organic compounds
1-[5-Methyl-1-(4-methylphenyl)-1H-1,2,3-triazol-4-yl]ethanone
aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bDepartment of Chemistry, College of Science and Humanities, Shaqra University, Duwadimi, Saudi Arabia, cApplied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt, dNational Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology, PO Box 6086, Riyadh 11442, Saudi Arabia, and eSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
*Correspondence e-mail: gelhiti@ksu.edu.sa
In the title compound, C12H13N3O, the p-tolyl ring is twisted away from the mean plane (r.m.s. deviation = 0.044 Å) of the rest of the molecule by 50.84 (6)°. In the crystal, molecules are linked by C—H⋯π interactions, forming zigzag chains propagating in the b-axis direction.
Keywords: crystal structure; triazole; C—H⋯π interactions.
CCDC reference: 1810966
Structure description
1,2,3-Triazole derivatives can be synthesized using a variety of simple and efficient procedures. The most common one involves cycloaddition of et al., 2002; Himo et al., 2005; Boren et al., 2008; Quan et al., 2014; Banday & Hruby, 2014; Kolarovič et al., 2011; Shao et al., 2011; Liu & Reiser, 2011). A number of heterocycles containing the 1,2,3-triazole moiety show various medicinal applications (Bock et al., 2006, 2007; Agalave et al., 2011).
and in the presence of a catalyst (RostovtsevThe molecule of the title compound, illustrated in Fig. 1, is not planar as the p-toly ring (C2–C7) is twisted by 50.84 (6)° away from the mean plane of the rest of the molecule (O1/N1—N3/C8—C12; r.m.s. deviation = 0.044 Å).
In the crystal, zigzag chains, propagating along the b-axis direction (Fig. 2), are formed via molecules being linked by C—H⋯π interaction (Table 1).
Synthesis and crystallization
The title compound was synthesized from the reaction of 1-azido-4-methylbenzene (10 mmol, 1.33 g) and pentane-2,4-dione (10 mmol, 1.00 g) in anhydrous ethanol (10 mL) in the presence of anhydrous potassium carbonate (15 mmol, 2.07 g). The reaction was heated under reflux for 2 h. The solid obtained on cooling was filtered, washed with ethanol and recrystallized from dimethylformamide solution, to give colourless block-like crystals of the title compound (m.p. 378–380 K; cf. data reported by Pokhodylo et al., 2009).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1810966
https://doi.org/10.1107/S2414314617017825/su5411sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617017825/su5411Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617017825/su5411Isup3.cml
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: WinGX (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).C12H13N3O | F(000) = 456 |
Mr = 215.25 | Dx = 1.262 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 5.7747 (4) Å | Cell parameters from 2318 reflections |
b = 6.5171 (5) Å | θ = 4.2–28.9° |
c = 30.234 (2) Å | µ = 0.08 mm−1 |
β = 95.342 (7)° | T = 296 K |
V = 1132.88 (14) Å3 | Block, colourless |
Z = 4 | 0.28 × 0.20 × 0.11 mm |
Agilent SuperNova Dual Source diffractometer with an Atlas detector | 1930 reflections with I > 2σ(I) |
ω scans | Rint = 0.027 |
Absorption correction: gaussian (CrysAlis PRO; Agilent, 2014) | θmax = 29.8°, θmin = 3.4° |
Tmin = 0.978, Tmax = 0.989 | h = −8→7 |
6757 measured reflections | k = −7→8 |
2745 independent reflections | l = −39→31 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.060 | H-atom parameters constrained |
wR(F2) = 0.152 | w = 1/[σ2(Fo2) + (0.0534P)2 + 0.4633P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
2745 reflections | Δρmax = 0.22 e Å−3 |
149 parameters | Δρmin = −0.16 e Å−3 |
0 restraints | Extinction correction: SHELXL2013 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.009 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.8118 (4) | 0.7032 (4) | 0.27023 (8) | 0.0618 (6) | |
H1A | 0.8921 | 0.6129 | 0.2517 | 0.093* | |
H1B | 0.9230 | 0.7810 | 0.2889 | 0.093* | |
H1C | 0.7147 | 0.7950 | 0.2519 | 0.093* | |
C2 | 0.6633 (3) | 0.5785 (3) | 0.29871 (6) | 0.0451 (5) | |
C3 | 0.7163 (3) | 0.3765 (3) | 0.30953 (7) | 0.0489 (5) | |
H3 | 0.8467 | 0.3163 | 0.2991 | 0.059* | |
C4 | 0.5796 (3) | 0.2620 (3) | 0.33559 (6) | 0.0446 (5) | |
H4 | 0.6178 | 0.1265 | 0.3426 | 0.054* | |
C5 | 0.3860 (3) | 0.3514 (3) | 0.35103 (6) | 0.0397 (4) | |
C6 | 0.3286 (3) | 0.5524 (3) | 0.34067 (6) | 0.0457 (5) | |
H6 | 0.1977 | 0.6121 | 0.3510 | 0.055* | |
C7 | 0.4684 (4) | 0.6643 (3) | 0.31467 (7) | 0.0476 (5) | |
H7 | 0.4303 | 0.8000 | 0.3078 | 0.057* | |
C8 | 0.1361 (3) | 0.2725 (3) | 0.41319 (6) | 0.0447 (5) | |
C9 | 0.1918 (5) | 0.4577 (4) | 0.44114 (8) | 0.0720 (7) | |
H9A | 0.3572 | 0.4774 | 0.4448 | 0.108* | |
H9B | 0.1350 | 0.4389 | 0.4697 | 0.108* | |
H9C | 0.1190 | 0.5759 | 0.4269 | 0.108* | |
C10 | −0.0073 (3) | 0.1067 (3) | 0.41849 (6) | 0.0451 (5) | |
C11 | −0.1760 (4) | 0.0730 (4) | 0.45140 (7) | 0.0567 (6) | |
C12 | −0.3247 (4) | −0.1147 (4) | 0.44668 (9) | 0.0703 (7) | |
H12A | −0.4442 | −0.1063 | 0.4667 | 0.105* | |
H12B | −0.2306 | −0.2339 | 0.4537 | 0.105* | |
H12C | −0.3948 | −0.1246 | 0.4167 | 0.105* | |
N1 | 0.2356 (3) | 0.2300 (2) | 0.37565 (5) | 0.0408 (4) | |
N2 | 0.1592 (3) | 0.0449 (2) | 0.35832 (5) | 0.0474 (4) | |
N3 | 0.0134 (3) | −0.0285 (2) | 0.38449 (6) | 0.0487 (4) | |
O1 | −0.1958 (4) | 0.1974 (3) | 0.48064 (7) | 0.0915 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0540 (12) | 0.0736 (15) | 0.0592 (14) | −0.0061 (12) | 0.0137 (10) | 0.0128 (11) |
C2 | 0.0411 (10) | 0.0536 (12) | 0.0409 (10) | −0.0041 (9) | 0.0049 (8) | −0.0008 (8) |
C3 | 0.0393 (10) | 0.0578 (12) | 0.0505 (11) | 0.0045 (9) | 0.0100 (8) | −0.0026 (9) |
C4 | 0.0420 (10) | 0.0432 (10) | 0.0488 (11) | 0.0058 (9) | 0.0050 (8) | 0.0009 (8) |
C5 | 0.0412 (10) | 0.0405 (10) | 0.0380 (9) | 0.0003 (8) | 0.0075 (7) | −0.0028 (7) |
C6 | 0.0463 (11) | 0.0408 (10) | 0.0517 (11) | 0.0044 (9) | 0.0138 (9) | −0.0041 (8) |
C7 | 0.0534 (11) | 0.0392 (10) | 0.0513 (11) | −0.0008 (9) | 0.0103 (9) | 0.0008 (8) |
C8 | 0.0521 (11) | 0.0433 (10) | 0.0399 (10) | 0.0026 (9) | 0.0109 (8) | −0.0037 (8) |
C9 | 0.102 (2) | 0.0596 (14) | 0.0586 (14) | −0.0184 (14) | 0.0299 (13) | −0.0191 (11) |
C10 | 0.0484 (11) | 0.0439 (10) | 0.0440 (10) | 0.0030 (9) | 0.0096 (8) | 0.0001 (8) |
C11 | 0.0587 (13) | 0.0601 (13) | 0.0535 (12) | 0.0004 (11) | 0.0180 (10) | 0.0019 (10) |
C12 | 0.0670 (15) | 0.0763 (16) | 0.0711 (15) | −0.0135 (13) | 0.0260 (12) | 0.0055 (13) |
N1 | 0.0463 (9) | 0.0358 (8) | 0.0415 (8) | 0.0012 (7) | 0.0101 (7) | −0.0028 (6) |
N2 | 0.0530 (10) | 0.0393 (9) | 0.0518 (10) | −0.0018 (8) | 0.0153 (8) | −0.0075 (7) |
N3 | 0.0535 (10) | 0.0429 (9) | 0.0517 (10) | −0.0016 (8) | 0.0144 (8) | −0.0032 (7) |
O1 | 0.1084 (15) | 0.0912 (13) | 0.0840 (13) | −0.0220 (12) | 0.0574 (11) | −0.0271 (11) |
C1—C2 | 1.508 (3) | C8—N1 | 1.348 (2) |
C1—H1A | 0.9600 | C8—C10 | 1.380 (3) |
C1—H1B | 0.9600 | C8—C9 | 1.491 (3) |
C1—H1C | 0.9600 | C9—H9A | 0.9600 |
C2—C7 | 1.383 (3) | C9—H9B | 0.9600 |
C2—C3 | 1.384 (3) | C9—H9C | 0.9600 |
C3—C4 | 1.384 (3) | C10—N3 | 1.368 (2) |
C3—H3 | 0.9300 | C10—C11 | 1.472 (3) |
C4—C5 | 1.380 (3) | C11—O1 | 1.212 (3) |
C4—H4 | 0.9300 | C11—C12 | 1.494 (3) |
C5—C6 | 1.380 (3) | C12—H12A | 0.9600 |
C5—N1 | 1.434 (2) | C12—H12B | 0.9600 |
C6—C7 | 1.385 (3) | C12—H12C | 0.9600 |
C6—H6 | 0.9300 | N1—N2 | 1.372 (2) |
C7—H7 | 0.9300 | N2—N3 | 1.299 (2) |
C2—C1—H1A | 109.5 | N1—C8—C9 | 123.86 (19) |
C2—C1—H1B | 109.5 | C10—C8—C9 | 131.93 (18) |
H1A—C1—H1B | 109.5 | C8—C9—H9A | 109.5 |
C2—C1—H1C | 109.5 | C8—C9—H9B | 109.5 |
H1A—C1—H1C | 109.5 | H9A—C9—H9B | 109.5 |
H1B—C1—H1C | 109.5 | C8—C9—H9C | 109.5 |
C7—C2—C3 | 118.11 (18) | H9A—C9—H9C | 109.5 |
C7—C2—C1 | 120.38 (19) | H9B—C9—H9C | 109.5 |
C3—C2—C1 | 121.51 (19) | N3—C10—C8 | 108.77 (16) |
C2—C3—C4 | 121.47 (18) | N3—C10—C11 | 121.45 (18) |
C2—C3—H3 | 119.3 | C8—C10—C11 | 129.58 (18) |
C4—C3—H3 | 119.3 | O1—C11—C10 | 120.4 (2) |
C5—C4—C3 | 119.20 (18) | O1—C11—C12 | 121.7 (2) |
C5—C4—H4 | 120.4 | C10—C11—C12 | 117.9 (2) |
C3—C4—H4 | 120.4 | C11—C12—H12A | 109.5 |
C4—C5—C6 | 120.60 (18) | C11—C12—H12B | 109.5 |
C4—C5—N1 | 119.44 (16) | H12A—C12—H12B | 109.5 |
C6—C5—N1 | 119.84 (16) | C11—C12—H12C | 109.5 |
C5—C6—C7 | 119.21 (18) | H12A—C12—H12C | 109.5 |
C5—C6—H6 | 120.4 | H12B—C12—H12C | 109.5 |
C7—C6—H6 | 120.4 | C8—N1—N2 | 110.80 (15) |
C2—C7—C6 | 121.42 (18) | C8—N1—C5 | 130.56 (16) |
C2—C7—H7 | 119.3 | N2—N1—C5 | 118.44 (14) |
C6—C7—H7 | 119.3 | N3—N2—N1 | 107.14 (14) |
N1—C8—C10 | 104.15 (16) | N2—N3—C10 | 109.14 (16) |
Cg is the centroid of the C2–C7 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1C···Cgi | 0.96 | 2.82 | 3.729 (3) | 159 |
Symmetry code: (i) −x+1, y+1/2, −z+1/2. |
Footnotes
‡Additional correspondence author, e-mail: kariukib@cardiff.ac.uk
Funding information
This project was supported by King Saud University, Deanship of Scientific Research, Research Chairs.
References
Agalave, S. G., Maujan, S. R. & Pore, V. S. (2011). Chem. Asian J. 6, 2696–2718. Web of Science CrossRef CAS PubMed Google Scholar
Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Banday, A. H. & Hruby, V. J. (2014). Synlett, 25, 1859–1862. CrossRef CAS Google Scholar
Bock, V. D., Perciaccante, R., Jansen, T. P., Hiemstra, H. & van Maarseveen, J. H. (2006). Org. Lett. 8, 919–922. CrossRef PubMed CAS Google Scholar
Bock, V. D., Speijer, D., Hiemstra, H. & van Maarseveen, J. H. (2007). Org. Biomol. Chem. 5, 971–975. CrossRef PubMed CAS Google Scholar
Boren, B. C., Narayan, S., Rasmussen, L. K., Zhang, L., Zhao, H., Lin, Z., Jia, G. & Fokin, V. V. (2008). J. Am. Chem. Soc. 130, 8923–8930. CSD CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Himo, F., Lovell, T., Hilgraf, R., Rostovtsev, V. V., Noodleman, L., Sharpless, K. B. & Fokin, V. V. (2005). J. Am. Chem. Soc. 127, 210–216. Web of Science CrossRef PubMed CAS Google Scholar
Kolarovič, A., Schnürch, M. & Mihovilovic, M. D. (2011). J. Org. Chem. 76, 2613–2618. PubMed Google Scholar
Liu, M. & Reiser, O. (2011). Org. Lett. 13, 1102–1105. CrossRef CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Pokhodylo, N. T., Savka, R. D., Matiichuk, V. S. & Obushak, N. D. (2009). Russ. J. Gen. Chem. 79, 309–314. CrossRef CAS Google Scholar
Quan, X.-J., Ren, Z.-H., Wang, Y.-Y. & Guan, Z.-H. (2014). Org. Lett. 16, 5728–5731. CrossRef CAS PubMed Google Scholar
Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. (2002). Angew. Chem. Int. Ed. 41, 2596–2599. CrossRef CAS Google Scholar
Shao, C., Wang, X., Zhang, Q., Luo, S., Zhao, J. & Hu, Y. (2011). J. Org. Chem. 76, 6832–6836. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.