metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[bis­­(tri­methyl­ammonium) [hexa-μ-cyanido-cadmium(II)dicopper(I)]]

CROSSMARK_Color_square_no_text.svg

aDepartment of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan, and bDepartment of Chemistry, School of Science, Kitasato University, Kitasato 1-15-1, Sagamihara, Kanagawa 252-0373, Japan
*Correspondence e-mail: cnskor@mail.ecc.u-tokyo.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 1 December 2017; accepted 12 December 2017; online 15 December 2017)

The title compound, {(C3H10N)2[CdCu2(CN)6]}n, has been synthesized as an alternative to the high-emitting complexes containing more expensive metals. The CN ligands make linkages between the CuI and CdII ions to form the coordination polymer, [CdCu2(CN)6]n2−, which is a three-dimensional framework classified as pyrite net (pyr). The net has a void space for accommodating a tri­methyl­ammonium ion located on a threefold rotation axis. The CdII ion lies on a special position with site symmetry -3 and is octa­hedrally coordinated by six N atoms. The CuI ion is located on a threefold rotation axis and has a trigonal-planar coordination geometry formed by three C atoms. In the three-dimensional net, two CuI ions are arranged closely [Cu⋯Cu = 3.9095 (5) Å], but the distance is not short enough to suggest a CuI–CuI inter­action. The crystal studied was a merohedral twin (twin operation 2[101]), the refined component ratio being 0.9202 (7):0.0798 (7). A powder of the title compound shows strong luminescence with an emission maximum at 509 nm and a quantum yield of 98% at room temperature.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound, a coordination polymer formed by CuI and CdII ions and bridging CN ligands, has been synthesized as an alternative to the high-emitting complexes containing more expensive metals. Combinations of CuI, CN and other building ligands have previously been used for such purposes (Lim et al., 2008[Lim, M. J., Murray, C. A., Tronic, T. A., deKrafft, K. E., Ley, A. N., deButts, J. C., Pike, R. D., Lu, H. & Patterson, H. H. (2008). Inorg. Chem. 47, 6931-6947.]; Dembo et al., 2010[Dembo, M. D., Dunaway, L. E., Jones, J. S., Lepekhina, E. A., McCullough, S. M., Ming, J. L., Li, X., Baril-Robert, F., Patterson, H. H., Bayse, C. A. & Pike, R. D. (2010). Inorg. Chim. Acta, 364, 102-114.]). The objective of the present work was to build a more robust and lower energy loss coordination polymer by adding CdII ions. These ions are well known as excellent building blocks for three-dimensional net structures (Iwamoto, 1996[Iwamoto, T. (1996). J. Incl Phenom. Macrocycl Chem. 24, 61-132.]), and exhibit no emissive dd metal-centred levels (Barbieri et al., 2008[Barbieri, A., Accorsi, G. & Armaroli, N. (2008). Chem. Commun. pp. 2185-2193.]). A powder of the title compound showed luminescence with an emission maximum at 509 nm and a quantum yield of 98% at room temperature.

The CuI ion resides on a threefold rotation axis and has a trigonal-planar coordination geometry by the C atoms of three CN ligands. The N-terminals of the CN ligands are linked to the CdII ions, which are located on special positions with [\overline{3}] site symmetry (Fig. 1[link]). The orientation of the bridging CN ions was confirmed by 113Cd CP/MAS NMR spectra, which showed a single peak at a chemical shift of 191 p.p.m. [referenced to an external Cd(NO3)2·4H2O standard]. This chemical shift indicates that each CdII ion is octa­hedrally coordinated by six N atoms (Nishikiori et al., 1990[Nishikiori, S., Ratcliffe, C. I. & Ripmeester, J. A. (1990). Can. J. Chem. 68, 2270-2273.]). The CuI—CN—CdII linkages form an infinite [CdCu2(CN)6]n2− three-dimensional net. The topology of this net is characterized as pyr (pyrite net; Fig. 2[link]), the same as that of MOF-150 (Chae et al., 2003[Chae, H. K., Kim, J., Friedrichs, O. D., O'Keeffe, M. & Yaghi, O. M. (2003). Angew. Chem. Int. Ed. 42, 3907-3909.]). The two closest Cu(CN)3 units, which reside on the same threefold rotation axis, are stacked in a staggered conformation with an inversion centre at their mid point (Fig. 3[link]). The distance between the two CuI ions [3.9095 (5) Å] precludes a CuI–CuI inter­action, the contribution of which to luminescence behaviour has previously been discussed (Nishikawa et al., 2016[Nishikawa, M., Sano, T., Washimi, M., Takao, K. & Tsubomura, T. (2016). Dalton Trans. 45, 12127-12136.]). The (CH3)3NH+ ions that balance the negative charges of the three-dimensional polymer are trapped in the voids of the pyrite net. The principal axis of the (CH3)3NH+ ion coincides with the threefold rotation axis on which the CuI and CdII ions reside. The lone H atom of the (CH3)3NH+ ion is oriented towards the CdII ion (Fig. 3[link]).

[Figure 1]
Figure 1
The coordination forms of the CdII and CuI ions and the structure of the tri­methyl­ammonium ion in the title compound. All displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) –z + [{1\over 2}], –x + 1, y − [{1\over 2}]; (ii) −y + 1, z + [{1\over 2}], −x + [{1\over 2}]; (iii) −x + 1, −y + 1, −z; (iv) z + [{1\over 2}], x, −y + [{1\over 2}]; (v) y, −z + [{1\over 2}], x − [{1\over 2}]; (vi) z, x, y; (vii) y, z, x.]
[Figure 2]
Figure 2
Pyrite net (pyr) of the coordination polymer [CdCu2(CN)6]n2−. The CN ligands linking the CdII (octahedral coordination sphere) and the CuI (trigonal-planar coordination sphere) ions are represented as solid lines.
[Figure 3]
Figure 3
An arrangement of the CdII (octahedral coordination sphere), CuI (trigonal-planar coordination sphere) and (CH3)3NH+ ions on the threefold rotation axis running along the diagonal line of the unit cell. The distance between Cu1 and Cu1ix is 3.9095 (5) Å. [Symmetry codes: (viii) x + [{1\over 2}], −y + [{3\over 2}], 1 − z; (ix) 1 − x, 1 − y, 1 − z; (x) x − [{1\over 2}], −y + [{1\over 2}], −z; (xi) x − [{1\over 2}], −y + [{1\over 2}], −z.]

Synthesis and crystallization

The title compound was prepared from an aqueous solution containing Cd(CN)2, CuCN, NaCN and (CH3)3NHCl. Into 20 ml of water Cd(CN)2 (0.33 g, 2 mmol), CuCN (0.18 g, 2 mmol) and NaCN (0.40 g, 8.2 mmol) were added. The mixture was warmed with stirring until it turned to a clear solution. Then, (CH3)3NHCl (0.19 g, 2 mmol) was dissolved into the solution. After keeping the solution at 278 K for a week, colourless crystals of the title compound were obtained. Analysis calculated for C12H20CdCu2N8: C 27.94, H 3.91, N 21.72%; found: C 27.85, H 3.98, N 21.87%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. In the final stage, the refinement was carried out assuming merohedral twinning, as suggested by the PLATON program (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]), with the twin operation 2[101], and the final BASF parameter was 0.0798 (7).

Table 1
Experimental details

Crystal data
Chemical formula (C3H10N)2[CdCu2(CN)6]
Mr 515.87
Crystal system, space group Cubic, Pa[\overline{3}]
Temperature (K) 296
a (Å) 12.3775 (9)
V3) 1896.3 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.34
Crystal size (mm) 0.32 × 0.29 × 0.22
 
Data collection
Diffractometer Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.627, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 11150, 861, 772
Rint 0.025
(sin θ/λ)max−1) 0.677
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.044, 1.11
No. of reflections 861
No. of parameters 38
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.28
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), VESTA 3 (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: VESTA 3 (Momma & Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[bis[(trimethylammonium) [hexa-µ-cyanido-cadmium(II)dicopper(I)] top
Crystal data top
(C3H10N)2[CdCu2(CN)6]Mo Kα radiation, λ = 0.71073 Å
Mr = 515.87Cell parameters from 5459 reflections
Cubic, Pa3θ = 2.9–28.5°
a = 12.3775 (9) ŵ = 3.34 mm1
V = 1896.3 (4) Å3T = 296 K
Z = 4Block, colourless
F(000) = 10160.32 × 0.29 × 0.22 mm
Dx = 1.807 Mg m3
Data collection top
Bruker APEXII
diffractometer
861 independent reflections
Radiation source: fine-focus sealed tube772 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 8.3333 pixels mm-1θmax = 28.8°, θmin = 1.7°
phi and ω scansh = 1611
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 1416
Tmin = 0.627, Tmax = 0.746l = 1516
11150 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.044H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0208P)2 + 0.6318P]
where P = (Fo2 + 2Fc2)/3
861 reflections(Δ/σ)max < 0.001
38 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.5000000.5000000.0000000.02365 (9)
Cu10.40882 (2)0.40882 (2)0.40882 (2)0.03148 (11)
N10.48328 (15)0.49244 (15)0.18799 (14)0.0413 (4)
C10.46209 (16)0.46692 (16)0.27362 (15)0.0335 (4)
N20.29859 (12)0.70141 (12)0.20141 (12)0.0338 (6)
H20.3443030.6556960.1556970.041*
C20.20128 (19)0.6377 (2)0.23072 (19)0.0521 (6)
H2A0.2229020.5729120.2674720.078*
H2B0.1622030.6191010.1663600.078*
H2C0.1558180.6798930.2772880.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02365 (9)0.02365 (9)0.02365 (9)0.00096 (6)0.00096 (6)0.00096 (6)
Cu10.03148 (11)0.03148 (11)0.03148 (11)0.00670 (10)0.00670 (10)0.00670 (10)
N10.0470 (10)0.0483 (11)0.0286 (8)0.0062 (8)0.0020 (7)0.0031 (7)
C10.0340 (9)0.0340 (9)0.0324 (9)0.0042 (8)0.0033 (8)0.0028 (7)
N20.0338 (6)0.0338 (6)0.0338 (6)0.0038 (6)0.0038 (6)0.0038 (6)
C20.0514 (13)0.0599 (14)0.0450 (12)0.0161 (11)0.0071 (10)0.0003 (11)
Geometric parameters (Å, º) top
Cd1—N12.3379 (17)N1—C11.137 (3)
Cd1—N1i2.3379 (17)N2—C21.485 (3)
Cd1—N1ii2.3379 (17)N2—C2i1.485 (3)
Cd1—N1iii2.3379 (17)N2—C2ii1.485 (3)
Cd1—N1iv2.3379 (17)N2—H20.9800
Cd1—N1v2.3379 (17)C2—H2A0.9600
Cu1—C11.9371 (19)C2—H2B0.9600
Cu1—C1vi1.9371 (19)C2—H2C0.9600
Cu1—C1vii1.9371 (19)
N1—Cd1—N1i87.44 (6)C1—Cu1—C1vii119.24 (8)
N1—Cd1—N1ii87.44 (6)C1vi—Cu1—C1vii119.24 (8)
N1—Cd1—N1iii180.00Cd1—N1—C1163.66 (17)
N1—Cd1—N1iv92.56 (6)Cu1—C1—N1170.85 (18)
N1—Cd1—N1v92.56 (6)C2—N2—C2i111.25 (16)
N1i—Cd1—N1ii87.44 (6)C2—N2—C2ii111.25 (16)
N1i—Cd1—N1iii92.56 (6)C2i—N2—C2ii111.25 (16)
N1i—Cd1—N1iv180.00C2—N2—H2108.00
N1i—Cd1—N1v92.56 (6)C2i—N2—H2108.00
N1ii—Cd1—N1iii92.56 (6)C2ii—N2—H2108.00
N1ii—Cd1—N1iv92.56 (6)N2—C2—H2A109.00
N1ii—Cd1—N1v180.00N2—C2—H2B109.00
N1iii—Cd1—N1iv87.44 (6)N2—C2—H2C109.00
N1iii—Cd1—N1v87.44 (6)H2A—C2—H2B109.00
N1iv—Cd1—N1v87.44 (6)H2A—C2—H2C109.00
C1—Cu1—C1vi119.24 (8)H2B—C2—H2C109.00
Symmetry codes: (i) z+1/2, x+1, y1/2; (ii) y+1, z+1/2, x+1/2; (iii) x+1, y+1, z; (iv) z+1/2, x, y+1/2; (v) y, z+1/2, x1/2; (vi) z, x, y; (vii) y, z, x.
 

References

First citationBarbieri, A., Accorsi, G. & Armaroli, N. (2008). Chem. Commun. pp. 2185–2193.  Web of Science CrossRef Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChae, H. K., Kim, J., Friedrichs, O. D., O'Keeffe, M. & Yaghi, O. M. (2003). Angew. Chem. Int. Ed. 42, 3907–3909.  Web of Science CSD CrossRef CAS Google Scholar
First citationDembo, M. D., Dunaway, L. E., Jones, J. S., Lepekhina, E. A., McCullough, S. M., Ming, J. L., Li, X., Baril-Robert, F., Patterson, H. H., Bayse, C. A. & Pike, R. D. (2010). Inorg. Chim. Acta, 364, 102–114.  CSD CrossRef CAS Google Scholar
First citationIwamoto, T. (1996). J. Incl Phenom. Macrocycl Chem. 24, 61–132.  CrossRef CAS Google Scholar
First citationLim, M. J., Murray, C. A., Tronic, T. A., deKrafft, K. E., Ley, A. N., deButts, J. C., Pike, R. D., Lu, H. & Patterson, H. H. (2008). Inorg. Chem. 47, 6931–6947.  CSD CrossRef PubMed CAS Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNishikawa, M., Sano, T., Washimi, M., Takao, K. & Tsubomura, T. (2016). Dalton Trans. 45, 12127–12136.  CSD CrossRef CAS PubMed Google Scholar
First citationNishikiori, S., Ratcliffe, C. I. & Ripmeester, J. A. (1990). Can. J. Chem. 68, 2270–2273.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]