organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-2-{[(4-Anilinophen­yl)imino]­meth­yl}-4-bromo-5-fluoro­phenol

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139, Samsun, Turkey, bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, 55139 Samsun, Turkey, and cDepartment of Chemistry, Faculty of Arts and Sciences, Gebze University, Gebze, 41400 Kocaeli, Turkey
*Correspondence e-mail: myavuz@omu.edu.tr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 21 November 2017; accepted 27 November 2017; online 8 December 2017)

In the title compound, C19H14BrFN2O, the dihedral angles between the central benzene ring and the pendant tris­ubstituted ring and phenyl group are 25.7 (2) and 51.7 (2)°, respectively. The mol­ecular conformation is influenced by an intra­molecular O—H⋯N hydrogen bond. In the crystal, N—H⋯O hydrogen bonds link mol­ecules into C(11) chains propagating in [100] and weak aromatic ππ stacking is also observed [centroid–centroid separation = 3.682 (3) Å]

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Schiff bases (Schiff, 1864[Schiff, H. (1864). Ann. Suppl. 3, 343.]) contain the azomethine grouping (–RC=N–) and are prepared by condensation reactions between amines and active carbonyl compounds. As part of our studies in this area, we herein report the synthesis and structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
A view of the title compound with 50% probability displacement ellipsoids. The intra­molecular O—H⋯N hydrogen bond is indicated by a dashed line.

The dihedral angles between the central benzene ring (C8–C13) and pendant tris­ubstituted ring (C1–C6) and phenyl ring (C14–C19) are 25.7 (2) and 51.7 (2)°, respectively; the dihedral angle between the outer rings is 75.9 (2)°. The mol­ecular conformation is influenced by an intra­molecular O—H⋯N hydrogen bond (Table 1[link], Fig. 1[link]), which generates an S(6) ring. The bond lengths for imino group atoms [N2—C8 = 1.403 (5) and N2—C7 = 1.292 (5) Å] are consistent with those in related structures such as 2-amino-3-((E)-{[3-(tri­fluoro­meth­yl)phen­yl]imino}­meth­yl)-4H-chromen-4-one (Atalay et al., 2016[Atalay, Ş., Gerçeker, S., Meral, S. & Alaman, A. (2016). IUCrData, 1, x160797.]) and (Z)-4-{[(Z)-(2-oxonaphthalen-1(2H)- yl­idene)meth­yl]amino}-N-(thia­zol-2(3H)-yl­idene)benzene­sulfonamide (Köysal et al., 2015[Köysal, Y., Bülbül, H., Dege, N., Macit, M. & Alaman, A. (2015). Crystallogr. Rep. 60, 1001-1005.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H01⋯N2 0.82 1.80 2.535 (4) 149
N1—H02⋯O1i 0.84 (4) 2.11 (4) 2.927 (5) 166 (4)
Symmetry code: (i) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

In the extended structure (Fig. 2[link]), N—H⋯O hydrogen bonds link the mol­ecules into C(11) chains propagating in [100]; thus O1 serves as an acceptor for both intra- and inter­molecular hydrogen bonds. Weak aromatic ππ stacking between the C1–C6 rings is also observed [centroid–centroid separation = 3.682 (3) Å]

[Figure 2]
Figure 2
A partial packing view. Dashed lines indicate the hydrogen bonds.

Synthesis and crystallization

The title compound was prepared by refluxing for 18 h a mixture of 5-bromo-3-fluoro-2-hy­droxy­benzaldehyde (0.01 g, 0.045 mmol) in 20 ml ethyl alcohol and N-phenyl­benzene-1,4-di­amine (0.08 g, 0.045 mmol) in 20 ml ethyl alcohol. Red prismatic crystals were obtained from the solution by slow evaporation (yield 73%; m.p. 168–170°C).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C19H14BrFN2O
Mr 385.23
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 293
a, b, c (Å) 13.4521 (15), 7.1810 (7), 34.204 (3)
V3) 3304.1 (6)
Z 8
Radiation type Mo Kα
μ (mm−1) 2.51
Crystal size (mm) 0.40 × 0.25 × 0.07
 
Data collection
Diffractometer Agilent Xcalibur Eos
Absorption correction Analytical (CrysAlis PRO; Rigaku, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.495, 0.896
No. of measured, independent and observed [I > 2σ(I)] reflections 6640, 3349, 1552
Rint 0.052
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.110, 0.97
No. of reflections 3349
No. of parameters 221
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.51
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015).

(I) top
Crystal data top
C19H14BrFN2ODx = 1.549 Mg m3
Mr = 385.23Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 1184 reflections
a = 13.4521 (15) Åθ = 3.8–20.9°
b = 7.1810 (7) ŵ = 2.51 mm1
c = 34.204 (3) ÅT = 293 K
V = 3304.1 (6) Å3Prism, red
Z = 80.40 × 0.25 × 0.07 mm
F(000) = 1552
Data collection top
Agilent Xcalibur Eos
diffractometer
Rint = 0.052
Radiation source: fine-focus sealed X-ray tubeθmax = 26.4°, θmin = 3.0°
w scansh = 169
Absorption correction: analytical
(CrysAlis PRO; Rigaku, 2015)
k = 48
Tmin = 0.495, Tmax = 0.896l = 3642
6640 measured reflections6678 standard reflections every ··· reflections
3349 independent reflections intensity decay: ···
1552 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0267P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
3349 reflectionsΔρmax = 0.35 e Å3
221 parametersΔρmin = 0.51 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The N—H and H atoms were located in a difference Fourier map. Their positional and isotropic thermal parameters were included in further stages of the refinement. All C-bound H atoms were positioned geometricaly and refined using a riding model with C—H = 0.93 - 0.97 Å and with Uiso(H) = 1.2 - 1.5 Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.65808 (5)0.86784 (8)0.50622 (2)0.0847 (3)
F10.8795 (2)0.8762 (4)0.52160 (8)0.0843 (9)
O10.88602 (19)0.6698 (4)0.65086 (9)0.0586 (9)
H010.8480130.6367400.6682770.088*
N20.7227 (2)0.6000 (4)0.68480 (10)0.0403 (9)
N10.5591 (3)0.4382 (6)0.83117 (12)0.0542 (12)
C80.6757 (3)0.5548 (5)0.72019 (12)0.0366 (10)
C30.7295 (3)0.7032 (6)0.61908 (13)0.0398 (11)
C70.6765 (3)0.6471 (5)0.65320 (13)0.0414 (11)
H70.6073880.6442550.6526900.050*
C110.5987 (3)0.4717 (6)0.79440 (13)0.0411 (11)
C130.5808 (3)0.6124 (6)0.73096 (13)0.0460 (12)
H130.5416590.6779570.7132650.055*
C90.7308 (3)0.4599 (5)0.74768 (13)0.0410 (11)
H90.7954250.4249500.7414390.049*
C40.6786 (3)0.7504 (6)0.58495 (13)0.0470 (12)
H40.6095100.7442330.5847420.056*
C50.7267 (4)0.8051 (6)0.55214 (13)0.0499 (12)
C100.6941 (3)0.4148 (5)0.78392 (13)0.0429 (11)
H100.7327480.3467090.8013660.052*
C120.5448 (3)0.5731 (6)0.76728 (13)0.0472 (12)
H120.4819060.6159400.7740850.057*
C20.8344 (3)0.7128 (6)0.61936 (13)0.0432 (11)
C140.5920 (3)0.3098 (7)0.85908 (13)0.0452 (12)
C60.8301 (5)0.8171 (6)0.55333 (15)0.0577 (14)
C150.6228 (3)0.1338 (7)0.84917 (15)0.0565 (13)
H150.6256530.0989610.8230110.068*
C10.8829 (3)0.7725 (6)0.58571 (16)0.0555 (14)
H10.9518150.7818490.5854430.067*
C190.5873 (3)0.3579 (8)0.89792 (14)0.0636 (14)
H190.5668090.4771050.9048750.076*
C160.6498 (3)0.0081 (8)0.87793 (18)0.0733 (16)
H160.6712490.1106130.8710860.088*
C170.6449 (4)0.0586 (9)0.91645 (18)0.0784 (18)
H170.6637450.0256430.9357270.094*
C180.6125 (4)0.2322 (10)0.92675 (16)0.0824 (18)
H180.6075760.2652500.9529630.099*
H020.516 (3)0.515 (5)0.8390 (13)0.049 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1416 (6)0.0693 (4)0.0432 (3)0.0091 (4)0.0233 (3)0.0049 (3)
F10.127 (2)0.078 (2)0.0485 (19)0.0068 (18)0.0331 (17)0.0069 (18)
O10.0495 (19)0.083 (2)0.044 (2)0.0085 (18)0.0003 (15)0.007 (2)
N20.052 (2)0.036 (2)0.033 (2)0.0052 (19)0.0005 (18)0.0016 (19)
N10.058 (3)0.068 (3)0.037 (2)0.024 (3)0.011 (2)0.004 (2)
C80.047 (3)0.031 (2)0.032 (3)0.001 (2)0.002 (2)0.001 (2)
C30.048 (3)0.035 (3)0.037 (3)0.002 (2)0.001 (2)0.000 (2)
C70.042 (3)0.038 (3)0.044 (3)0.001 (2)0.002 (2)0.002 (2)
C110.043 (3)0.043 (3)0.038 (3)0.002 (2)0.004 (2)0.003 (2)
C130.045 (3)0.049 (3)0.044 (3)0.007 (3)0.003 (2)0.007 (3)
C90.037 (3)0.041 (3)0.045 (3)0.007 (2)0.002 (2)0.006 (2)
C40.062 (3)0.038 (3)0.041 (3)0.008 (3)0.001 (2)0.003 (2)
C50.076 (4)0.038 (3)0.036 (3)0.011 (3)0.005 (3)0.003 (2)
C100.047 (3)0.045 (3)0.037 (3)0.004 (2)0.003 (2)0.003 (2)
C120.048 (3)0.049 (3)0.045 (3)0.012 (2)0.002 (2)0.009 (3)
C20.051 (3)0.037 (3)0.042 (3)0.003 (3)0.002 (2)0.004 (2)
C140.036 (3)0.067 (4)0.032 (3)0.000 (3)0.002 (2)0.005 (3)
C60.103 (5)0.032 (3)0.038 (3)0.005 (3)0.021 (3)0.002 (2)
C150.057 (3)0.067 (4)0.045 (3)0.009 (3)0.005 (2)0.007 (3)
C10.061 (3)0.048 (3)0.057 (4)0.003 (3)0.022 (3)0.004 (3)
C190.069 (3)0.079 (4)0.043 (3)0.004 (3)0.000 (3)0.002 (3)
C160.066 (3)0.081 (4)0.073 (4)0.018 (3)0.005 (3)0.020 (4)
C170.081 (4)0.103 (5)0.051 (4)0.009 (4)0.004 (3)0.031 (4)
C180.085 (4)0.125 (6)0.037 (4)0.000 (4)0.006 (3)0.004 (4)
Geometric parameters (Å, º) top
Br1—C51.877 (5)C9—H90.9300
F1—C61.341 (5)C4—C51.354 (6)
O1—C21.318 (5)C4—H40.9300
O1—H010.8200C5—C61.394 (6)
N2—C71.292 (5)C10—H100.9300
N2—C81.403 (5)C12—H120.9300
N1—C111.387 (5)C2—C11.390 (6)
N1—C141.399 (5)C14—C151.373 (6)
N1—H020.84 (4)C14—C191.374 (6)
C8—C91.378 (5)C6—C11.354 (6)
C8—C131.392 (5)C15—C161.384 (6)
C3—C41.396 (5)C15—H150.9300
C3—C21.413 (5)C1—H10.9300
C3—C71.426 (5)C19—C181.380 (7)
C7—H70.9300C19—H190.9300
C11—C121.385 (5)C16—C171.368 (7)
C11—C101.394 (5)C16—H160.9300
C13—C121.363 (5)C17—C181.367 (7)
C13—H130.9300C17—H170.9300
C9—C101.372 (5)C18—H180.9300
C2—O1—H01109.5C11—C10—H10120.2
C7—N2—C8124.4 (4)C13—C12—C11122.2 (4)
C11—N1—C14127.7 (4)C13—C12—H12118.9
C11—N1—H02116 (3)C11—C12—H12118.9
C14—N1—H02116 (3)O1—C2—C1120.1 (4)
C9—C8—C13117.4 (4)O1—C2—C3121.3 (4)
C9—C8—N2117.5 (4)C1—C2—C3118.5 (4)
C13—C8—N2124.9 (4)C15—C14—C19118.9 (5)
C4—C3—C2119.0 (4)C15—C14—N1122.3 (4)
C4—C3—C7120.5 (4)C19—C14—N1118.7 (5)
C2—C3—C7120.5 (4)F1—C6—C1118.5 (5)
N2—C7—C3121.2 (4)F1—C6—C5119.4 (5)
N2—C7—H7119.4C1—C6—C5122.2 (5)
C3—C7—H7119.4C14—C15—C16120.3 (5)
C12—C11—N1119.8 (4)C14—C15—H15119.8
C12—C11—C10117.7 (4)C16—C15—H15119.8
N1—C11—C10122.4 (4)C6—C1—C2120.3 (5)
C12—C13—C8120.4 (4)C6—C1—H1119.9
C12—C13—H13119.8C2—C1—H1119.9
C8—C13—H13119.8C14—C19—C18121.0 (5)
C10—C9—C8122.7 (4)C14—C19—H19119.5
C10—C9—H9118.7C18—C19—H19119.5
C8—C9—H9118.7C17—C16—C15119.9 (6)
C5—C4—C3121.9 (4)C17—C16—H16120.0
C5—C4—H4119.0C15—C16—H16120.0
C3—C4—H4119.0C18—C17—C16120.4 (6)
C4—C5—C6118.1 (5)C18—C17—H17119.8
C4—C5—Br1121.9 (4)C16—C17—H17119.8
C6—C5—Br1120.0 (4)C17—C18—C19119.4 (6)
C9—C10—C11119.6 (4)C17—C18—H18120.3
C9—C10—H10120.2C19—C18—H18120.3
C7—N2—C8—C9162.7 (4)C7—C3—C2—O10.3 (6)
C7—N2—C8—C1323.2 (7)C4—C3—C2—C11.2 (6)
C8—N2—C7—C3175.8 (4)C7—C3—C2—C1178.5 (4)
C4—C3—C7—N2178.9 (4)C11—N1—C14—C1540.7 (7)
C2—C3—C7—N21.5 (6)C11—N1—C14—C19143.4 (5)
C14—N1—C11—C12165.8 (4)C4—C5—C6—F1178.0 (4)
C14—N1—C11—C1017.5 (7)Br1—C5—C6—F10.9 (6)
C9—C8—C13—C120.7 (6)C4—C5—C6—C11.4 (7)
N2—C8—C13—C12174.8 (4)Br1—C5—C6—C1179.7 (4)
C13—C8—C9—C102.7 (6)C19—C14—C15—C160.7 (7)
N2—C8—C9—C10177.3 (4)N1—C14—C15—C16176.6 (4)
C2—C3—C4—C50.0 (7)F1—C6—C1—C2179.3 (4)
C7—C3—C4—C5179.7 (4)C5—C6—C1—C20.2 (7)
C3—C4—C5—C61.3 (7)O1—C2—C1—C6179.9 (4)
C3—C4—C5—Br1179.8 (3)C3—C2—C1—C61.1 (7)
C8—C9—C10—C112.3 (6)C15—C14—C19—C180.4 (7)
C12—C11—C10—C90.2 (6)N1—C14—C19—C18175.7 (4)
N1—C11—C10—C9176.9 (4)C14—C15—C16—C170.6 (7)
C8—C13—C12—C111.8 (7)C15—C16—C17—C180.7 (8)
N1—C11—C12—C13179.0 (4)C16—C17—C18—C191.7 (8)
C10—C11—C12—C132.2 (7)C14—C19—C18—C171.6 (8)
C4—C3—C2—O1179.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H01···N20.821.802.535 (4)149
N1—H02···O1i0.84 (4)2.11 (4)2.927 (5)166 (4)
Symmetry code: (i) x1/2, y, z+3/2.
 

Acknowledgements

The authors thank Dokuz E­ylül University, Faculty of Sciences, Department of Physics, and Assistant Professor Muhittin Aygün for the data collection.

Funding information

Funding for this research was provided by: Ondokuz Mayis University (research grant PYO.FEN.1904.17.006[D16]).

References

First citationAtalay, Ş., Gerçeker, S., Meral, S. & Alaman, A. (2016). IUCrData, 1, x160797.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKöysal, Y., Bülbül, H., Dege, N., Macit, M. & Alaman, A. (2015). Crystallogr. Rep. 60, 1001–1005.  Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSchiff, H. (1864). Ann. Suppl. 3, 343.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]