
 
Data collection
Diffractometer Bruker SMART 1000
No. of measured, independent and observed [I > 2σ(I)] reflections 7021, 3442, 3035
Rint 0.023
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.246, 1.08
No. of reflections 3442
No. of parameters 281
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.69, −0.59
Computer programs: SMART and SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(E)-3-[4-(Benzo[d]oxazol-2-yl)styryl]-1-methylpyridin-1-ium hexafluoridophosphate top
Crystal data top
C21H17N2O+·PF6Z = 2
Mr = 458.33F(000) = 468
Triclinic, P1Dx = 1.535 Mg m3
a = 6.717 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.155 (3) ÅCell parameters from 4838 reflections
c = 19.936 (6) Åθ = 2.7–27.0°
α = 85.032 (3)°µ = 0.21 mm1
β = 85.188 (3)°T = 296 K
γ = 65.893 (3)°Block, yellow
V = 991.6 (5) Å30.25 × 0.2 × 0.18 mm
Data collection top
Bruker SMART 1000
diffractometer
Rint = 0.023
phi and ω scansθmax = 25.0°, θmin = 2.1°
7021 measured reflectionsh = 77
3442 independent reflectionsk = 99
3035 reflections with I > 2σ(I)l = 2323
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.080H-atom parameters constrained
wR(F2) = 0.246 w = 1/[σ2(Fo2) + (0.1562P)2 + 0.6275P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3442 reflectionsΔρmax = 0.69 e Å3
281 parametersΔρmin = 0.59 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.96 Å and Uiso(H) = 1.5Ueq(C) for the methyl H atoms and 1.2Ueq(C) for the others.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.69074 (14)0.22595 (11)0.11548 (4)0.0542 (4)
F20.7984 (6)0.0467 (4)0.15891 (17)0.1251 (13)
F60.4733 (6)0.1997 (5)0.1158 (3)0.181 (2)
F10.6114 (8)0.3458 (6)0.1756 (2)0.1692 (19)
F30.9069 (5)0.2535 (4)0.1129 (3)0.1514 (17)
F40.7680 (10)0.1089 (6)0.05329 (19)0.179 (2)
F50.5907 (7)0.4022 (5)0.0697 (2)0.1567 (17)
O10.2734 (4)0.8061 (3)0.46644 (12)0.0638 (7)
C90.4846 (5)0.7808 (4)0.47330 (17)0.0572 (8)
C171.3454 (6)0.2823 (4)0.82449 (18)0.0585 (8)
H171.44520.26060.78760.070*
C70.5824 (5)0.6955 (4)0.53677 (17)0.0556 (8)
N11.4199 (5)0.2301 (4)0.88659 (15)0.0620 (8)
N20.5754 (4)0.8382 (4)0.42255 (14)0.0596 (7)
C50.2272 (5)0.8911 (5)0.40320 (17)0.0582 (8)
C161.1258 (5)0.3669 (4)0.81385 (17)0.0560 (8)
C60.4113 (5)0.9123 (5)0.37623 (17)0.0577 (8)
C140.8545 (6)0.4733 (5)0.72631 (19)0.0648 (9)
H140.75380.46600.76010.078*
C120.7684 (5)0.5421 (5)0.65957 (18)0.0594 (8)
C151.0544 (6)0.4212 (5)0.74411 (18)0.0622 (9)
H151.16030.41790.71040.075*
C130.8911 (5)0.5823 (5)0.60598 (19)0.0657 (9)
H131.03760.55650.61090.079*
C210.9837 (6)0.3997 (5)0.87051 (19)0.0660 (9)
H210.83410.45990.86580.079*
C191.2841 (7)0.2591 (5)0.9406 (2)0.0721 (10)
H191.33890.22210.98320.086*
C80.7991 (5)0.6594 (5)0.54604 (18)0.0632 (9)
H80.88290.68770.51120.076*
C100.4596 (6)0.6525 (6)0.5896 (2)0.0704 (10)
H100.31480.67380.58410.084*
C181.6587 (7)0.1359 (7)0.8941 (3)0.0868 (13)
H18A1.69440.01180.90790.130*
H18B1.70150.19130.92750.130*
H18C1.73470.14350.85180.130*
C10.4092 (7)0.9970 (5)0.31239 (19)0.0694 (9)
H10.53191.01200.29290.083*
C110.5524 (6)0.5786 (6)0.6501 (2)0.0739 (11)
H110.46790.55260.68530.089*
C20.2198 (7)1.0570 (5)0.2796 (2)0.0743 (10)
H20.21291.11620.23720.089*
C201.0635 (7)0.3432 (5)0.9341 (2)0.0751 (10)
H200.96800.36230.97200.090*
C30.0344 (7)1.0318 (6)0.3080 (2)0.0779 (11)
H30.09081.07310.28370.093*
C40.0342 (6)0.9480 (6)0.3705 (2)0.0753 (11)
H40.08710.93050.38980.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0594 (6)0.0470 (5)0.0577 (6)0.0233 (4)0.0063 (4)0.0006 (4)
F20.175 (3)0.086 (2)0.124 (2)0.062 (2)0.068 (2)0.0443 (18)
F60.094 (2)0.118 (3)0.355 (7)0.066 (2)0.030 (3)0.001 (4)
F10.225 (5)0.161 (4)0.140 (3)0.095 (3)0.068 (3)0.092 (3)
F30.0738 (19)0.096 (2)0.289 (5)0.0416 (16)0.003 (2)0.006 (3)
F40.309 (6)0.121 (3)0.097 (2)0.070 (3)0.006 (3)0.041 (2)
F50.183 (4)0.086 (2)0.201 (4)0.054 (2)0.087 (3)0.070 (3)
O10.0502 (12)0.0778 (16)0.0629 (14)0.0259 (11)0.0069 (10)0.0024 (12)
C90.0510 (17)0.0540 (18)0.063 (2)0.0165 (14)0.0066 (14)0.0074 (15)
C170.064 (2)0.0539 (18)0.0607 (19)0.0261 (15)0.0076 (15)0.0032 (14)
C70.0501 (17)0.0540 (17)0.0595 (18)0.0172 (14)0.0041 (14)0.0053 (14)
N10.0731 (18)0.0532 (15)0.0662 (18)0.0300 (14)0.0190 (14)0.0016 (13)
N20.0476 (14)0.0661 (17)0.0614 (16)0.0193 (12)0.0034 (12)0.0017 (13)
C50.0534 (18)0.0600 (19)0.0589 (18)0.0199 (14)0.0078 (14)0.0027 (15)
C160.0625 (19)0.0443 (16)0.0629 (19)0.0225 (14)0.0075 (15)0.0032 (13)
C60.0541 (18)0.0572 (18)0.0595 (18)0.0186 (14)0.0042 (14)0.0103 (14)
C140.064 (2)0.067 (2)0.063 (2)0.0269 (17)0.0055 (16)0.0005 (16)
C120.0570 (19)0.0549 (18)0.0617 (19)0.0178 (15)0.0045 (15)0.0024 (15)
C150.0570 (19)0.0601 (19)0.064 (2)0.0180 (15)0.0034 (15)0.0024 (16)
C130.0455 (17)0.079 (2)0.068 (2)0.0208 (16)0.0079 (15)0.0000 (18)
C210.068 (2)0.0565 (19)0.073 (2)0.0241 (16)0.0030 (17)0.0057 (16)
C190.099 (3)0.065 (2)0.062 (2)0.042 (2)0.011 (2)0.0015 (17)
C80.0476 (17)0.076 (2)0.0596 (19)0.0200 (16)0.0023 (14)0.0029 (16)
C100.0505 (18)0.088 (3)0.076 (2)0.0326 (18)0.0084 (16)0.011 (2)
C180.073 (3)0.091 (3)0.100 (3)0.034 (2)0.035 (2)0.008 (2)
C10.073 (2)0.071 (2)0.062 (2)0.0281 (18)0.0005 (17)0.0038 (17)
C110.062 (2)0.093 (3)0.072 (2)0.040 (2)0.0065 (17)0.015 (2)
C20.087 (3)0.070 (2)0.059 (2)0.023 (2)0.0120 (18)0.0027 (17)
C200.093 (3)0.069 (2)0.068 (2)0.039 (2)0.009 (2)0.0106 (18)
C30.070 (2)0.089 (3)0.069 (2)0.023 (2)0.0232 (19)0.003 (2)
C40.055 (2)0.090 (3)0.079 (3)0.0261 (19)0.0131 (17)0.002 (2)
Geometric parameters (Å, º) top
P1—F11.532 (3)C14—H140.9300
P1—F41.552 (3)C12—C111.383 (5)
P1—F31.553 (3)C12—C131.393 (5)
P1—F61.559 (3)C15—H150.9300
P1—F21.559 (3)C13—C81.372 (5)
P1—F51.561 (3)C13—H130.9300
O1—C91.364 (4)C21—C201.385 (6)
O1—C51.380 (4)C21—H210.9300
C9—N21.289 (4)C19—C201.367 (6)
C9—C71.460 (5)C19—H190.9300
C17—N11.343 (4)C8—H80.9300
C17—C161.376 (5)C10—C111.378 (5)
C17—H170.9300C10—H100.9300
C7—C81.388 (5)C18—H18A0.9600
C7—C101.393 (5)C18—H18B0.9600
N1—C191.323 (5)C18—H18C0.9600
N1—C181.483 (5)C1—C21.365 (6)
N2—C61.401 (4)C1—H10.9300
C5—C61.376 (5)C11—H110.9300
C5—C41.385 (5)C2—C31.408 (6)
C16—C211.386 (5)C2—H20.9300
C16—C151.480 (5)C20—H200.9300
C6—C11.393 (5)C3—C41.370 (6)
C14—C151.303 (5)C3—H30.9300
C14—C121.468 (5)C4—H40.9300
F1—P1—F4178.5 (3)C13—C12—C14122.9 (3)
F1—P1—F388.0 (3)C14—C15—C16125.0 (3)
F4—P1—F392.1 (3)C14—C15—H15117.5
F1—P1—F693.1 (3)C16—C15—H15117.5
F4—P1—F686.8 (3)C8—C13—C12121.0 (3)
F3—P1—F6178.3 (3)C8—C13—H13119.5
F1—P1—F295.1 (3)C12—C13—H13119.5
F4—P1—F286.4 (2)C20—C21—C16120.3 (4)
F3—P1—F290.0 (2)C20—C21—H21119.8
F6—P1—F291.2 (2)C16—C21—H21119.8
F1—P1—F586.8 (3)N1—C19—C20120.3 (4)
F4—P1—F591.7 (3)N1—C19—H19119.9
F3—P1—F588.7 (2)C20—C19—H19119.9
F6—P1—F590.1 (2)C13—C8—C7120.7 (3)
F2—P1—F5177.6 (2)C13—C8—H8119.6
C9—O1—C5103.8 (3)C7—C8—H8119.6
N2—C9—O1115.6 (3)C11—C10—C7120.1 (3)
N2—C9—C7127.0 (3)C11—C10—H10120.0
O1—C9—C7117.4 (3)C7—C10—H10120.0
N1—C17—C16121.9 (3)N1—C18—H18A109.5
N1—C17—H17119.0N1—C18—H18B109.5
C16—C17—H17119.0H18A—C18—H18B109.5
C8—C7—C10118.7 (3)N1—C18—H18C109.5
C8—C7—C9120.4 (3)H18A—C18—H18C109.5
C10—C7—C9120.9 (3)H18B—C18—H18C109.5
C19—N1—C17121.2 (3)C2—C1—C6117.2 (4)
C19—N1—C18119.9 (3)C2—C1—H1121.4
C17—N1—C18119.0 (3)C6—C1—H1121.4
C9—N2—C6104.1 (3)C10—C11—C12121.4 (3)
C6—C5—O1107.6 (3)C10—C11—H11119.3
C6—C5—C4124.1 (4)C12—C11—H11119.3
O1—C5—C4128.3 (3)C1—C2—C3121.9 (4)
C17—C16—C21116.9 (3)C1—C2—H2119.1
C17—C16—C15119.3 (3)C3—C2—H2119.1
C21—C16—C15123.8 (3)C19—C20—C21119.4 (4)
C5—C6—C1119.8 (3)C19—C20—H20120.3
C5—C6—N2108.8 (3)C21—C20—H20120.3
C1—C6—N2131.4 (3)C4—C3—C2121.6 (4)
C15—C14—C12128.1 (4)C4—C3—H3119.2
C15—C14—H14115.9C2—C3—H3119.2
C12—C14—H14115.9C3—C4—C5115.4 (4)
C11—C12—C13118.1 (3)C3—C4—H4122.3
C11—C12—C14118.9 (3)C5—C4—H4122.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···F6i0.962.513.228 (7)132
Symmetry code: (i) x+2, y, z+1.
 

Funding information

This work was supported by the Graduate Students Innovative Program of Anhui University, China (J18515024, J18515019, 201310357155).

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationQu, Y., Zhang, S., Teng, L., Xia, X. & Zhang, Y. (2008). Acta Cryst. E64, o1210.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]