organic compounds
5-Acetyl-6-methyl-4-phenyl-1-(prop-2-ynyl)-3,4-dihydropyrimidin-2(1H)-one
aLaboratoire de Chimie Bio-organique et Macromoléculaire, Faculté des Sciences et Techniques Guéliz, Marrakech, Morocco, bLaboratoire de Chimie Biomoléculaire et Médicinale, Faculté des Sciences Semlalia, Marrakech, Morocco, cLaboratoire de la Matière Condensée et des Nanostructures, Faculté des Sciences et Techniques Guéliz, Marrakech, Morocco, and dLaboratoire de Chimie Appliquée des Matériaux, Centres des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: h_kaoukabi@yahoo.com
The 4-dihydropyrimidin-2(1H)-one moiety of the title molecule, C16H16N2O2, displays a half-chair conformation. The least-squares mean plane through this heterocycle is almost perpendicular to the aromatic ring [dihedral angle = 89.52 (8)°] and to the prop-2-ynyl chain [C—C—N—C torsion angle of −73.2 (2)°]. The mean plane through the acetyl group makes a dihedral angle of 30.93 (10)° with the mean plane of the heterocycle. There is an intramolecular C—H⋯O hydrogen bond forming an S(6) ring motif. In the crystal, molecules are linked by pairs of N—H⋯O hydrogen bonds forming inversion dimers.
Keywords: crystal structure; acetyl; phenyl; 4-dihydropyrimidin-2(1H)-one; propynyl; hydrogen bonds.
CCDC reference: 1812012
Structure description
In past decades, dihydropyrimidinones (DHPMs) and their derivatives have attracted considerable interest due to their heterocyclic scaffold and interesting pharmacological properties such as antiviral, antitumor, anti inflammatory as well their applications as calcium channel blockers and anticancer drugs (Ali et al., 2016; Desai et al., 2016; Xue et al., 2016; Dalil et al., 2016; Dhumaskar et al., 2014; Jetti et al., 2014). Different strategies have been used for the modification of 3,4-dihydropyrimidine-2(1H)-ones. For instance, N-alkylation is one of the most usable but other methods include mild base Cs2CO3, K2CO3 (Putatunda et al., 2012), the Mitsunobu-type reaction (Dallinger & Kappe, 2002), or (Singh et al., 2009). Unfortunately, these strategies suffer from the disadvantage that the procedures need to be carried out in harsh conditions. In this article, we present a convenient approach for the preparation of an N1-alkylated DHPM derivative as a major product using potassium t-butoxide in DMF at room temperature.
The molecule of the title compound is built up from a 3,4-dihydropyrimidin-2(1H)-one ring linked to an acetyl group, one prop-2-ynyl chain and to methyl and phenyl groups as shown in Fig. 1. The dihydropyrimidine ring adopts a half-chair conformation as indicated by the total puckering amplitude Q2 = 0.3602 (15) Å, and spherical polar angle θ = 106.8 (2)° with φ2 = 10.5 (2)°. The dihedral angle between the mean plane passing through the heterocycle and that through the aromatic ring is 89.52 (8)°. The prop-2-ynyl chain is nearly perpendicular to the mean plane of the dihydropyrimidine ring, as indicated by the C9—C8—N1—C4 torsion angle of −73.2 (2)°. The molecular conformation is stabilized by an intramolecular C—H⋯O hydrogen bond (Table 1), forming an S(6) ring motif. In the crystal, molecules are linked together by pairs of N—H⋯O hydrogen bonds, forming inversion dimers (Fig. 2, Table 1).
Synthesis and crystallization
The title compound was prepared in good yield (70%) through condensation of 5-acetyl-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-one (1 g, 4.34 mmol) with propargyl bromide (0.73 ml, 9.55 mmol) in the presence of potassium t-butoxide as a base in N,N-dimethylformamide (DMF, 10 ml) at room temperature for one h. After completion of the reaction (TLC), the product was extracted with ethyl acetate and washed with water (2 × 20 ml), the organic layer separated and dried over anhydrous sodium sulfate and the solvent was removed under reduced pressure. The resulting crude product was purified by a column packed with silica gel. The obtained product was crystallized by slow evaporation of n-hexane/ethyl acetate (7:3 v/v) mixture, m.p. 424 K.
The confirmation of the synthesized compound was performed by spectroscopic techniques. The compound showed signals in its 1H NMR spectrum (DMSO-d6) δ = 2.09 (s, 3H, CH3CO), 2.53 (s, 3H, CH3), 3.26 (s, 1H, CH), 4.39–4.62 (m, 2H, –CH2–), 5.22 (s, 1H, H-4), 7.27–7.32 (m, 5H, CAr), 8.13 (s, 1H, N3—H). The 13C NMR (DMSO-d6) spectrum signals appeared at: δ = 196.06 (CO), 151.92 (C-6), 147.32 (C-2), 142.99 (C-1′), 128.64 (C-4′), 128.64, 127.66 and 126.49 (other aromatic carbons), 113.23 (C-5), 80.31 (C-alkyne), 74.27 (CH-alkyne), 53.00 (C-4), 31.69 (–CH2–), 30.30 (CH3 at C-4′), 16.05 (CH3 at C-6). Further, ESI–MS [M + H]+ showed the [M+1] ion peak at m/z 269.3, which is in agreement with the molecular formula C16H16N2O2. The IR spectrum of the compound showed an absorption band at 3301–3229 cm−1 indicating the presence of Csp—H stretching. A strong absorption band at 3094 cm−1 was attributed to the N–H stretching, and absorption bands at 2121, 1665, 1209 cm−1 indicated the presence of C≡C, C=O and CN. UV/Vis (MeOH): λmax = 300 and 222 nm.
Refinement
Crystal data, data collection and structure . Two outliers (200, 110) were omitted in the last cycles of refinement.
details are summarized in Table 2Structural data
CCDC reference: 1812012
https://doi.org/10.1107/S2414314617018028/rz4020sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617018028/rz4020Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617018028/rz4020Isup3.cml
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).C16H16N2O2 | Dx = 1.276 Mg m−3 |
Mr = 268.31 | Melting point: 424 K |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 22.656 (2) Å | Cell parameters from 3614 reflections |
b = 12.2607 (12) Å | θ = 2.7–28.7° |
c = 10.2189 (10) Å | µ = 0.09 mm−1 |
β = 100.363 (4)° | T = 296 K |
V = 2792.3 (5) Å3 | Prism, colourless |
Z = 8 | 0.36 × 0.28 × 0.22 mm |
F(000) = 1136 |
Bruker X8 APEX diffractometer | 3614 independent reflections |
Radiation source: fine-focus sealed tube | 2502 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.047 |
φ and ω scans | θmax = 28.7°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −30→30 |
Tmin = 0.645, Tmax = 0.747 | k = −16→16 |
38459 measured reflections | l = −13→11 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.046 | w = 1/[σ2(Fo2) + (0.053P)2 + 1.4276P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.133 | (Δ/σ)max < 0.001 |
S = 1.02 | Δρmax = 0.26 e Å−3 |
3614 reflections | Δρmin = −0.23 e Å−3 |
184 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0026 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All H atoms were placed geometrically and isotropically refined with C–H = 0.93–0.98 Å, N–H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(C) for methyl H atoms. A rotating model was used for the methyl groups. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.37406 (10) | 0.29201 (18) | 0.92689 (19) | 0.0762 (6) | |
H1A | 0.3622 | 0.2494 | 0.9966 | 0.114* | |
H1B | 0.3392 | 0.3247 | 0.8740 | 0.114* | |
H1C | 0.4013 | 0.3482 | 0.9651 | 0.114* | |
C2 | 0.40429 (7) | 0.21998 (14) | 0.84101 (16) | 0.0561 (4) | |
C3 | 0.41421 (6) | 0.26245 (11) | 0.71114 (14) | 0.0431 (3) | |
C4 | 0.42533 (6) | 0.19789 (12) | 0.61119 (15) | 0.0457 (3) | |
C5 | 0.45892 (6) | 0.35303 (12) | 0.49448 (16) | 0.0479 (4) | |
C6 | 0.41194 (6) | 0.38466 (11) | 0.69024 (14) | 0.0416 (3) | |
H6 | 0.4274 | 0.4189 | 0.7762 | 0.050* | |
C7 | 0.42452 (8) | 0.07574 (13) | 0.6116 (2) | 0.0642 (5) | |
H7A | 0.4647 | 0.0487 | 0.6187 | 0.096* | |
H7B | 0.4005 | 0.0499 | 0.5304 | 0.096* | |
H7C | 0.4078 | 0.0503 | 0.6859 | 0.096* | |
C8 | 0.43732 (9) | 0.18379 (16) | 0.37151 (19) | 0.0668 (5) | |
H8A | 0.4576 | 0.2249 | 0.3116 | 0.080* | |
H8B | 0.4586 | 0.1154 | 0.3915 | 0.080* | |
C9 | 0.37589 (10) | 0.16135 (14) | 0.30636 (17) | 0.0616 (5) | |
C10 | 0.32600 (12) | 0.14343 (18) | 0.2591 (2) | 0.0814 (6) | |
H10 | 0.2863 | 0.1292 | 0.2215 | 0.098* | |
C11 | 0.34962 (6) | 0.43142 (11) | 0.64005 (14) | 0.0416 (3) | |
C12 | 0.33358 (8) | 0.52996 (13) | 0.68949 (18) | 0.0598 (4) | |
H12 | 0.3606 | 0.5657 | 0.7547 | 0.072* | |
C13 | 0.27831 (9) | 0.57605 (15) | 0.6439 (2) | 0.0710 (5) | |
H13 | 0.2682 | 0.6419 | 0.6793 | 0.085* | |
C14 | 0.23830 (8) | 0.52553 (16) | 0.54682 (19) | 0.0661 (5) | |
H14 | 0.2010 | 0.5569 | 0.5159 | 0.079* | |
C15 | 0.25341 (8) | 0.42845 (17) | 0.49538 (18) | 0.0654 (5) | |
H15 | 0.2264 | 0.3942 | 0.4288 | 0.078* | |
C16 | 0.30871 (7) | 0.38075 (14) | 0.54179 (16) | 0.0540 (4) | |
H16 | 0.3184 | 0.3144 | 0.5068 | 0.065* | |
N1 | 0.43908 (6) | 0.24585 (10) | 0.49518 (13) | 0.0492 (3) | |
N2 | 0.45282 (5) | 0.41268 (10) | 0.60009 (13) | 0.0475 (3) | |
H2 | 0.4741 | 0.4709 | 0.6161 | 0.057* | |
O1 | 0.42141 (8) | 0.12989 (12) | 0.88272 (15) | 0.0905 (5) | |
O2 | 0.48212 (6) | 0.38750 (10) | 0.40209 (12) | 0.0675 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0941 (14) | 0.0835 (14) | 0.0571 (11) | −0.0056 (11) | 0.0301 (10) | 0.0089 (10) |
C2 | 0.0586 (9) | 0.0570 (9) | 0.0511 (9) | −0.0103 (7) | 0.0057 (7) | 0.0122 (7) |
C3 | 0.0382 (7) | 0.0428 (7) | 0.0473 (8) | −0.0046 (5) | 0.0048 (6) | 0.0070 (6) |
C4 | 0.0380 (7) | 0.0426 (7) | 0.0560 (9) | −0.0023 (6) | 0.0071 (6) | 0.0068 (6) |
C5 | 0.0386 (7) | 0.0504 (8) | 0.0552 (9) | −0.0059 (6) | 0.0101 (6) | 0.0078 (7) |
C6 | 0.0413 (7) | 0.0419 (7) | 0.0404 (7) | −0.0077 (5) | 0.0039 (6) | 0.0016 (6) |
C7 | 0.0699 (11) | 0.0420 (8) | 0.0797 (12) | 0.0004 (8) | 0.0107 (9) | 0.0044 (8) |
C8 | 0.0777 (12) | 0.0605 (10) | 0.0713 (11) | −0.0010 (9) | 0.0380 (10) | −0.0101 (9) |
C9 | 0.0905 (14) | 0.0508 (9) | 0.0465 (9) | −0.0035 (9) | 0.0206 (9) | −0.0069 (7) |
C10 | 0.1027 (17) | 0.0762 (14) | 0.0599 (12) | −0.0077 (12) | 0.0005 (11) | −0.0086 (10) |
C11 | 0.0432 (7) | 0.0411 (7) | 0.0405 (7) | −0.0043 (6) | 0.0077 (6) | 0.0031 (6) |
C12 | 0.0630 (10) | 0.0492 (9) | 0.0643 (10) | −0.0009 (7) | 0.0040 (8) | −0.0085 (8) |
C13 | 0.0704 (12) | 0.0539 (10) | 0.0884 (14) | 0.0140 (9) | 0.0133 (10) | −0.0021 (10) |
C14 | 0.0553 (10) | 0.0698 (12) | 0.0730 (12) | 0.0148 (8) | 0.0107 (9) | 0.0146 (9) |
C15 | 0.0486 (9) | 0.0828 (13) | 0.0600 (10) | 0.0009 (8) | −0.0028 (8) | −0.0049 (9) |
C16 | 0.0482 (8) | 0.0573 (9) | 0.0546 (9) | −0.0004 (7) | 0.0039 (7) | −0.0107 (7) |
N1 | 0.0504 (7) | 0.0467 (7) | 0.0537 (7) | −0.0039 (5) | 0.0180 (6) | −0.0010 (6) |
N2 | 0.0425 (6) | 0.0443 (6) | 0.0556 (8) | −0.0130 (5) | 0.0087 (5) | 0.0035 (6) |
O1 | 0.1257 (13) | 0.0719 (9) | 0.0762 (9) | 0.0121 (8) | 0.0239 (9) | 0.0339 (8) |
O2 | 0.0714 (8) | 0.0715 (8) | 0.0659 (7) | −0.0185 (6) | 0.0294 (6) | 0.0075 (6) |
C1—C2 | 1.495 (3) | C8—C9 | 1.457 (3) |
C1—H1A | 0.9600 | C8—N1 | 1.470 (2) |
C1—H1B | 0.9600 | C8—H8A | 0.9700 |
C1—H1C | 0.9600 | C8—H8B | 0.9700 |
C2—O1 | 1.222 (2) | C9—C10 | 1.167 (3) |
C2—C3 | 1.480 (2) | C10—H10 | 0.9300 |
C3—C4 | 1.351 (2) | C11—C12 | 1.383 (2) |
C3—C6 | 1.5131 (19) | C11—C16 | 1.385 (2) |
C4—N1 | 1.4075 (19) | C12—C13 | 1.377 (2) |
C4—C7 | 1.498 (2) | C12—H12 | 0.9300 |
C5—O2 | 1.2349 (18) | C13—C14 | 1.366 (3) |
C5—N2 | 1.331 (2) | C13—H13 | 0.9300 |
C5—N1 | 1.3892 (19) | C14—C15 | 1.369 (3) |
C6—N2 | 1.4600 (17) | C14—H14 | 0.9300 |
C6—C11 | 1.5248 (19) | C15—C16 | 1.387 (2) |
C6—H6 | 0.9800 | C15—H15 | 0.9300 |
C7—H7A | 0.9600 | C16—H16 | 0.9300 |
C7—H7B | 0.9600 | N2—H2 | 0.8600 |
C7—H7C | 0.9600 | ||
C2—C1—H1A | 109.5 | C9—C8—H8A | 109.3 |
C2—C1—H1B | 109.5 | N1—C8—H8A | 109.3 |
H1A—C1—H1B | 109.5 | C9—C8—H8B | 109.3 |
C2—C1—H1C | 109.5 | N1—C8—H8B | 109.3 |
H1A—C1—H1C | 109.5 | H8A—C8—H8B | 108.0 |
H1B—C1—H1C | 109.5 | C10—C9—C8 | 177.27 (19) |
O1—C2—C3 | 122.76 (17) | C9—C10—H10 | 180.0 |
O1—C2—C1 | 118.65 (16) | C12—C11—C16 | 118.11 (14) |
C3—C2—C1 | 118.55 (15) | C12—C11—C6 | 119.59 (13) |
C4—C3—C2 | 123.42 (14) | C16—C11—C6 | 122.25 (13) |
C4—C3—C6 | 118.66 (13) | C13—C12—C11 | 121.18 (16) |
C2—C3—C6 | 117.92 (13) | C13—C12—H12 | 119.4 |
C3—C4—N1 | 119.44 (13) | C11—C12—H12 | 119.4 |
C3—C4—C7 | 125.43 (14) | C14—C13—C12 | 120.28 (17) |
N1—C4—C7 | 115.12 (14) | C14—C13—H13 | 119.9 |
O2—C5—N2 | 123.52 (14) | C12—C13—H13 | 119.9 |
O2—C5—N1 | 120.68 (15) | C13—C14—C15 | 119.60 (17) |
N2—C5—N1 | 115.77 (13) | C13—C14—H14 | 120.2 |
N2—C6—C3 | 108.24 (11) | C15—C14—H14 | 120.2 |
N2—C6—C11 | 110.69 (11) | C14—C15—C16 | 120.55 (17) |
C3—C6—C11 | 115.19 (11) | C14—C15—H15 | 119.7 |
N2—C6—H6 | 107.5 | C16—C15—H15 | 119.7 |
C3—C6—H6 | 107.5 | C11—C16—C15 | 120.29 (16) |
C11—C6—H6 | 107.5 | C11—C16—H16 | 119.9 |
C4—C7—H7A | 109.5 | C15—C16—H16 | 119.9 |
C4—C7—H7B | 109.5 | C5—N1—C4 | 121.35 (13) |
H7A—C7—H7B | 109.5 | C5—N1—C8 | 116.37 (13) |
C4—C7—H7C | 109.5 | C4—N1—C8 | 122.15 (13) |
H7A—C7—H7C | 109.5 | C5—N2—C6 | 123.52 (12) |
H7B—C7—H7C | 109.5 | C5—N2—H2 | 118.2 |
C9—C8—N1 | 111.51 (13) | C6—N2—H2 | 118.2 |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7C···O1 | 0.96 | 2.21 | 2.862 (3) | 125 |
N2—H2···O2i | 0.86 | 2.02 | 2.8612 (17) | 164 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.
References
Ali, F., Khan, K. M., Salar, U., Iqbal, S., Taha, M., Ismail, N. H., Perveen, S., Wadood, A., Ghufran, M. & Ali, B. (2016). Bioorg. Med. Chem. 24, 3624–3635. CrossRef CAS PubMed Google Scholar
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dalil, S. Z. H., Shirini, F. & Shojaei, A. F. (2016). RSC Adv. 6, 67072–67085. Google Scholar
Dallinger, D. & Kappe, C. O. (2002). Synlett, pp. 1901–1903. Google Scholar
Desai, N. C., Trivedi, A. R. & Khedkar, V. M. (2016). Bioorg. Med. Chem. Lett. 26, 4030–4035. CrossRef CAS PubMed Google Scholar
Dhumaskar, K. L., Meena, S. N., Ghadi, S. C. & Tilve, S. G. (2014). Bioorg. Med. Chem. Lett. 24, 2897–2899. CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Jetti, S. R., Upadhyaya, A. & Jain, S. (2014). Med. Chem. Res. 23, 4356–4366. CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Putatunda, S., Chakraborty, S., Ghosh, S., Nandi, P., Chakraborty, S., Sen, P. C. & Chakraborty, A. (2012). Eur. J. Med. Chem. 54, 223–231. CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, K., Arora, D., Poremsky, E., Lowery, J. & Moreland, R. S. (2009). Eur. J. Med. Chem. 44, 1997–2001. Web of Science CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xue, H., Zhao, Y., Wu, H., Wang, Z., Yang, B., Wei, Y., Wang, Z. & Tao, L. (2016). J. Am. Chem. Soc. 138, 8690–8693. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.