organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-[5-Methyl-1-(4-methyl­phen­yl)-1H-1,2,3-triazol-4-yl]ethanone

CROSSMARK_Color_square_no_text.svg

aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bDepartment of Chemistry, College of Science and Humanities, Shaqra University, Duwadimi, Saudi Arabia, cApplied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt, dNational Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology, PO Box 6086, Riyadh 11442, Saudi Arabia, and eSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
*Correspondence e-mail: gelhiti@ksu.edu.sa

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 30 November 2017; accepted 13 December 2017; online 15 December 2017)

In the title compound, C12H13N3O, the p-tolyl ring is twisted away from the mean plane (r.m.s. deviation = 0.044 Å) of the rest of the mol­ecule by 50.84 (6)°. In the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming zigzag chains propagating in the b-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1,2,3-Triazole derivatives can be synthesized using a variety of simple and efficient procedures. The most common one involves cyclo­addition of azides and alkynes in the presence of a catalyst (Rostovtsev et al., 2002[Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. (2002). Angew. Chem. Int. Ed. 41, 2596-2599.]; Himo et al., 2005[Himo, F., Lovell, T., Hilgraf, R., Rostovtsev, V. V., Noodleman, L., Sharpless, K. B. & Fokin, V. V. (2005). J. Am. Chem. Soc. 127, 210-216.]; Boren et al., 2008[Boren, B. C., Narayan, S., Rasmussen, L. K., Zhang, L., Zhao, H., Lin, Z., Jia, G. & Fokin, V. V. (2008). J. Am. Chem. Soc. 130, 8923-8930.]; Quan et al., 2014[Quan, X.-J., Ren, Z.-H., Wang, Y.-Y. & Guan, Z.-H. (2014). Org. Lett. 16, 5728-5731.]; Banday & Hruby, 2014[Banday, A. H. & Hruby, V. J. (2014). Synlett, 25, 1859-1862.]; Kolarovič et al., 2011[Kolarovič, A., Schnürch, M. & Mihovilovic, M. D. (2011). J. Org. Chem. 76, 2613-2618.]; Shao et al., 2011[Shao, C., Wang, X., Zhang, Q., Luo, S., Zhao, J. & Hu, Y. (2011). J. Org. Chem. 76, 6832-6836.]; Liu & Reiser, 2011[Liu, M. & Reiser, O. (2011). Org. Lett. 13, 1102-1105.]). A number of heterocycles containing the 1,2,3-triazole moiety show various medicinal applications (Bock et al., 2006[Bock, V. D., Perciaccante, R., Jansen, T. P., Hiemstra, H. & van Maarseveen, J. H. (2006). Org. Lett. 8, 919-922.], 2007[Bock, V. D., Speijer, D., Hiemstra, H. & van Maarseveen, J. H. (2007). Org. Biomol. Chem. 5, 971-975.]; Agalave et al., 2011[Agalave, S. G., Maujan, S. R. & Pore, V. S. (2011). Chem. Asian J. 6, 2696-2718.]).

The mol­ecule of the title compound, illustrated in Fig. 1[link], is not planar as the p-toly ring (C2–C7) is twisted by 50.84 (6)° away from the mean plane of the rest of the mol­ecule (O1/N1—N3/C8—C12; r.m.s. deviation = 0.044 Å).

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title mol­ecule, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, zigzag chains, propagating along the b-axis direction (Fig. 2[link]), are formed via mol­ecules being linked by C—H⋯π inter­action (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1CCgi 0.96 2.82 3.729 (3) 159
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. The C—H⋯π inter­actions are represented by dashed lines [see Table 1[link]; only H atom H1C (grey ball) has been included].

Synthesis and crystallization

The title compound was synthesized from the reaction of 1-azido-4-methyl­benzene (10 mmol, 1.33 g) and pentane-2,4-dione (10 mmol, 1.00 g) in anhydrous ethanol (10 mL) in the presence of anhydrous potassium carbonate (15 mmol, 2.07 g). The reaction was heated under reflux for 2 h. The solid obtained on cooling was filtered, washed with ethanol and recrystallized from di­methyl­formamide solution, to give colourless block-like crystals of the title compound (m.p. 378–380 K; cf. data reported by Pokhodylo et al., 2009[Pokhodylo, N. T., Savka, R. D., Matiichuk, V. S. & Obushak, N. D. (2009). Russ. J. Gen. Chem. 79, 309-314.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C12H13N3O
Mr 215.25
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 5.7747 (4), 6.5171 (5), 30.234 (2)
β (°) 95.342 (7)
V3) 1132.88 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.28 × 0.20 × 0.11
 
Data collection
Diffractometer Agilent SuperNova Dual Source diffractometer with an Atlas detector
Absorption correction Gaussian (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.978, 0.989
No. of measured, independent and observed [I > 2σ(I)] reflections 6757, 2745, 1930
Rint 0.027
(sin θ/λ)max−1) 0.698
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.152, 1.07
No. of reflections 2745
No. of parameters 149
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.16
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: WinGX (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

1-[5-Methyl-1-(4-methylphenyl)-1H-1,2,3-triazol-4-yl]ethanone top
Crystal data top
C12H13N3OF(000) = 456
Mr = 215.25Dx = 1.262 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.7747 (4) ÅCell parameters from 2318 reflections
b = 6.5171 (5) Åθ = 4.2–28.9°
c = 30.234 (2) ŵ = 0.08 mm1
β = 95.342 (7)°T = 296 K
V = 1132.88 (14) Å3Block, colourless
Z = 40.28 × 0.20 × 0.11 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
1930 reflections with I > 2σ(I)
ω scansRint = 0.027
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2014)
θmax = 29.8°, θmin = 3.4°
Tmin = 0.978, Tmax = 0.989h = 87
6757 measured reflectionsk = 78
2745 independent reflectionsl = 3931
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.0534P)2 + 0.4633P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2745 reflectionsΔρmax = 0.22 e Å3
149 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL2013 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.009 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8118 (4)0.7032 (4)0.27023 (8)0.0618 (6)
H1A0.89210.61290.25170.093*
H1B0.92300.78100.28890.093*
H1C0.71470.79500.25190.093*
C20.6633 (3)0.5785 (3)0.29871 (6)0.0451 (5)
C30.7163 (3)0.3765 (3)0.30953 (7)0.0489 (5)
H30.84670.31630.29910.059*
C40.5796 (3)0.2620 (3)0.33559 (6)0.0446 (5)
H40.61780.12650.34260.054*
C50.3860 (3)0.3514 (3)0.35103 (6)0.0397 (4)
C60.3286 (3)0.5524 (3)0.34067 (6)0.0457 (5)
H60.19770.61210.35100.055*
C70.4684 (4)0.6643 (3)0.31467 (7)0.0476 (5)
H70.43030.80000.30780.057*
C80.1361 (3)0.2725 (3)0.41319 (6)0.0447 (5)
C90.1918 (5)0.4577 (4)0.44114 (8)0.0720 (7)
H9A0.35720.47740.44480.108*
H9B0.13500.43890.46970.108*
H9C0.11900.57590.42690.108*
C100.0073 (3)0.1067 (3)0.41849 (6)0.0451 (5)
C110.1760 (4)0.0730 (4)0.45140 (7)0.0567 (6)
C120.3247 (4)0.1147 (4)0.44668 (9)0.0703 (7)
H12A0.44420.10630.46670.105*
H12B0.23060.23390.45370.105*
H12C0.39480.12460.41670.105*
N10.2356 (3)0.2300 (2)0.37565 (5)0.0408 (4)
N20.1592 (3)0.0449 (2)0.35832 (5)0.0474 (4)
N30.0134 (3)0.0285 (2)0.38449 (6)0.0487 (4)
O10.1958 (4)0.1974 (3)0.48064 (7)0.0915 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0540 (12)0.0736 (15)0.0592 (14)0.0061 (12)0.0137 (10)0.0128 (11)
C20.0411 (10)0.0536 (12)0.0409 (10)0.0041 (9)0.0049 (8)0.0008 (8)
C30.0393 (10)0.0578 (12)0.0505 (11)0.0045 (9)0.0100 (8)0.0026 (9)
C40.0420 (10)0.0432 (10)0.0488 (11)0.0058 (9)0.0050 (8)0.0009 (8)
C50.0412 (10)0.0405 (10)0.0380 (9)0.0003 (8)0.0075 (7)0.0028 (7)
C60.0463 (11)0.0408 (10)0.0517 (11)0.0044 (9)0.0138 (9)0.0041 (8)
C70.0534 (11)0.0392 (10)0.0513 (11)0.0008 (9)0.0103 (9)0.0008 (8)
C80.0521 (11)0.0433 (10)0.0399 (10)0.0026 (9)0.0109 (8)0.0037 (8)
C90.102 (2)0.0596 (14)0.0586 (14)0.0184 (14)0.0299 (13)0.0191 (11)
C100.0484 (11)0.0439 (10)0.0440 (10)0.0030 (9)0.0096 (8)0.0001 (8)
C110.0587 (13)0.0601 (13)0.0535 (12)0.0004 (11)0.0180 (10)0.0019 (10)
C120.0670 (15)0.0763 (16)0.0711 (15)0.0135 (13)0.0260 (12)0.0055 (13)
N10.0463 (9)0.0358 (8)0.0415 (8)0.0012 (7)0.0101 (7)0.0028 (6)
N20.0530 (10)0.0393 (9)0.0518 (10)0.0018 (8)0.0153 (8)0.0075 (7)
N30.0535 (10)0.0429 (9)0.0517 (10)0.0016 (8)0.0144 (8)0.0032 (7)
O10.1084 (15)0.0912 (13)0.0840 (13)0.0220 (12)0.0574 (11)0.0271 (11)
Geometric parameters (Å, º) top
C1—C21.508 (3)C8—N11.348 (2)
C1—H1A0.9600C8—C101.380 (3)
C1—H1B0.9600C8—C91.491 (3)
C1—H1C0.9600C9—H9A0.9600
C2—C71.383 (3)C9—H9B0.9600
C2—C31.384 (3)C9—H9C0.9600
C3—C41.384 (3)C10—N31.368 (2)
C3—H30.9300C10—C111.472 (3)
C4—C51.380 (3)C11—O11.212 (3)
C4—H40.9300C11—C121.494 (3)
C5—C61.380 (3)C12—H12A0.9600
C5—N11.434 (2)C12—H12B0.9600
C6—C71.385 (3)C12—H12C0.9600
C6—H60.9300N1—N21.372 (2)
C7—H70.9300N2—N31.299 (2)
C2—C1—H1A109.5N1—C8—C9123.86 (19)
C2—C1—H1B109.5C10—C8—C9131.93 (18)
H1A—C1—H1B109.5C8—C9—H9A109.5
C2—C1—H1C109.5C8—C9—H9B109.5
H1A—C1—H1C109.5H9A—C9—H9B109.5
H1B—C1—H1C109.5C8—C9—H9C109.5
C7—C2—C3118.11 (18)H9A—C9—H9C109.5
C7—C2—C1120.38 (19)H9B—C9—H9C109.5
C3—C2—C1121.51 (19)N3—C10—C8108.77 (16)
C2—C3—C4121.47 (18)N3—C10—C11121.45 (18)
C2—C3—H3119.3C8—C10—C11129.58 (18)
C4—C3—H3119.3O1—C11—C10120.4 (2)
C5—C4—C3119.20 (18)O1—C11—C12121.7 (2)
C5—C4—H4120.4C10—C11—C12117.9 (2)
C3—C4—H4120.4C11—C12—H12A109.5
C4—C5—C6120.60 (18)C11—C12—H12B109.5
C4—C5—N1119.44 (16)H12A—C12—H12B109.5
C6—C5—N1119.84 (16)C11—C12—H12C109.5
C5—C6—C7119.21 (18)H12A—C12—H12C109.5
C5—C6—H6120.4H12B—C12—H12C109.5
C7—C6—H6120.4C8—N1—N2110.80 (15)
C2—C7—C6121.42 (18)C8—N1—C5130.56 (16)
C2—C7—H7119.3N2—N1—C5118.44 (14)
C6—C7—H7119.3N3—N2—N1107.14 (14)
N1—C8—C10104.15 (16)N2—N3—C10109.14 (16)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1C···Cgi0.962.823.729 (3)159
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: kariukib@cardiff.ac.uk

Funding information

This project was supported by King Saud University, Deanship of Scientific Research, Research Chairs.

References

First citationAgalave, S. G., Maujan, S. R. & Pore, V. S. (2011). Chem. Asian J. 6, 2696–2718.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBanday, A. H. & Hruby, V. J. (2014). Synlett, 25, 1859–1862.  CrossRef CAS Google Scholar
First citationBock, V. D., Perciaccante, R., Jansen, T. P., Hiemstra, H. & van Maarseveen, J. H. (2006). Org. Lett. 8, 919–922.  CrossRef PubMed CAS Google Scholar
First citationBock, V. D., Speijer, D., Hiemstra, H. & van Maarseveen, J. H. (2007). Org. Biomol. Chem. 5, 971–975.  CrossRef PubMed CAS Google Scholar
First citationBoren, B. C., Narayan, S., Rasmussen, L. K., Zhang, L., Zhao, H., Lin, Z., Jia, G. & Fokin, V. V. (2008). J. Am. Chem. Soc. 130, 8923–8930.  CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHimo, F., Lovell, T., Hilgraf, R., Rostovtsev, V. V., Noodleman, L., Sharpless, K. B. & Fokin, V. V. (2005). J. Am. Chem. Soc. 127, 210–216.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKolarovič, A., Schnürch, M. & Mihovilovic, M. D. (2011). J. Org. Chem. 76, 2613–2618.  PubMed Google Scholar
First citationLiu, M. & Reiser, O. (2011). Org. Lett. 13, 1102–1105.  CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPokhodylo, N. T., Savka, R. D., Matiichuk, V. S. & Obushak, N. D. (2009). Russ. J. Gen. Chem. 79, 309–314.  CrossRef CAS Google Scholar
First citationQuan, X.-J., Ren, Z.-H., Wang, Y.-Y. & Guan, Z.-H. (2014). Org. Lett. 16, 5728–5731.  CrossRef CAS PubMed Google Scholar
First citationRostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. (2002). Angew. Chem. Int. Ed. 41, 2596–2599.  CrossRef CAS Google Scholar
First citationShao, C., Wang, X., Zhang, Q., Luo, S., Zhao, J. & Hu, Y. (2011). J. Org. Chem. 76, 6832–6836.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]