organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3,3′-[(2-Bromo-1,3-phenyl­ene)bis­­(methyl­ene)]bis­­(1-butyl-2,3-di­hydro-1H-imidazole-2-selone)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 7 November 2017; accepted 5 December 2017; online 12 December 2017)

In the title compound, C22H29BrN4Se2, the two Se atoms are directed in opposite directions with respect to the central benzene ring. The C=Se bond lengths at 1.848 (5) and 1.851 (5) Å are on the long side for a double bond but shorter than expected for a C—Se single bond. In the crystal, Br⋯Br inter­molecular inter­actions [3.4685 (12) Å] link the mol­ecules into a zigzag chain propagating along the b-axis direction. In addition, there are C—H⋯Se inter­molecular inter­actions present, linking the chains to form slabs parallel to the ab plane. One of the two butyl side chains is disordered over two conformations with occupancies of 0.777 (9) and 0.223 (9).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Selones, the Se-analogues of ketones, have generated considerable inter­est due to their promising utility in many domains, including homogeneous catalysis (see for example: Prabhu et al., 2014[Prabhu, P., Singh, B. G., Noguchi, M., Phadnis, P. P., Jain, V. K., Iwaoka, M. & Priyadarsini, K. I. (2014). Org. Biomol. Chem. 12, 2404-2412.]; Babu et al., 2016[Babu, C. N., Srinivas, K. & Prabusankar, G. (2016). Dalton Trans. 45, 6456-6465.]; Sharma et al., 2017[Sharma, A. K., Joshi, H., Bhaskar, R. & Singh, A. K. (2017). Dalton Trans. 46, 2228-2237.]), photocatalysis (Jin et al., 2013[Jin, J., Shin, H.-W., Park, J. H., Park, J. H., Kim, E., Ahn, T. K., Ryu, D. H. & Son, S. U. (2013). Organometallics, 32, 3954-3959.]), and biological fields (see for example: Roy et al., 2013[Roy, G., Jayaram, P. N. & Mugesh, G. (2013). Chem. Asian J. 8, 1910-1921.]; Palmer & Parkin, 2015[Palmer, J. H. & Parkin, G. (2015). J. Am. Chem. Soc. 137, 4503-4516.]; Banerjee et al., 2015[Banerjee, M., Karri, R., Rawat, K. S., Muthuvel, K., Pathak, B. & Roy, G. (2015). Angew. Chem. Int. Ed. 54, 9323-9327.]).

Recently, our group has reported the syntheses and crystal structures of [2 + 2] binuclear palladium(II) and platinum(II) self-assembled 24-membered metallomacrocycles resulting from the reaction Pd(COD)Cl2 and Pt(COD)Cl2 with 3,3′-[(2-bromo-1,3-phenyl­ene)bis­(methyl­ene)]bis­(1-mesityl-1,3-di­hydro-2H-imidazole-2-selone), and of a mononuclear gold(III) complex formed with AuCl(SMe2) (Rani et al., 2017[Rani, V., Singh, H. B. & Butcher, R. J. (2017). Eur. J. Inorg. Chem. pp. 3720-3728.]). Herein, we report on the synthesis and crystal structure of the related title compound, 3,3′-[(2-bromo-1,3-phenyl­ene)bis­(methyl­ene)]bis­(1-butyl-2,3-di­hydro-1H-imidazole-2-selone).

In the title compound, Fig. 1[link], one of the two butyl side chains (atoms C11–C14) is disordered over two conformations with occupancies of 0.777 (9)/0.223 (9). The mol­ecule adopts a conformation in which the two Se atoms are directed in opposite directions with respect to the central benzene ring. Atom Br1 deviates from the plane of the benzene ring by 0.044 (6) Å, and the Se atoms deviate from the plane of the imidazole ring to which they are attached by 0.041 (7) Å for atom Se1 and 0.044 (7) Å for atom Se2. Each imidazole ring is almost perpendicular to the central benzene ring with dihedral angles of 87.9 (1) and 81.2 (1)° for rings N1/N2/C8–C10 and N3/N4/C16–C18, respectively, and they are inclined to one another by 57.0 (3)°. The C=Se bond lengths, Se1—C8 = 1.848 (5) and Se2—C16 =1.851 (5) Å, are on the long side for a double bond but shorter than expected for a C—Se single bond (Murai et al., 1995[Murai, T., Mizutani, T., Kanda, T. & Kato, S. (1995). Heteroat. Chem. 6, 241-246.]). The butyl side chains do not have extended conformations as indicated by their inter­nal N—C—C—C and C—C—C—CH3 torsion angles, which are N2—C11A—C12A—C13A = 71.2 (14) ° and C11A—C12A—C13A—C14A = 66.6 (12) ° (major component), and N4—C19—C20—C21 = 58.1 (7) ° and C19—C20—C21—C22 = 178.1 (5) °.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. For the disordered n-butyl substituent (atoms C11–C14) only the major component is shown.

In the crystal, mol­ecules are linked by Br⋯Bri,ii [= 3.4685 (12) Å], inter­molecular inter­actions forming zigzag chains propagating along the b-axis direction (Fig. 2[link]; symmetry codes: (i) −x, y − [{1\over 2}], −z + [{1\over 2}]; (ii) −x, y + [{1\over 2}], −z + [{1\over 2}]). In addition, there are C—H⋯Se2 inter­molecular inter­actions present (Table 1[link]). The latter link the chains to form slabs parallel to the ab plane (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯Se2i 0.95 2.97 3.823 (5) 150
C12A—H12B⋯Se2i 0.99 2.79 3.590 (7) 139
C19—H19A⋯Se2ii 0.99 2.94 3.708 (5) 136
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z.
[Figure 2]
Figure 2
Diagram showing the Br⋯Br inter­molecular inter­actions (as dashed lines), linking the mol­ecules into zigzag chains propagating along the b axis direction. For the disordered n-butyl substituent only the major component is shown, and H atoms have been omitted for clarity.
[Figure 3]
Figure 3
A view along the c axis of the crystal packing of the title compound. The Br⋯Br and C—H⋯Se inter­actions are shown as dashed lines (see Table 1[link]). For the disordered n-butyl substituent only the major component is shown, and, for clarity, only the H atoms involved in the C—H⋯Se inter­actions have been included.

A search of the Cambridge Structural Database for analogous structures gave only one hit (QUNCOT: Ghavale et al., 2015[Ghavale, N., Manjare, S. T., Singh, H. B. & Butcher, R. J. (2015). Dalton Trans. 44, 11893-11900.]) where, instead of an imidazole-type moiety, benzimidazole moieties are present.

Synthesis and crystallization

To a solution of 1,1′-[(2-bromo-1,3-phenyl­ene)bis­(methyl­ene)]bis­(3-mesityl-1H-imidazol-3-ium) dibromide (1.5 g, 2.53 mmol) in dry methanol (50 ml) was added Se powder (0.46 g, 5.82 mmol) followed by K2CO3 (0.874 g, 6.33 mmol). The reaction mixture was refluxed for 48 h. A white coloured precipitate deposited near the walls. The reaction mixture was filtered through a Whatman filter paper to remove unconsumed selenium powder. The solvent was evaporated and the residue was redissolved in CHCl3 to remove the leftover salt, which is insoluble in CHCl3. The solvent was evaporated and the sample was dried under vacuo (yield 1.20 g, 81%; m.p. 436 K). Colourless prismatic crystals were obtained by slow evaporation of a chloroform solution of the compound at room temperature.

1H NMR (500 MHz, CDCl3, 298 K): δ 7.24 (t, J = 7.5 Hz, 1H), 7.09–7.07 (d, J = 7.5 Hz, 2H,), 6.88 (d, J = 2.0 Hz, 2H), 6.81 (d, J = 2.0 Hz, 2H), 5.51 (s, 4H), 4.18 (t, J = 7.5 Hz, 4H), 1.82–1.79 (m, 4H), 1.42–1.37 (m, 4H), 0.98 (t, J = 7.0 Hz, 6H). 13C NMR (125 MHz, CDCl3, 298 K): 156.8, 136.2, 129.8, 128.3, 124.3, 119.3, 118.8, 53.4, 49.9, 31.3, 19.9, 13.8. 77Se NMR (95.4 MHz, CDCl3, 298 K): δ 0.5 p.p.m. Analysis calculated for C22H31N4BrSe2 (587.3260): C 44.84, H 5.13, N, 9.51. found C 45.03, H 5.01, N 8.31. ESI–MS: m/z calculated 626.9542; found 626.9500 [M + K]+. FT–IR (KBr, cm−1): 3158(w), 3077(m), 2957(s), 2931(s), 2871(m), 1677(w), 1566(m), 1458(s), 1407(s), 1357(w), 1284(w), 1236(s), 1218(s), 1181(m), 1132(m), 1055(m), 1025(m, C=Se), 761(m), 714(m), 668(w).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. One of the two butyl side chains is disordered over two conformations (C11A–C14A/C11B–C14B) with a refined occupancy ratio of 0.777 (9): 0.223 (9) and both were constrained to have similar metrical parameters.

Table 2
Experimental details

Crystal data
Chemical formula C22H29BrN4Se2
Mr 587.32
Crystal system, space group Monoclinic, I2/a
Temperature (K) 100
a, b, c (Å) 23.767 (3), 5.1425 (3), 39.806 (10)
β (°) 102.61 (2)
V3) 4747.8 (14)
Z 8
Radiation type Mo Kα
μ (mm−1) 4.81
Crystal size (mm) 0.23 × 0.17 × 0.09
 
Data collection
Diffractometer Rigaku CCD
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Woodlands, Texas, USA.])
Tmin, Tmax 0.581, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 34850, 7195, 4099
Rint 0.113
(sin θ/λ)max−1) 0.726
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.146, 1.02
No. of reflections 7195
No. of parameters 302
No. of restraints 311
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.65, −1.00
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Woodlands, Texas, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

3,3'-[(2-Bromo-1,3-phenylene)bis(methylene)]bis(1-butyl-2,3-dihydro-1H-imidazole-2-selone) top
Crystal data top
C22H29BrN4Se2F(000) = 2336
Mr = 587.32Dx = 1.643 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 23.767 (3) ÅCell parameters from 7207 reflections
b = 5.1425 (3) Åθ = 2.2–28.9°
c = 39.806 (10) ŵ = 4.81 mm1
β = 102.61 (2)°T = 100 K
V = 4747.8 (14) Å3Prism, colorless
Z = 80.23 × 0.17 × 0.09 mm
Data collection top
Rigaku CCD
diffractometer
4099 reflections with I > 2σ(I)
Radiation source: fine-focus sealed X-ray tubeRint = 0.113
ω scansθmax = 31.1°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 3432
Tmin = 0.581, Tmax = 1.000k = 77
34850 measured reflectionsl = 5457
7195 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.058P)2]
where P = (Fo2 + 2Fc2)/3
7195 reflections(Δ/σ)max = 0.003
302 parametersΔρmax = 0.65 e Å3
311 restraintsΔρmin = 1.00 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The H atoms were positioned geometrically and allowed to ride on their parent atoms: C—H = 0.95–0.99 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other C-bound H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.03432 (2)0.42252 (9)0.23314 (2)0.03175 (14)
Se10.13904 (2)0.26010 (11)0.34617 (2)0.04244 (16)
Se20.08179 (2)0.17304 (11)0.09546 (2)0.04280 (17)
N10.18882 (16)0.1338 (8)0.31010 (10)0.0316 (9)
N20.25023 (16)0.0141 (8)0.35460 (10)0.0333 (9)
N30.00557 (16)0.0457 (8)0.13496 (10)0.0317 (9)
N40.00708 (16)0.2196 (8)0.08424 (10)0.0331 (9)
C10.08406 (18)0.1496 (9)0.22385 (12)0.0278 (10)
C20.12891 (19)0.0756 (9)0.25105 (12)0.0283 (10)
C30.16548 (19)0.1204 (9)0.24409 (12)0.0312 (10)
H3A0.1963520.1788790.2618580.037*
C40.15725 (19)0.2312 (9)0.21144 (12)0.0314 (10)
H4A0.1829930.3617190.2070260.038*
C50.11175 (19)0.1523 (9)0.18535 (13)0.0318 (10)
H5A0.1064840.2298360.1632190.038*
C60.07374 (18)0.0393 (9)0.19125 (12)0.0288 (10)
C70.13510 (19)0.1943 (10)0.28618 (12)0.0353 (11)
H7A0.1317850.3855180.2836420.042*
H7B0.1027360.1337540.2961680.042*
C80.19483 (19)0.0397 (10)0.33649 (13)0.0327 (11)
C90.2400 (2)0.2678 (10)0.31233 (14)0.0378 (12)
H9A0.2468480.4016180.2972640.045*
C100.2781 (2)0.1749 (10)0.33961 (13)0.0362 (11)
H10A0.3170700.2288390.3472170.043*
C11A0.2772 (6)0.150 (4)0.3877 (2)0.0415 (18)0.777 (9)
H11A0.3145250.2276010.3858940.050*0.777 (9)
H11B0.2515830.2926100.3921130.050*0.777 (9)
C12A0.2866 (3)0.0431 (17)0.41745 (18)0.0459 (18)0.777 (9)
H12A0.3123050.0389450.4375710.055*0.777 (9)
H12B0.3072070.1955450.4108780.055*0.777 (9)
C13A0.2347 (4)0.138 (2)0.4285 (2)0.058 (2)0.777 (9)
H13A0.2076400.2127000.4082790.070*0.777 (9)
H13B0.2461900.2799710.4454440.070*0.777 (9)
C14A0.2031 (3)0.0743 (18)0.4447 (2)0.068 (3)0.777 (9)
H14A0.1691330.0010990.4511540.102*0.777 (9)
H14B0.2291400.1448430.4651660.102*0.777 (9)
H14C0.1909940.2141460.4279110.102*0.777 (9)
C150.0234 (2)0.1316 (10)0.16346 (13)0.0360 (11)
H15A0.0099320.1637670.1741040.043*
H15B0.0339200.2995650.1543510.043*
C160.02429 (19)0.0392 (9)0.10495 (12)0.0313 (10)
C170.0368 (2)0.2339 (10)0.13295 (14)0.0360 (11)
H17A0.0564500.2791120.1504870.043*
C180.0446 (2)0.3398 (10)0.10158 (14)0.0368 (11)
H18A0.0711600.4739550.0927220.044*
C190.0022 (2)0.2783 (11)0.04901 (13)0.0414 (12)
H19A0.0099740.4616250.0478470.050*
H19B0.0281330.1667250.0430030.050*
C200.0580 (2)0.2359 (11)0.02291 (14)0.0469 (14)
H20A0.0515740.2784740.0002160.056*
H20B0.0870930.3593330.0278890.056*
C210.0822 (2)0.0339 (12)0.02194 (14)0.0503 (14)
H21A0.0530110.1590540.0175640.060*
H21B0.0903190.0752740.0447200.060*
C220.1373 (3)0.0678 (15)0.00551 (16)0.070 (2)
H22A0.1520090.2447550.0043730.105*
H22B0.1661940.0576730.0015840.105*
H22C0.1290430.0380100.0282840.105*
C11B0.274 (2)0.165 (14)0.3813 (8)0.048 (4)0.223 (9)
H11C0.3155870.1871170.3809080.057*0.223 (9)
H11D0.2561540.3390090.3775630.057*0.223 (9)
C12B0.2706 (12)0.073 (6)0.4171 (6)0.056 (4)0.223 (9)
H12C0.2701020.2281400.4316430.067*0.223 (9)
H12D0.3063960.0245160.4268800.067*0.223 (9)
C13B0.2211 (12)0.093 (8)0.4200 (5)0.059 (4)0.223 (9)
H13C0.1853920.0116710.4140070.070*0.223 (9)
H13D0.2177490.2363730.4030420.070*0.223 (9)
C14B0.2259 (11)0.211 (6)0.4562 (6)0.059 (6)0.223 (9)
H14D0.1874600.2201410.4613960.089*0.223 (9)
H14E0.2422220.3864750.4568530.089*0.223 (9)
H14F0.2509420.1015790.4733480.089*0.223 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0238 (2)0.0309 (3)0.0410 (3)0.00448 (19)0.00805 (19)0.0010 (2)
Se10.0290 (3)0.0445 (3)0.0546 (4)0.0049 (2)0.0109 (2)0.0029 (3)
Se20.0278 (3)0.0556 (4)0.0433 (3)0.0039 (2)0.0039 (2)0.0106 (3)
N10.0225 (18)0.040 (2)0.031 (2)0.0018 (16)0.0020 (15)0.0011 (18)
N20.0243 (18)0.038 (2)0.035 (2)0.0038 (17)0.0025 (16)0.0007 (18)
N30.0247 (19)0.036 (2)0.033 (2)0.0032 (16)0.0024 (16)0.0002 (17)
N40.028 (2)0.037 (2)0.033 (2)0.0007 (17)0.0033 (17)0.0045 (18)
C10.021 (2)0.027 (2)0.036 (2)0.0039 (18)0.0098 (18)0.000 (2)
C20.025 (2)0.029 (2)0.032 (2)0.0003 (18)0.0079 (18)0.002 (2)
C30.024 (2)0.038 (3)0.031 (2)0.0067 (19)0.0040 (19)0.006 (2)
C40.025 (2)0.038 (3)0.034 (3)0.004 (2)0.0113 (19)0.002 (2)
C50.029 (2)0.036 (3)0.032 (3)0.002 (2)0.0094 (19)0.001 (2)
C60.021 (2)0.036 (3)0.030 (2)0.0012 (18)0.0075 (17)0.003 (2)
C70.026 (2)0.041 (3)0.035 (3)0.012 (2)0.001 (2)0.001 (2)
C80.022 (2)0.038 (3)0.038 (3)0.0029 (19)0.0050 (19)0.001 (2)
C90.030 (2)0.039 (3)0.045 (3)0.001 (2)0.010 (2)0.004 (2)
C100.025 (2)0.049 (3)0.035 (3)0.002 (2)0.0066 (19)0.005 (2)
C11A0.027 (3)0.065 (4)0.031 (4)0.007 (3)0.003 (3)0.012 (4)
C12A0.032 (3)0.071 (5)0.031 (3)0.010 (3)0.000 (3)0.007 (3)
C13A0.054 (4)0.082 (5)0.033 (4)0.004 (4)0.002 (3)0.008 (4)
C14A0.040 (4)0.111 (7)0.053 (5)0.000 (4)0.011 (4)0.007 (5)
C150.030 (2)0.042 (3)0.034 (3)0.011 (2)0.004 (2)0.001 (2)
C160.022 (2)0.040 (3)0.031 (2)0.0041 (19)0.0039 (18)0.008 (2)
C170.031 (2)0.041 (3)0.039 (3)0.001 (2)0.013 (2)0.008 (2)
C180.033 (2)0.035 (3)0.041 (3)0.006 (2)0.006 (2)0.003 (2)
C190.039 (3)0.048 (3)0.036 (3)0.008 (2)0.008 (2)0.002 (2)
C200.048 (3)0.059 (3)0.034 (3)0.007 (3)0.009 (2)0.003 (3)
C210.048 (3)0.062 (4)0.036 (3)0.008 (3)0.001 (2)0.004 (3)
C220.050 (4)0.105 (6)0.049 (4)0.026 (4)0.001 (3)0.002 (4)
C11B0.035 (7)0.069 (7)0.033 (6)0.008 (6)0.005 (6)0.007 (6)
C12B0.047 (7)0.079 (7)0.037 (5)0.005 (6)0.002 (6)0.005 (6)
C13B0.049 (7)0.085 (8)0.037 (7)0.004 (7)0.000 (6)0.006 (7)
C14B0.045 (10)0.093 (12)0.040 (9)0.018 (10)0.008 (9)0.009 (9)
Geometric parameters (Å, º) top
Br1—C11.922 (4)C12A—H12A0.9900
Br1—Br1i3.4688 (7)C12A—H12B0.9900
Br1—Br1ii3.4688 (7)C13A—C14A1.545 (12)
Se1—C81.848 (5)C13A—H13A0.9900
Se2—C161.851 (5)C13A—H13B0.9900
N1—C81.362 (6)C14A—H14A0.9800
N1—C91.383 (6)C14A—H14B0.9800
N1—C71.450 (5)C14A—H14C0.9800
N2—C11B1.34 (5)C15—H15A0.9900
N2—C81.363 (6)C15—H15B0.9900
N2—C101.383 (6)C17—C181.338 (7)
N2—C11A1.508 (12)C17—H17A0.9500
N3—C161.363 (6)C18—H18A0.9500
N3—C171.386 (6)C19—C201.512 (7)
N3—C151.445 (6)C19—H19A0.9900
N4—C161.352 (6)C19—H19B0.9900
N4—C181.386 (6)C20—C211.500 (8)
N4—C191.464 (6)C20—H20A0.9900
C1—C61.388 (6)C20—H20B0.9900
C1—C21.396 (6)C21—C221.520 (7)
C2—C31.397 (6)C21—H21A0.9900
C2—C71.503 (6)C21—H21B0.9900
C3—C41.393 (6)C22—H22A0.9800
C3—H3A0.9500C22—H22B0.9800
C4—C51.387 (6)C22—H22C0.9800
C4—H4A0.9500C11B—C12B1.523 (12)
C5—C61.391 (6)C11B—H11C0.9900
C5—H5A0.9500C11B—H11D0.9900
C6—C151.518 (6)C12B—C13B1.478 (10)
C7—H7A0.9900C12B—H12C0.9900
C7—H7B0.9900C12B—H12D0.9900
C9—C101.342 (7)C13B—C14B1.545 (13)
C9—H9A0.9500C13B—H13C0.9900
C10—H10A0.9500C13B—H13D0.9900
C11A—C12A1.524 (11)C14B—H14D0.9800
C11A—H11A0.9900C14B—H14E0.9800
C11A—H11B0.9900C14B—H14F0.9800
C12A—C13A1.479 (9)
C1—Br1—Br1i83.93 (13)C13A—C14A—H14B109.5
C1—Br1—Br1ii167.60 (15)H14A—C14A—H14B109.5
Br1i—Br1—Br1ii95.68 (3)C13A—C14A—H14C109.5
C8—N1—C9109.5 (4)H14A—C14A—H14C109.5
C8—N1—C7125.2 (4)H14B—C14A—H14C109.5
C9—N1—C7124.8 (4)N3—C15—C6115.1 (4)
C11B—N2—C8124 (3)N3—C15—H15A108.5
C11B—N2—C10126 (3)C6—C15—H15A108.5
C8—N2—C10109.8 (4)N3—C15—H15B108.5
C8—N2—C11A126.5 (8)C6—C15—H15B108.5
C10—N2—C11A123.5 (8)H15A—C15—H15B107.5
C16—N3—C17109.8 (4)N4—C16—N3106.0 (4)
C16—N3—C15125.2 (4)N4—C16—Se2127.8 (4)
C17—N3—C15124.8 (4)N3—C16—Se2126.2 (4)
C16—N4—C18109.3 (4)C18—C17—N3106.8 (4)
C16—N4—C19125.2 (4)C18—C17—H17A126.6
C18—N4—C19125.4 (4)N3—C17—H17A126.6
C6—C1—C2124.2 (4)C17—C18—N4108.1 (4)
C6—C1—Br1119.2 (3)C17—C18—H18A126.0
C2—C1—Br1116.6 (3)N4—C18—H18A126.0
C3—C2—C1116.5 (4)N4—C19—C20112.8 (4)
C3—C2—C7122.6 (4)N4—C19—H19A109.0
C1—C2—C7120.9 (4)C20—C19—H19A109.0
C4—C3—C2120.9 (4)N4—C19—H19B109.0
C4—C3—H3A119.6C20—C19—H19B109.0
C2—C3—H3A119.6H19A—C19—H19B107.8
C5—C4—C3120.4 (4)C21—C20—C19115.2 (5)
C5—C4—H4A119.8C21—C20—H20A108.5
C3—C4—H4A119.8C19—C20—H20A108.5
C4—C5—C6120.7 (5)C21—C20—H20B108.5
C4—C5—H5A119.7C19—C20—H20B108.5
C6—C5—H5A119.7H20A—C20—H20B107.5
C1—C6—C5117.3 (4)C20—C21—C22112.9 (5)
C1—C6—C15120.2 (4)C20—C21—H21A109.0
C5—C6—C15122.4 (4)C22—C21—H21A109.0
N1—C7—C2114.6 (4)C20—C21—H21B109.0
N1—C7—H7A108.6C22—C21—H21B109.0
C2—C7—H7A108.6H21A—C21—H21B107.8
N1—C7—H7B108.6C21—C22—H22A109.5
C2—C7—H7B108.6C21—C22—H22B109.5
H7A—C7—H7B107.6H22A—C22—H22B109.5
N2—C8—N1105.7 (4)C21—C22—H22C109.5
N2—C8—Se1127.1 (4)H22A—C22—H22C109.5
N1—C8—Se1127.1 (3)H22B—C22—H22C109.5
C10—C9—N1107.7 (4)N2—C11B—C12B117 (3)
C10—C9—H9A126.2N2—C11B—H11C108.0
N1—C9—H9A126.2C12B—C11B—H11C108.0
C9—C10—N2107.2 (4)N2—C11B—H11D108.0
C9—C10—H10A126.4C12B—C11B—H11D108.0
N2—C10—H10A126.4H11C—C11B—H11D107.2
N2—C11A—C12A109.7 (11)C13B—C12B—C11B117.6 (10)
N2—C11A—H11A109.7C13B—C12B—H12C107.9
C12A—C11A—H11A109.7C11B—C12B—H12C107.9
N2—C11A—H11B109.7C13B—C12B—H12D107.9
C12A—C11A—H11B109.7C11B—C12B—H12D107.9
H11A—C11A—H11B108.2H12C—C12B—H12D107.2
C13A—C12A—C11A117.1 (6)C12B—C13B—C14B113.8 (10)
C13A—C12A—H12A108.0C12B—C13B—H13C108.8
C11A—C12A—H12A108.0C14B—C13B—H13C108.8
C13A—C12A—H12B108.0C12B—C13B—H13D108.8
C11A—C12A—H12B108.0C14B—C13B—H13D108.8
H12A—C12A—H12B107.3H13C—C13B—H13D107.7
C12A—C13A—C14A113.7 (7)C13B—C14B—H14D109.5
C12A—C13A—H13A108.8C13B—C14B—H14E109.5
C14A—C13A—H13A108.8H14D—C14B—H14E109.5
C12A—C13A—H13B108.8C13B—C14B—H14F109.5
C14A—C13A—H13B108.8H14D—C14B—H14F109.5
H13A—C13A—H13B107.7H14E—C14B—H14F109.5
C13A—C14A—H14A109.5
C6—C1—C2—C30.8 (7)C8—N2—C10—C90.4 (6)
Br1—C1—C2—C3179.1 (3)C11A—N2—C10—C9174.9 (6)
C6—C1—C2—C7176.5 (4)C8—N2—C11A—C12A108.0 (11)
Br1—C1—C2—C73.5 (6)C10—N2—C11A—C12A66.5 (10)
C1—C2—C3—C40.7 (7)N2—C11A—C12A—C13A71.2 (14)
C7—C2—C3—C4178.0 (4)C11A—C12A—C13A—C14A66.6 (12)
C2—C3—C4—C51.3 (7)C16—N3—C15—C693.5 (5)
C3—C4—C5—C60.3 (7)C17—N3—C15—C692.2 (5)
C2—C1—C6—C51.8 (7)C1—C6—C15—N3161.1 (4)
Br1—C1—C6—C5178.2 (3)C5—C6—C15—N320.2 (6)
C2—C1—C6—C15179.4 (4)C18—N4—C16—N30.8 (5)
Br1—C1—C6—C150.6 (6)C19—N4—C16—N3179.2 (4)
C4—C5—C6—C11.2 (7)C18—N4—C16—Se2178.5 (3)
C4—C5—C6—C15180.0 (4)C19—N4—C16—Se21.6 (7)
C8—N1—C7—C2104.3 (5)C17—N3—C16—N41.1 (5)
C9—N1—C7—C284.6 (6)C15—N3—C16—N4174.0 (4)
C3—C2—C7—N113.2 (7)C17—N3—C16—Se2178.2 (3)
C1—C2—C7—N1169.6 (4)C15—N3—C16—Se26.8 (6)
C11B—N2—C8—N1175.0 (13)C16—N3—C17—C180.9 (5)
C10—N2—C8—N10.3 (5)C15—N3—C17—C18174.1 (4)
C11A—N2—C8—N1175.4 (6)N3—C17—C18—N40.4 (5)
C11B—N2—C8—Se15.9 (15)C16—N4—C18—C170.2 (5)
C10—N2—C8—Se1178.7 (4)C19—N4—C18—C17179.7 (4)
C11A—N2—C8—Se13.6 (9)C16—N4—C19—C20120.4 (5)
C9—N1—C8—N20.9 (5)C18—N4—C19—C2059.5 (6)
C7—N1—C8—N2173.1 (4)N4—C19—C20—C2158.1 (7)
C9—N1—C8—Se1178.1 (4)C19—C20—C21—C22178.1 (5)
C7—N1—C8—Se15.9 (7)C8—N2—C11B—C12B92 (6)
C8—N1—C9—C101.2 (6)C10—N2—C11B—C12B94 (5)
C7—N1—C9—C10173.4 (4)N2—C11B—C12B—C13B28 (8)
N1—C9—C10—N20.9 (6)C11B—C12B—C13B—C14B171 (5)
C11B—N2—C10—C9175.7 (16)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···Se2iii0.952.973.823 (5)150
C12A—H12B···Se2iii0.992.793.590 (7)139
C19—H19A···Se2iv0.992.943.708 (5)136
Symmetry codes: (iii) x+1/2, y+1/2, z+1/2; (iv) x, y1, z.
 

Funding information

HBS is grateful to the DST, New Delhi, for a J. C. Bose National Fellowship. VR gratefully acknowledges the Council of Scientific and Industrial Research (CSIR), New Delhi, for a Senior Research Fellowship. RJB is grateful for the NSF award 1205608, Partnership for Reduced Dimensional Materials for partial funding of this research as well as the Howard University Nanoscience Facility access to liquid nitro­gen. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationBanerjee, M., Karri, R., Rawat, K. S., Muthuvel, K., Pathak, B. & Roy, G. (2015). Angew. Chem. Int. Ed. 54, 9323–9327.  CSD CrossRef CAS Google Scholar
First citationGhavale, N., Manjare, S. T., Singh, H. B. & Butcher, R. J. (2015). Dalton Trans. 44, 11893–11900.  CSD CrossRef CAS PubMed Google Scholar
First citationJin, J., Shin, H.-W., Park, J. H., Park, J. H., Kim, E., Ahn, T. K., Ryu, D. H. & Son, S. U. (2013). Organometallics, 32, 3954–3959.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMurai, T., Mizutani, T., Kanda, T. & Kato, S. (1995). Heteroat. Chem. 6, 241–246.  CSD CrossRef CAS Google Scholar
First citationBabu, C. N., Srinivas, K. & Prabusankar, G. (2016). Dalton Trans. 45, 6456–6465.  PubMed Google Scholar
First citationPalmer, J. H. & Parkin, G. (2015). J. Am. Chem. Soc. 137, 4503–4516.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPrabhu, P., Singh, B. G., Noguchi, M., Phadnis, P. P., Jain, V. K., Iwaoka, M. & Priyadarsini, K. I. (2014). Org. Biomol. Chem. 12, 2404–2412.  CrossRef CAS PubMed Google Scholar
First citationRani, V., Singh, H. B. & Butcher, R. J. (2017). Eur. J. Inorg. Chem. pp. 3720–3728.  CSD CrossRef Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Woodlands, Texas, USA.  Google Scholar
First citationRoy, G., Jayaram, P. N. & Mugesh, G. (2013). Chem. Asian J. 8, 1910–1921.  CSD CrossRef CAS PubMed Google Scholar
First citationSharma, A. K., Joshi, H., Bhaskar, R. & Singh, A. K. (2017). Dalton Trans. 46, 2228–2237.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]