organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-Acetyl-3-amino-4-(4-meth­­oxy­phen­yl)-6-methyl­thieno[2,3-b]pyridine-2-carbo­nitrile

CROSSMARK_Color_square_no_text.svg

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt, and fDepartment of Chemistry, Faculty of Science, Sana'a University, Yemen
*Correspondence e-mail: s.mohamed@mmu.ac.uk

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 13 November 2017; accepted 26 November 2017; online 5 December 2017)

The asymmetric unit of the title compound, C18H15N3O2S, comprises two independent mol­ecules, which differ primarily in the orientations of the acetyl and p-anisyl substituents, each being rotated in opposite directions from the mean plane of the pyridine ring. The major feature of the mol­ecular packing is the formation of a two-dimensional network parallel to the (110) plane, being mediated by amine-N—H⋯O(carbon­yl) hydrogen bonds involving one amine H atom of each independent mol­ecule. The remaining amine-H atoms form significantly weaker N—H⋯O(meth­oxy) inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Thieno­pyridines were mentioned for the first time in 1913 (Steinkopf & Lutzkendorf, 1913[Steinkopf, W. & Lutzkendorf, G. (1913). Chem. Ztg, 36, 379-384.]). After more than a century of investigation, the chemistry of thieno[2,3-b]pyridines is well known; this is primarily because of the great practical importance of many thieno[2,3-b]pyridine derivatives (Bakhite, 2003[Bakhite, E. A. G. (2003). Phosphorus Sulfur Silicon, 178, 929-992.]; Litvinov et al., 2005[Litvinov, V. P., Dotsenko, V. V. & Krivokolysko, S. G. (2005). Russ. Chem. Bull. 54, 864-904.]). As part of our studies in this area, we now report the synthesis of the title thieno­pyridine derivative and its crystal structure.

The asymmetric unit comprises two independent mol­ecules, Fig. 1[link], differing primarily in the orientations of the acetyl and p-anisyl groups. Thus, the C2—C3—C11—C12 and the C3—C2—C9—C10 torsion angles are, respectively, −54.4 (5) and −64.6 (5)°, while the corresponding angles in the second mol­ecule (C20—C21—C29—C30 and C21—C20—C27—C28) are, respectively, 63.9 (4) and 66.2 (5)°. The thieno[2,3-b]pyridine core units deviate slightly from planarity, as seen from the dihedral angles of 1.7 (2) and 3.0 (2)°, respectively, between the S1/C4–C7 and the C7/N1/C1–C4 rings and between the S2/C22–C25 and the C25/N4/C19–C22 rings. The dihedral angle between the C7/N1/C1–C4 and the C11–C15 rings is 58.2 (1)° while the corresponding angle in the other mol­ecule is 68.0 (1)°.

[Figure 1]
Figure 1
The asymmetric unit with the atom-labelling scheme and 50% probability displacement ellipsoids. The inter­molecular N—H⋯O hydrogen bond is shown as a blue dashed line.

In the crystal, N—H⋯O hydrogen bonds (Table 1[link]) form a two-dimensional network parallel to the (110) plane. ππ stacking interactions are observed between the thieno[2,3-b]pyridine core units (Fig. 2[link]) with Cg1⋯Cg2iv = 3.643 (2) Å, dihedral angle = 1.86 (2)° and Cg5⋯Cg6v = 3.645 (2) Å, dihedral angle = 3.0 (2)°. Cg1, Cg2, Cg5 and Cg6 are, respectively, the centroids of the S1/C4–C7, C7/N1/C1–C4, S2/C22–C25 and C25/N4/C19-C22 rings [symmetry codes: (iv) −x + 1, −y + 2, −z; (v) −x + 2, −y + 1, −z + 1].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3i 0.88 (5) 2.16 (5) 2.993 (4) 158 (4)
N2—H2B⋯O2ii 0.84 (5) 2.53 (5) 3.092 (4) 126 (4)
N5—H5A⋯O1 0.88 (5) 2.04 (5) 2.911 (4) 169 (4)
N5—H5B⋯O4iii 0.90 (6) 2.49 (6) 3.087 (4) 124 (5)
Symmetry codes: (i) x-1, y+1, z; (ii) -x+1, -y+2, -z+1; (iii) -x+2, -y+1, -z.
[Figure 2]
Figure 2
A portion of the packing projected onto (111). The N—H⋯O hydrogen bonds and the π-stacking inter­actions are shown, respectively, as blue and orange dashed lines.

Synthesis and crystallization

The title compound was prepared by heating equimolar quanti­ties of 5-acetyl-3-cyano-6-methyl-4-(4-meth­oxy­phen­yl)pyridine-2(1H)-thione (2.98 g, 10 mmol) and chloro­aceto­nitrile (0.755 g; 10 mmol) in absolute ethanol (25 ml) containing dissolved sodium (0.40 g) on a steam bath for 30 min. The product that formed on cooling was collected and recrystallized from ethanol solution to give yellow crystals of the title compound. Yield: 92%, m.p. 457 K. IR (KBr) ν = 3490, 3450, 3300, 3200 (NH2), 2200 (CN), 1690 (C=O) cm−1. 1H NMR (CDCl3): 7.27–7.29 (d, 2H, Ar—H), 7.03–7.06 (d, 2H, Ar—H), 4.40 (s, 2H, NH2), 3.89 (s, 3H, OCH3), 2.59 (s, 3H, CH3), 2.00 (s, 3H, CH3) p.p.m.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C18H15N3O2S
Mr 337.39
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 10.5214 (4), 13.2896 (6), 13.3680 (6)
α, β, γ (°) 107.331 (3), 109.298 (2), 99.272 (3)
V3) 1612.66 (12)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.92
Crystal size (mm) 0.23 × 0.17 × 0.01
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.78, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 12139, 5977, 4333
Rint 0.059
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.153, 1.06
No. of reflections 5977
No. of parameters 487
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.39
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

5-Acetyl-3-amino-4-(4-methoxyphenyl)-6-methylthieno[2,3-b]pyridine-2-carbonitrile top
Crystal data top
C18H15N3O2SZ = 4
Mr = 337.39F(000) = 704
Triclinic, P1Dx = 1.390 Mg m3
a = 10.5214 (4) ÅCu Kα radiation, λ = 1.54178 Å
b = 13.2896 (6) ÅCell parameters from 7503 reflections
c = 13.3680 (6) Åθ = 3.6–72.5°
α = 107.331 (3)°µ = 1.92 mm1
β = 109.298 (2)°T = 150 K
γ = 99.272 (3)°Plate, yellow
V = 1612.66 (12) Å30.23 × 0.17 × 0.01 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
5977 independent reflections
Radiation source: INCOATEC IµS micro-focus source4333 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.059
Detector resolution: 10.4167 pixels mm-1θmax = 72.4°, θmin = 3.6°
ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1516
Tmin = 0.78, Tmax = 0.98l = 1415
12139 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: mixed
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0371P)2 + 2.7497P]
where P = (Fo2 + 2Fc2)/3
5977 reflections(Δ/σ)max < 0.001
487 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Independent refinement of the hydrogen atoms of the methyl groups led to unsatisfactory geometries so these atoms were included as riding contributions in idealized positions.

Independent refinement of the hydrogen atoms of the methyl groups led to unsatisfactory geometries so these atoms were included as riding contributions in idealized positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.23689 (9)0.90661 (7)0.13718 (7)0.0231 (2)
O10.6522 (3)0.6773 (2)0.1498 (2)0.0351 (7)
O20.7270 (3)1.0382 (2)0.6220 (2)0.0353 (7)
N10.4244 (3)0.7950 (2)0.1008 (2)0.0227 (6)
N20.3064 (4)1.0390 (3)0.1892 (3)0.0292 (7)
H2A0.235 (6)1.065 (4)0.189 (4)0.051 (15)*
H2B0.357 (5)1.030 (4)0.247 (4)0.036 (12)*
N30.0500 (4)1.1062 (3)0.0427 (3)0.0308 (7)
C10.5206 (4)0.7662 (3)0.0296 (3)0.0221 (7)
C20.5605 (4)0.8097 (3)0.0901 (3)0.0206 (7)
C30.4995 (3)0.8856 (3)0.1404 (3)0.0193 (7)
C40.3954 (4)0.9141 (3)0.0656 (3)0.0196 (7)
C50.3050 (4)0.9837 (3)0.0847 (3)0.0209 (7)
C60.2199 (4)0.9886 (3)0.0158 (3)0.0230 (7)
C70.3657 (4)0.8670 (3)0.0517 (3)0.0207 (7)
C80.5859 (4)0.6858 (3)0.0853 (3)0.0306 (9)
H8A0.55030.61360.08390.046*
H8B0.68840.71210.04340.046*
H8C0.56160.67940.16470.046*
C90.6729 (4)0.7743 (3)0.1625 (3)0.0253 (8)
C100.8111 (4)0.8572 (4)0.2440 (3)0.0352 (10)
H10A0.85380.83470.30780.053*
H10B0.79640.92930.27350.053*
H10C0.87380.86200.20420.053*
C110.5473 (4)0.9303 (3)0.2665 (3)0.0205 (7)
C120.5447 (4)0.8579 (3)0.3246 (3)0.0221 (7)
H120.501 (4)0.779 (3)0.278 (3)0.018 (9)*
C130.6030 (4)0.8964 (3)0.4424 (3)0.0247 (8)
H130.607 (5)0.846 (4)0.482 (4)0.046 (13)*
C140.6686 (4)1.0092 (3)0.5059 (3)0.0260 (8)
C150.6702 (4)1.0819 (3)0.4507 (3)0.0253 (8)
H150.721 (4)1.157 (4)0.495 (4)0.030 (11)*
C160.6095 (4)1.0422 (3)0.3315 (3)0.0240 (8)
H160.611 (4)1.097 (3)0.296 (3)0.024 (10)*
C170.8008 (5)1.1515 (4)0.6904 (3)0.0410 (11)
H17A0.87611.17510.66730.062*
H17B0.84151.16110.77110.062*
H17C0.73541.19600.67960.062*
C180.1260 (4)1.0531 (3)0.0285 (3)0.0240 (8)
S20.70225 (10)0.41261 (8)0.43430 (8)0.0259 (2)
O31.1091 (3)0.1552 (2)0.2571 (2)0.0335 (6)
O41.1927 (3)0.4897 (2)0.0015 (2)0.0287 (6)
N40.8917 (3)0.3008 (2)0.4501 (2)0.0227 (6)
N50.8247 (4)0.5513 (3)0.2461 (3)0.0303 (8)
H5A0.765 (5)0.586 (4)0.221 (4)0.047 (14)*
H5B0.879 (6)0.536 (5)0.207 (5)0.073 (18)*
N60.5335 (4)0.6134 (3)0.3391 (3)0.0376 (8)
C190.9927 (4)0.2682 (3)0.4203 (3)0.0223 (7)
C201.0409 (4)0.3055 (3)0.3468 (3)0.0209 (7)
C210.9875 (4)0.3811 (3)0.3055 (3)0.0188 (7)
C220.8835 (4)0.4179 (3)0.3385 (3)0.0188 (7)
C230.8047 (4)0.4922 (3)0.3093 (3)0.0224 (7)
C240.7053 (4)0.4970 (3)0.3559 (3)0.0234 (7)
C250.8386 (4)0.3710 (3)0.4071 (3)0.0214 (7)
C261.0517 (4)0.1910 (3)0.4715 (3)0.0324 (9)
H26A1.15440.22040.50990.049*
H26B1.02630.11880.41080.049*
H26C1.01310.18350.52710.049*
C271.1437 (4)0.2550 (3)0.3080 (3)0.0245 (8)
C281.2866 (4)0.3253 (3)0.3390 (3)0.0339 (9)
H28A1.34340.34560.42050.051*
H28B1.27920.39200.32320.051*
H28C1.33150.28450.29350.051*
C291.0364 (4)0.4152 (3)0.2243 (3)0.0204 (7)
C301.0068 (4)0.3365 (3)0.1162 (3)0.0223 (7)
H300.948 (4)0.257 (3)0.091 (3)0.029 (11)*
C311.0592 (4)0.3648 (3)0.0434 (3)0.0233 (7)
H311.044 (4)0.309 (3)0.031 (3)0.024 (10)*
C321.1428 (4)0.4706 (3)0.0760 (3)0.0222 (7)
C331.1734 (4)0.5495 (3)0.1826 (3)0.0251 (8)
H331.232 (4)0.620 (3)0.207 (3)0.024 (10)*
C341.1172 (4)0.5215 (3)0.2545 (3)0.0238 (8)
H341.147 (4)0.578 (3)0.334 (3)0.025 (10)*
C351.3009 (4)0.5898 (4)0.0386 (3)0.0367 (10)
H35A1.26210.65220.05410.055*
H35B1.33810.58910.01970.055*
H35C1.37670.59690.10920.055*
C360.6106 (4)0.5608 (3)0.3455 (3)0.0271 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0245 (5)0.0287 (5)0.0189 (4)0.0118 (4)0.0080 (3)0.0112 (4)
O10.0442 (17)0.0367 (17)0.0394 (15)0.0266 (14)0.0216 (13)0.0213 (13)
O20.0397 (16)0.0409 (17)0.0186 (12)0.0116 (14)0.0073 (12)0.0073 (12)
N10.0217 (15)0.0276 (16)0.0193 (14)0.0096 (13)0.0081 (12)0.0081 (12)
N20.0328 (19)0.039 (2)0.0220 (16)0.0235 (16)0.0122 (14)0.0110 (14)
N30.0356 (19)0.0325 (18)0.0312 (17)0.0168 (16)0.0143 (14)0.0167 (15)
C10.0220 (18)0.0275 (19)0.0219 (17)0.0092 (15)0.0130 (14)0.0104 (15)
C20.0185 (17)0.0222 (18)0.0226 (17)0.0071 (14)0.0085 (14)0.0094 (14)
C30.0187 (17)0.0215 (18)0.0189 (16)0.0072 (14)0.0080 (13)0.0080 (14)
C40.0193 (17)0.0210 (18)0.0205 (16)0.0085 (14)0.0085 (14)0.0086 (14)
C50.0217 (18)0.0216 (18)0.0230 (17)0.0103 (15)0.0109 (14)0.0090 (14)
C60.0238 (18)0.0248 (19)0.0243 (17)0.0105 (15)0.0108 (14)0.0114 (15)
C70.0203 (17)0.0215 (18)0.0200 (16)0.0058 (14)0.0094 (14)0.0062 (14)
C80.034 (2)0.035 (2)0.0276 (19)0.0198 (18)0.0155 (17)0.0100 (17)
C90.029 (2)0.036 (2)0.0258 (18)0.0200 (17)0.0188 (16)0.0175 (16)
C100.025 (2)0.058 (3)0.034 (2)0.019 (2)0.0137 (17)0.027 (2)
C110.0182 (17)0.0262 (19)0.0198 (16)0.0106 (15)0.0086 (13)0.0089 (14)
C120.0245 (18)0.025 (2)0.0226 (17)0.0129 (16)0.0124 (15)0.0099 (15)
C130.0263 (19)0.031 (2)0.0230 (18)0.0133 (16)0.0120 (15)0.0126 (16)
C140.0241 (19)0.038 (2)0.0172 (16)0.0150 (17)0.0077 (14)0.0089 (16)
C150.0223 (19)0.026 (2)0.0228 (17)0.0069 (16)0.0082 (15)0.0047 (16)
C160.0276 (19)0.025 (2)0.0253 (18)0.0126 (16)0.0137 (15)0.0115 (16)
C170.034 (2)0.049 (3)0.0225 (19)0.001 (2)0.0076 (17)0.0003 (19)
C180.0252 (19)0.028 (2)0.0252 (18)0.0122 (16)0.0108 (15)0.0157 (15)
S20.0263 (5)0.0335 (5)0.0259 (4)0.0145 (4)0.0145 (4)0.0144 (4)
O30.0363 (16)0.0298 (16)0.0377 (15)0.0193 (13)0.0162 (13)0.0103 (13)
O40.0308 (15)0.0341 (15)0.0252 (13)0.0055 (12)0.0164 (11)0.0129 (11)
N40.0228 (15)0.0283 (17)0.0191 (14)0.0085 (13)0.0084 (12)0.0111 (12)
N50.040 (2)0.039 (2)0.0326 (17)0.0274 (17)0.0211 (16)0.0256 (16)
N60.037 (2)0.042 (2)0.044 (2)0.0217 (17)0.0195 (16)0.0204 (17)
C190.0224 (18)0.0239 (19)0.0199 (16)0.0083 (15)0.0050 (14)0.0102 (14)
C200.0232 (18)0.0240 (18)0.0160 (15)0.0102 (15)0.0072 (13)0.0071 (14)
C210.0200 (17)0.0225 (18)0.0165 (15)0.0073 (14)0.0084 (13)0.0089 (14)
C220.0198 (17)0.0213 (17)0.0153 (15)0.0082 (14)0.0063 (13)0.0067 (13)
C230.0280 (19)0.0250 (19)0.0162 (15)0.0134 (16)0.0072 (14)0.0092 (14)
C240.0227 (18)0.0266 (19)0.0236 (17)0.0112 (15)0.0116 (14)0.0086 (15)
C250.0223 (18)0.0236 (18)0.0161 (16)0.0086 (15)0.0057 (14)0.0059 (14)
C260.034 (2)0.042 (2)0.036 (2)0.0201 (19)0.0164 (18)0.0272 (19)
C270.0288 (19)0.030 (2)0.0193 (16)0.0141 (16)0.0109 (15)0.0116 (15)
C280.029 (2)0.037 (2)0.036 (2)0.0147 (18)0.0153 (17)0.0080 (18)
C290.0218 (18)0.0251 (19)0.0191 (16)0.0107 (15)0.0092 (14)0.0115 (14)
C300.0251 (18)0.026 (2)0.0190 (16)0.0111 (16)0.0108 (14)0.0086 (15)
C310.0238 (18)0.028 (2)0.0206 (17)0.0097 (15)0.0105 (14)0.0091 (15)
C320.0208 (18)0.030 (2)0.0222 (17)0.0084 (15)0.0116 (14)0.0148 (15)
C330.029 (2)0.021 (2)0.0258 (18)0.0064 (16)0.0109 (15)0.0109 (15)
C340.030 (2)0.0230 (19)0.0203 (17)0.0092 (16)0.0109 (15)0.0084 (15)
C350.031 (2)0.042 (2)0.031 (2)0.0029 (19)0.0138 (17)0.0113 (19)
C360.028 (2)0.029 (2)0.0262 (18)0.0123 (17)0.0112 (16)0.0099 (16)
Geometric parameters (Å, º) top
S1—C71.728 (4)S2—C251.726 (3)
S1—C61.747 (3)S2—C241.751 (4)
O1—C91.221 (5)O3—C271.224 (4)
O2—C141.368 (4)O4—C321.374 (4)
O2—C171.428 (5)O4—C351.427 (5)
N1—C11.335 (4)N4—C251.338 (4)
N1—C71.346 (4)N4—C191.342 (4)
N2—C51.365 (4)N5—C231.355 (5)
N2—H2A0.88 (5)N5—H5A0.88 (5)
N2—H2B0.84 (5)N5—H5B0.90 (6)
N3—C181.155 (5)N6—C361.151 (5)
C1—C21.414 (5)C19—C201.417 (5)
C1—C81.507 (4)C19—C261.498 (5)
C2—C31.404 (4)C20—C211.393 (5)
C2—C91.501 (5)C20—C271.512 (5)
C3—C41.407 (5)C21—C221.412 (4)
C3—C111.480 (4)C21—C291.496 (5)
C4—C71.406 (5)C22—C251.408 (5)
C4—C51.459 (4)C22—C231.448 (5)
C5—C61.373 (5)C23—C241.384 (5)
C6—C181.411 (5)C24—C361.408 (5)
C8—H8A0.9800C26—H26A0.9800
C8—H8B0.9800C26—H26B0.9800
C8—H8C0.9800C26—H26C0.9800
C9—C101.496 (6)C27—C281.487 (5)
C10—H10A0.9800C28—H28A0.9800
C10—H10B0.9800C28—H28B0.9800
C10—H10C0.9800C28—H28C0.9800
C11—C161.392 (5)C29—C341.388 (5)
C11—C121.408 (5)C29—C301.405 (5)
C12—C131.378 (5)C30—C311.378 (5)
C12—H120.99 (4)C30—H301.02 (4)
C13—C141.402 (5)C31—C321.386 (5)
C13—H130.97 (5)C31—H310.99 (4)
C14—C151.382 (5)C32—C331.390 (5)
C15—C161.394 (5)C33—C341.389 (5)
C15—H150.95 (4)C33—H330.93 (4)
C16—H160.99 (4)C34—H341.01 (4)
C17—H17A0.9800C35—H35A0.9800
C17—H17B0.9800C35—H35B0.9800
C17—H17C0.9800C35—H35C0.9800
C7—S1—C689.80 (16)C25—S2—C2490.02 (17)
C14—O2—C17117.2 (3)C32—O4—C35116.9 (3)
C1—N1—C7115.8 (3)C25—N4—C19116.5 (3)
C5—N2—H2A116 (3)C23—N5—H5A121 (3)
C5—N2—H2B120 (3)C23—N5—H5B119 (4)
H2A—N2—H2B121 (4)H5A—N5—H5B115 (5)
N1—C1—C2122.4 (3)N4—C19—C20122.1 (3)
N1—C1—C8115.4 (3)N4—C19—C26115.3 (3)
C2—C1—C8122.2 (3)C20—C19—C26122.6 (3)
C3—C2—C1121.3 (3)C21—C20—C19120.6 (3)
C3—C2—C9120.8 (3)C21—C20—C27121.1 (3)
C1—C2—C9117.9 (3)C19—C20—C27118.2 (3)
C2—C3—C4116.6 (3)C20—C21—C22117.7 (3)
C2—C3—C11119.1 (3)C20—C21—C29119.2 (3)
C4—C3—C11124.3 (3)C22—C21—C29123.0 (3)
C7—C4—C3117.1 (3)C25—C22—C21116.7 (3)
C7—C4—C5110.5 (3)C25—C22—C23111.3 (3)
C3—C4—C5132.4 (3)C21—C22—C23131.9 (3)
N2—C5—C6124.0 (3)N5—C23—C24123.4 (3)
N2—C5—C4124.6 (3)N5—C23—C22125.4 (3)
C6—C5—C4111.4 (3)C24—C23—C22111.1 (3)
C5—C6—C18126.8 (3)C23—C24—C36126.7 (3)
C5—C6—S1114.2 (3)C23—C24—S2113.9 (3)
C18—C6—S1119.0 (3)C36—C24—S2119.4 (3)
N1—C7—C4126.8 (3)N4—C25—C22126.2 (3)
N1—C7—S1119.2 (3)N4—C25—S2120.2 (3)
C4—C7—S1114.0 (2)C22—C25—S2113.6 (3)
C1—C8—H8A109.5C19—C26—H26A109.5
C1—C8—H8B109.5C19—C26—H26B109.5
H8A—C8—H8B109.5H26A—C26—H26B109.5
C1—C8—H8C109.5C19—C26—H26C109.5
H8A—C8—H8C109.5H26A—C26—H26C109.5
H8B—C8—H8C109.5H26B—C26—H26C109.5
O1—C9—C10121.2 (3)O3—C27—C28121.5 (3)
O1—C9—C2119.3 (4)O3—C27—C20118.5 (3)
C10—C9—C2119.3 (3)C28—C27—C20119.9 (3)
C9—C10—H10A109.5C27—C28—H28A109.5
C9—C10—H10B109.5C27—C28—H28B109.5
H10A—C10—H10B109.5H28A—C28—H28B109.5
C9—C10—H10C109.5C27—C28—H28C109.5
H10A—C10—H10C109.5H28A—C28—H28C109.5
H10B—C10—H10C109.5H28B—C28—H28C109.5
C16—C11—C12118.0 (3)C34—C29—C30118.5 (3)
C16—C11—C3121.8 (3)C34—C29—C21122.0 (3)
C12—C11—C3119.8 (3)C30—C29—C21119.4 (3)
C13—C12—C11121.1 (3)C31—C30—C29120.2 (4)
C13—C12—H12121 (2)C31—C30—H30119 (2)
C11—C12—H12117 (2)C29—C30—H30121 (2)
C12—C13—C14119.8 (3)C30—C31—C32120.6 (3)
C12—C13—H13121 (3)C30—C31—H31121 (2)
C14—C13—H13119 (3)C32—C31—H31119 (2)
O2—C14—C15124.8 (3)O4—C32—C31116.1 (3)
O2—C14—C13115.1 (3)O4—C32—C33123.8 (3)
C15—C14—C13120.1 (3)C31—C32—C33120.0 (3)
C14—C15—C16119.6 (4)C34—C33—C32119.2 (4)
C14—C15—H15118 (3)C34—C33—H33119 (2)
C16—C15—H15122 (3)C32—C33—H33121 (2)
C11—C16—C15121.4 (3)C29—C34—C33121.4 (3)
C11—C16—H16122 (2)C29—C34—H34120 (2)
C15—C16—H16117 (2)C33—C34—H34118 (2)
O2—C17—H17A109.5O4—C35—H35A109.5
O2—C17—H17B109.5O4—C35—H35B109.5
H17A—C17—H17B109.5H35A—C35—H35B109.5
O2—C17—H17C109.5O4—C35—H35C109.5
H17A—C17—H17C109.5H35A—C35—H35C109.5
H17B—C17—H17C109.5H35B—C35—H35C109.5
N3—C18—C6177.3 (4)N6—C36—C24178.7 (4)
C7—N1—C1—C21.0 (5)C25—N4—C19—C200.2 (5)
C7—N1—C1—C8179.9 (3)C25—N4—C19—C26179.0 (3)
N1—C1—C2—C30.4 (6)N4—C19—C20—C212.1 (5)
C8—C1—C2—C3179.2 (3)C26—C19—C20—C21177.0 (3)
N1—C1—C2—C9178.2 (3)N4—C19—C20—C27173.6 (3)
C8—C1—C2—C90.6 (5)C26—C19—C20—C277.3 (5)
C1—C2—C3—C41.2 (5)C19—C20—C21—C220.6 (5)
C9—C2—C3—C4179.8 (3)C27—C20—C21—C22175.0 (3)
C1—C2—C3—C11178.7 (3)C19—C20—C21—C29177.5 (3)
C9—C2—C3—C110.2 (5)C27—C20—C21—C292.0 (5)
C2—C3—C4—C72.1 (5)C20—C21—C22—C252.5 (5)
C11—C3—C4—C7177.8 (3)C29—C21—C22—C25174.3 (3)
C2—C3—C4—C5176.2 (4)C20—C21—C22—C23178.1 (3)
C11—C3—C4—C53.8 (6)C29—C21—C22—C231.3 (6)
C7—C4—C5—N2178.6 (3)C25—C22—C23—N5178.8 (3)
C3—C4—C5—N20.2 (6)C21—C22—C23—N55.4 (6)
C7—C4—C5—C62.7 (4)C25—C22—C23—C240.4 (4)
C3—C4—C5—C6178.9 (4)C21—C22—C23—C24175.4 (4)
N2—C5—C6—C182.9 (6)N5—C23—C24—C360.5 (6)
C4—C5—C6—C18175.9 (4)C22—C23—C24—C36179.7 (3)
N2—C5—C6—S1178.4 (3)N5—C23—C24—S2179.7 (3)
C4—C5—C6—S12.8 (4)C22—C23—C24—S20.5 (4)
C7—S1—C6—C51.8 (3)C25—S2—C24—C231.0 (3)
C7—S1—C6—C18177.1 (3)C25—S2—C24—C36179.3 (3)
C1—N1—C7—C40.0 (5)C19—N4—C25—C223.4 (5)
C1—N1—C7—S1178.4 (3)C19—N4—C25—S2176.8 (3)
C3—C4—C7—N11.7 (6)C21—C22—C25—N44.8 (5)
C5—C4—C7—N1177.0 (3)C23—C22—C25—N4178.7 (3)
C3—C4—C7—S1179.9 (3)C21—C22—C25—S2175.3 (2)
C5—C4—C7—S11.4 (4)C23—C22—C25—S21.2 (4)
C6—S1—C7—N1178.7 (3)C24—S2—C25—N4178.7 (3)
C6—S1—C7—C40.1 (3)C24—S2—C25—C221.2 (3)
C3—C2—C9—O1118.9 (4)C21—C20—C27—O3117.9 (4)
C1—C2—C9—O162.5 (5)C19—C20—C27—O357.7 (5)
C3—C2—C9—C1064.6 (5)C21—C20—C27—C2866.2 (5)
C1—C2—C9—C10114.0 (4)C19—C20—C27—C28118.1 (4)
C2—C3—C11—C16118.5 (4)C20—C21—C29—C34112.7 (4)
C4—C3—C11—C1661.5 (5)C22—C21—C29—C3470.5 (5)
C2—C3—C11—C1254.4 (5)C20—C21—C29—C3063.9 (4)
C4—C3—C11—C12125.6 (4)C22—C21—C29—C30112.9 (4)
C16—C11—C12—C130.5 (5)C34—C29—C30—C311.1 (5)
C3—C11—C12—C13172.6 (3)C21—C29—C30—C31175.6 (3)
C11—C12—C13—C141.3 (5)C29—C30—C31—C320.6 (5)
C17—O2—C14—C153.2 (5)C35—O4—C32—C31167.6 (3)
C17—O2—C14—C13177.2 (3)C35—O4—C32—C3311.4 (5)
C12—C13—C14—O2177.9 (3)C30—C31—C32—O4178.4 (3)
C12—C13—C14—C152.5 (5)C30—C31—C32—C330.6 (5)
O2—C14—C15—C16178.7 (3)O4—C32—C33—C34179.9 (3)
C13—C14—C15—C161.7 (5)C31—C32—C33—C341.2 (5)
C12—C11—C16—C151.3 (5)C30—C29—C34—C332.9 (5)
C3—C11—C16—C15171.7 (3)C21—C29—C34—C33173.7 (3)
C14—C15—C16—C110.2 (5)C32—C33—C34—C293.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.88 (5)2.16 (5)2.993 (4)158 (4)
N2—H2B···O2ii0.84 (5)2.53 (5)3.092 (4)126 (4)
N5—H5A···O10.88 (5)2.04 (5)2.911 (4)169 (4)
N5—H5B···O4iii0.90 (6)2.49 (6)3.087 (4)124 (5)
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y+2, z+1; (iii) x+2, y+1, z.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBakhite, E. A. G. (2003). Phosphorus Sulfur Silicon, 178, 929–992.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLitvinov, V. P., Dotsenko, V. V. & Krivokolysko, S. G. (2005). Russ. Chem. Bull. 54, 864–904.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteinkopf, W. & Lutzkendorf, G. (1913). Chem. Ztg, 36, 379–384.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]