organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Methyl­anilinium tri­chloro­acetate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Presidency College, Chennai 600 005, India, bDepartment of Physics, Panimalar Engineering College, Chennai 600 123, India, and cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: mohan66@hotmail.com, chakkaravarthi_2005@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 9 December 2017; accepted 11 December 2017; online 15 December 2017)

The asymmetric unit of the title mol­ecular salt, C7H10N+·C2Cl3O2, consists of two cations and two anions. In the crystal, N—H⋯O hydrogen bonds link the components into [100] chains incorporating R23(10) loops and weak ππ stacking [centroid-to-centroid distance = 3.865 (2) Å] is also observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

We herewith report the synthesis and the crystal structure of the title mol­ecular salt. Its geometric parameters agree well with those for reported similar structures (Babu et al., 2014[Babu, K. S. S., Peramaiyan, G., NizamMohideen, M. & Mohan, R. (2014). Acta Cryst. E70, o391-o392.]; Benali-Cherif et al., 2009[Benali-Cherif, N., Boussekine, H., Boutobba, Z. & Dadda, N. (2009). Acta Cryst. E65, o2744.]; Kalaiyarasi et al., 2017[Kalaiyarasi, S., Suresh, S., Akilan, R., Kumar, R. M. & Chakkaravarthi, G. (2017). IUCrData, 2, x170254.]).

The asymmetric unit of the title compound (Fig. 1[link]) comprises a pair of 4-methyl­anilinium cations and tri­chloro­acetate anions. The dihedral angle between the benzene rings of the cations is 6.32 (1)°. Within the chosen asymmetric unit, N1—H1A⋯O4, N1—H1C⋯O2, N2—H2B⋯O3 and N2—H2C⋯O2 hydrogen bonds link the components, thereby generating an [R_{2}^{3}](10) loop and when symmetry-generated N2—H2A⋯O4ii, N1—H1B⋯O1i and N2—H2C⋯O2 hydrogen bonds are considered, another [R_{2}^{3}](10) loop is generated (Fig. 2[link], Table 1[link]). The overall result is a supra­molecular chain propagating along the a-axis direction (Fig. 3[link]). The packing is further consolidated by weak ππ inter­actions [Cg1⋯Cg2 = 3.865 (2) Å; Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4 0.89 1.92 2.801 (3) 169
N1—H1B⋯O1i 0.89 1.91 2.796 (3) 172
N1—H1C⋯O2 0.89 1.96 2.834 (3) 167
N2—H2A⋯O4ii 0.89 1.98 2.851 (3) 165
N2—H2B⋯O3 0.89 1.86 2.745 (3) 172
N2—H2C⋯O2 0.89 1.92 2.789 (3) 164
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure with 30% probability displacement ellipsoids.
[Figure 2]
Figure 2
The crystal packing viewed down [010]. Hydrogen bonds are shown as dashed lines. H atoms not involving in hydrogen bonding have been omitted for clarity.
[Figure 3]
Figure 3
A partial view of the crystal packing, showing part of a [100] chain.

Synthesis and crystallization

p-Toluidine (1.33 g) and tri­chloro­acetic acid (1.48 g) were taken in a 1:1 ratio and dissolved in water at room temperature and the solution was stirred for 6 h. It was filtered and kept for slow evaporation and colourless blocks were obtained after four weeks.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C7H10N+·C2Cl3O2
Mr 270.53
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 295
a, b, c (Å) 6.7395 (2), 11.3491 (3), 16.1078 (5)
α, β, γ (°) 75.681 (2), 88.031 (2), 86.856 (2)
V3) 1191.69 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 6.82
Crystal size (mm) 0.26 × 0.22 × 0.18
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.386, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 37675, 4685, 3713
Rint 0.066
(sin θ/λ)max−1) 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.128, 1.02
No. of reflections 4685
No. of parameters 275
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.48
Computer programs: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2016/6 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXT2016/6 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2016/6 (Sheldrick, 2015b) and PLATON (Spek, 2009).

bis-(4-Methylanilinium trichloroacetate) top
Crystal data top
C7H10N+·C2Cl3O2Z = 4
Mr = 270.53F(000) = 552
Triclinic, P1Dx = 1.508 Mg m3
a = 6.7395 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 11.3491 (3) ÅCell parameters from 9965 reflections
c = 16.1078 (5) Åθ = 2.8–70.5°
α = 75.681 (2)°µ = 6.82 mm1
β = 88.031 (2)°T = 295 K
γ = 86.856 (2)°Block, colourless
V = 1191.69 (6) Å30.26 × 0.22 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
3713 reflections with I > 2σ(I)
ω and φ scansRint = 0.066
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 72.5°, θmin = 2.8°
Tmin = 0.386, Tmax = 0.754h = 88
37675 measured reflectionsk = 1413
4685 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0459P)2 + 1.3481P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4685 reflectionsΔρmax = 0.45 e Å3
275 parametersΔρmin = 0.48 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0236 (4)0.8176 (3)0.3452 (2)0.0550 (8)
C20.0345 (5)0.7010 (4)0.3974 (2)0.0626 (9)
H20.0327500.6906680.4565330.075*
C30.0480 (5)0.5996 (3)0.36460 (19)0.0560 (8)
H30.0543100.5219880.4010450.067*
C40.0519 (4)0.6150 (3)0.27675 (17)0.0412 (6)
C50.0444 (4)0.7297 (3)0.22276 (18)0.0464 (7)
H50.0491550.7398870.1636500.056*
C60.0297 (4)0.8296 (3)0.2575 (2)0.0538 (8)
H60.0237740.9071620.2209010.065*
C70.0015 (7)0.9265 (4)0.3818 (3)0.0829 (12)
H7A0.0454760.9957830.3384550.124*
H7B0.1278760.9425030.4013430.124*
H7C0.0921420.9112410.4290390.124*
C80.5084 (5)0.9077 (3)0.2121 (2)0.0620 (9)
C90.5367 (4)0.7938 (3)0.2677 (2)0.0579 (9)
H90.5423460.7877880.3262060.069*
C100.5568 (4)0.6891 (3)0.2385 (2)0.0506 (7)
H100.5776550.6137010.2768980.061*
C110.5456 (4)0.6972 (3)0.15239 (19)0.0482 (7)
C120.5148 (6)0.8089 (3)0.0954 (2)0.0672 (10)
H120.5062750.8144480.0370240.081*
C130.4969 (6)0.9119 (4)0.1260 (3)0.0755 (11)
H130.4763110.9870760.0873570.091*
C140.4872 (7)1.0201 (4)0.2444 (3)0.0934 (14)
H14A0.5840741.0762800.2162070.140*
H14B0.5077600.9993670.3051120.140*
H14C0.3562261.0569320.2328330.140*
C150.4706 (4)0.2780 (3)0.40294 (18)0.0430 (6)
C160.5665 (4)0.3595 (3)0.32056 (17)0.0395 (6)
C170.0049 (4)0.7259 (3)0.07151 (18)0.0441 (6)
C180.0910 (4)0.6342 (3)0.00763 (17)0.0399 (6)
N10.0600 (3)0.5075 (2)0.24171 (15)0.0443 (6)
H1A0.0485140.5307540.1850450.066*
H1B0.0391970.4603170.2642660.066*
H1C0.1754840.4661670.2544910.066*
N20.5668 (3)0.5879 (2)0.12006 (16)0.0503 (6)
H2A0.6868130.5835620.0958710.076*
H2B0.4743590.5907790.0813470.076*
H2C0.5520530.5224790.1632410.076*
O10.7457 (3)0.3714 (3)0.32515 (15)0.0670 (7)
O20.4537 (3)0.40509 (19)0.26125 (12)0.0499 (5)
O30.2719 (3)0.6182 (2)0.00216 (16)0.0661 (7)
O40.0249 (3)0.59187 (19)0.06740 (12)0.0466 (5)
Cl10.45338 (17)0.36565 (11)0.47998 (6)0.0839 (3)
Cl20.6160 (2)0.14573 (9)0.44281 (9)0.1000 (4)
Cl30.22772 (14)0.23875 (9)0.38605 (6)0.0722 (3)
Cl40.25288 (12)0.69394 (8)0.08705 (5)0.0618 (2)
Cl50.12882 (16)0.72723 (10)0.16713 (5)0.0763 (3)
Cl60.00309 (17)0.87155 (8)0.04977 (7)0.0793 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0387 (15)0.067 (2)0.060 (2)0.0023 (14)0.0021 (14)0.0174 (17)
C20.065 (2)0.079 (2)0.0420 (17)0.0003 (18)0.0085 (15)0.0140 (17)
C30.0583 (19)0.064 (2)0.0375 (15)0.0028 (16)0.0036 (14)0.0015 (14)
C40.0248 (12)0.0574 (17)0.0375 (14)0.0010 (11)0.0005 (10)0.0046 (12)
C50.0349 (14)0.0619 (19)0.0368 (14)0.0077 (13)0.0016 (11)0.0001 (13)
C60.0408 (16)0.0560 (19)0.0592 (19)0.0052 (14)0.0050 (14)0.0028 (15)
C70.087 (3)0.080 (3)0.086 (3)0.001 (2)0.002 (2)0.031 (2)
C80.0458 (18)0.060 (2)0.073 (2)0.0049 (15)0.0028 (16)0.0038 (18)
C90.0386 (16)0.075 (2)0.0522 (18)0.0080 (15)0.0074 (13)0.0011 (17)
C100.0324 (14)0.0570 (19)0.0515 (17)0.0041 (13)0.0056 (12)0.0085 (14)
C110.0260 (13)0.0595 (19)0.0473 (16)0.0008 (12)0.0054 (11)0.0083 (14)
C120.074 (2)0.064 (2)0.0483 (19)0.0094 (18)0.0103 (17)0.0124 (16)
C130.083 (3)0.061 (2)0.063 (2)0.0072 (19)0.0108 (19)0.0175 (18)
C140.094 (3)0.076 (3)0.107 (4)0.003 (2)0.002 (3)0.017 (3)
C150.0493 (16)0.0399 (15)0.0378 (14)0.0077 (12)0.0016 (12)0.0048 (12)
C160.0388 (14)0.0420 (15)0.0363 (14)0.0039 (11)0.0059 (11)0.0072 (12)
C170.0481 (16)0.0450 (16)0.0368 (14)0.0029 (13)0.0008 (12)0.0053 (12)
C180.0392 (14)0.0414 (15)0.0382 (14)0.0044 (11)0.0047 (11)0.0070 (12)
N10.0317 (11)0.0589 (15)0.0370 (12)0.0013 (10)0.0004 (9)0.0024 (11)
N20.0333 (12)0.0605 (16)0.0456 (14)0.0021 (11)0.0035 (10)0.0076 (12)
O10.0368 (11)0.0967 (19)0.0588 (14)0.0150 (12)0.0041 (10)0.0004 (13)
O20.0431 (11)0.0593 (13)0.0380 (10)0.0017 (9)0.0012 (9)0.0056 (9)
O30.0335 (11)0.0805 (17)0.0731 (15)0.0048 (11)0.0063 (10)0.0039 (13)
O40.0440 (11)0.0584 (12)0.0314 (10)0.0035 (9)0.0008 (8)0.0014 (9)
Cl10.0997 (8)0.1091 (8)0.0561 (5)0.0204 (6)0.0153 (5)0.0441 (5)
Cl20.1093 (9)0.0528 (5)0.1176 (9)0.0153 (5)0.0250 (7)0.0163 (6)
Cl30.0624 (5)0.0783 (6)0.0699 (6)0.0369 (4)0.0035 (4)0.0006 (4)
Cl40.0522 (4)0.0709 (5)0.0558 (5)0.0019 (4)0.0188 (4)0.0020 (4)
Cl50.0892 (7)0.0884 (7)0.0452 (4)0.0131 (5)0.0221 (4)0.0065 (4)
Cl60.1087 (8)0.0431 (4)0.0869 (7)0.0003 (5)0.0135 (6)0.0166 (4)
Geometric parameters (Å, º) top
C1—C21.381 (5)C12—C131.375 (6)
C1—C61.385 (5)C12—H120.9300
C1—C71.494 (5)C13—H130.9300
C2—C31.378 (5)C14—H14A0.9600
C2—H20.9300C14—H14B0.9600
C3—C41.382 (4)C14—H14C0.9600
C3—H30.9300C15—C161.560 (4)
C4—C51.375 (4)C15—Cl21.741 (3)
C4—N11.463 (4)C15—Cl31.767 (3)
C5—C61.380 (5)C15—Cl11.770 (3)
C5—H50.9300C16—O11.230 (3)
C6—H60.9300C16—O21.233 (3)
C7—H7A0.9600C17—C181.566 (4)
C7—H7B0.9600C17—Cl51.755 (3)
C7—H7C0.9600C17—Cl41.769 (3)
C8—C131.380 (6)C17—Cl61.773 (3)
C8—C91.386 (5)C18—O31.226 (3)
C8—C141.491 (6)C18—O41.236 (3)
C9—C101.381 (5)N1—H1A0.8900
C9—H90.9300N1—H1B0.8900
C10—C111.372 (4)N1—H1C0.8900
C10—H100.9300N2—H2A0.8900
C11—C121.379 (4)N2—H2B0.8900
C11—N21.458 (4)N2—H2C0.8900
C2—C1—C6117.4 (3)C12—C13—C8122.3 (3)
C2—C1—C7121.3 (3)C12—C13—H13118.8
C6—C1—C7121.3 (3)C8—C13—H13118.8
C3—C2—C1122.0 (3)C8—C14—H14A109.5
C3—C2—H2119.0C8—C14—H14B109.5
C1—C2—H2119.0H14A—C14—H14B109.5
C2—C3—C4119.0 (3)C8—C14—H14C109.5
C2—C3—H3120.5H14A—C14—H14C109.5
C4—C3—H3120.5H14B—C14—H14C109.5
C5—C4—C3120.6 (3)C16—C15—Cl2111.6 (2)
C5—C4—N1120.2 (3)C16—C15—Cl3112.51 (19)
C3—C4—N1119.2 (3)Cl2—C15—Cl3109.27 (16)
C4—C5—C6119.1 (3)C16—C15—Cl1106.45 (19)
C4—C5—H5120.4Cl2—C15—Cl1109.14 (16)
C6—C5—H5120.4Cl3—C15—Cl1107.67 (16)
C5—C6—C1121.9 (3)O1—C16—O2129.0 (3)
C5—C6—H6119.1O1—C16—C15114.4 (2)
C1—C6—H6119.1O2—C16—C15116.5 (2)
C1—C7—H7A109.5C18—C17—Cl5112.3 (2)
C1—C7—H7B109.5C18—C17—Cl4112.67 (19)
H7A—C7—H7B109.5Cl5—C17—Cl4107.38 (16)
C1—C7—H7C109.5C18—C17—Cl6106.09 (19)
H7A—C7—H7C109.5Cl5—C17—Cl6109.53 (16)
H7B—C7—H7C109.5Cl4—C17—Cl6108.85 (16)
C13—C8—C9117.1 (4)O3—C18—O4129.5 (3)
C13—C8—C14121.7 (4)O3—C18—C17114.8 (2)
C9—C8—C14121.2 (4)O4—C18—C17115.6 (2)
C10—C9—C8121.8 (3)C4—N1—H1A109.5
C10—C9—H9119.1C4—N1—H1B109.5
C8—C9—H9119.1H1A—N1—H1B109.5
C11—C10—C9119.4 (3)C4—N1—H1C109.5
C11—C10—H10120.3H1A—N1—H1C109.5
C9—C10—H10120.3H1B—N1—H1C109.5
C10—C11—C12120.4 (3)C11—N2—H2A109.5
C10—C11—N2120.4 (3)C11—N2—H2B109.5
C12—C11—N2119.2 (3)H2A—N2—H2B109.5
C13—C12—C11119.1 (4)C11—N2—H2C109.5
C13—C12—H12120.5H2A—N2—H2C109.5
C11—C12—H12120.5H2B—N2—H2C109.5
C6—C1—C2—C31.0 (5)N2—C11—C12—C13179.4 (3)
C7—C1—C2—C3177.7 (3)C11—C12—C13—C80.1 (6)
C1—C2—C3—C40.4 (5)C9—C8—C13—C120.8 (6)
C2—C3—C4—C50.6 (5)C14—C8—C13—C12179.6 (4)
C2—C3—C4—N1178.1 (3)Cl2—C15—C16—O144.8 (3)
C3—C4—C5—C61.0 (4)Cl3—C15—C16—O1168.1 (2)
N1—C4—C5—C6177.7 (2)Cl1—C15—C16—O174.2 (3)
C4—C5—C6—C10.4 (4)Cl2—C15—C16—O2136.9 (2)
C2—C1—C6—C50.6 (5)Cl3—C15—C16—O213.6 (3)
C7—C1—C6—C5178.1 (3)Cl1—C15—C16—O2104.1 (3)
C13—C8—C9—C101.3 (5)Cl5—C17—C18—O329.9 (3)
C14—C8—C9—C10179.9 (3)Cl4—C17—C18—O3151.3 (2)
C8—C9—C10—C111.0 (4)Cl6—C17—C18—O389.7 (3)
C9—C10—C11—C120.0 (4)Cl5—C17—C18—O4152.5 (2)
C9—C10—C11—N2179.9 (2)Cl4—C17—C18—O431.1 (3)
C10—C11—C12—C130.5 (5)Cl6—C17—C18—O487.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O40.891.922.801 (3)169
N1—H1B···O1i0.891.912.796 (3)172
N1—H1C···O20.891.962.834 (3)167
N2—H2A···O4ii0.891.982.851 (3)165
N2—H2B···O30.891.862.745 (3)172
N2—H2C···O20.891.922.789 (3)164
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras for the data collection.

References

First citationBabu, K. S. S., Peramaiyan, G., NizamMohideen, M. & Mohan, R. (2014). Acta Cryst. E70, o391–o392.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBenali-Cherif, N., Boussekine, H., Boutobba, Z. & Dadda, N. (2009). Acta Cryst. E65, o2744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKalaiyarasi, S., Suresh, S., Akilan, R., Kumar, R. M. & Chakkaravarthi, G. (2017). IUCrData, 2, x170254.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]