organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(2E)-2-[4-(Di­methyl­amino)­benzyl­­idene]-5-methyl­cyclo­hexa­none

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Madras Christian College, Chennai-59, Tamilnadu, India, bDepartment of Chemistry, Madras Christian College, Chennai-59, Tamilnadu, India, and cPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India
*Correspondence e-mail: guqmc@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 15 November 2017; accepted 27 November 2017; online 5 December 2017)

In the title compound, C16H21NO, the cyclo­hexa­none ring adopts a half-chair conformation; the dihedral angle between this ring (all atoms) and the benzene ring is 41.74 (16)°. No directional inter­actions could be identified in the crystal.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Cyclo­hexa­none derivatives have various applications as drugs (e.g. Chen et al., 2010[Chen, L., Zhang, L., Wang, Z., Wu, Y. & Liang, G. (2010). Acta Cryst. E66, o3309.]). As part our studies in this area, we now describe the synthesis via a Claissen–Schmidt condensation and crystal structure of the title compound (Fig. 1[link]). In the arbitrarily chosen asymmetric mol­ecule, C13 has an R configuration, but symmetry generates a racemic mixture in the crystal.

[Figure 1]
Figure 1
The mol­ecular structure, with displacement ellipsoids drawn at the 30% probability level.

The geometric parameters for the title compound are comparable with the corresponding values for similar reported structures (e.g. Shalini et al., 2013[Shalini, S., Girija, C. R., Karunakar, P., Jotani, M. M., Venugopala, K. N. & Venkatesha, T. V. (2013). Indian J. Chem. Sect. B, 52, 282-288.]). The cyclo­hexa­none ring adopts a half-chair conformation, with C10/C11/C14/C15 roughly coplanar (r.m.s. deviation = 0.075 Å) and C12 and C13 deviating by 0.465 (5) and −0.234 (4) Å, respectively, from the other atoms. The dihedral angle between the cyclo­hexa­none ring (all atoms) and the benzene ring is 41.74 (15)°. The N1/C1/C2 di­methyl­amino group is almost coplanar with its attached benzene ring [dihedral angle = 2.6 (4)°] and the bond-angle sum at the nitro­gen atom of 359.8° clearly indicates sp2 hybridization.

No directional inter­actions could be identified in the crystal (Fig. 2[link]) and van der Waals forces must be responsible for crystal cohesion.

[Figure 2]
Figure 2
The packing viewed down [010].

Synthesis and crystallization

An aqueous solution of NaOH (10%, 10 ml) was added to a solution of 3-methyl­cyclo­hexa­none (0.02 mol) and 4-N,N-methyl­amino­benzaldehyde (0.02 mol) in absolute ethanol (40 ml). The reaction mixture was stirred for 2 h and was left overnight. On addition of ice-cold water, a dark-yellow solid was obtained, which was filtered, washed with ice-cold water and dried. The product was recrystallized from ethyl acetate solution to yield yellow blocks after seven days (yield: 87%, m.p. 70°C).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C16H21NO
Mr 243.34
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 20.3655 (16), 7.6148 (7), 18.2999 (16)
β (°) 99.254 (3)
V3) 2801.0 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.979, 0.986
No. of measured, independent and observed [I > 2σ(I)] reflections 19385, 2462, 1528
Rint 0.030
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.218, 1.07
No. of reflections 2458
No. of parameters 167
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.19
Computer programs: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

(2E)-2-[4-(Dimethylamino)benzylidene]-5-methylcyclohexanone top
Crystal data top
C16H21NOF(000) = 1056
Mr = 243.34Dx = 1.154 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.3655 (16) ÅCell parameters from 6070 reflections
b = 7.6148 (7) Åθ = 2.8–25.5°
c = 18.2999 (16) ŵ = 0.07 mm1
β = 99.254 (3)°T = 296 K
V = 2801.0 (4) Å3Block, yellow
Z = 80.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2462 independent reflections
Radiation source: fine-focus sealed tube1528 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and φ scanθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2422
Tmin = 0.979, Tmax = 0.986k = 99
19385 measured reflectionsl = 2121
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.073 w = 1/[σ2(Fo2) + (0.0719P)2 + 5.4525P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.218(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.25 e Å3
2458 reflectionsΔρmin = 0.19 e Å3
167 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0022 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms were positioned geometrically and treated as riding on their parent atoms and refined with C—H distances of 0.93–0.97 Å, with Uiso(H)= 1.2Ueq(C) or Uiso(H) = 1.5Ueq(methyl C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.40379 (18)0.7797 (6)0.2188 (2)0.0897 (12)
H1A0.43900.76880.26030.135*
H1B0.39190.90120.21150.135*
H1C0.41850.73480.17520.135*
C20.3551 (2)0.5670 (6)0.2965 (2)0.0978 (13)
H2A0.39880.58280.32460.147*
H2B0.34980.44720.28030.147*
H2C0.32230.59460.32690.147*
C30.28784 (15)0.6857 (4)0.18527 (16)0.0596 (8)
C40.23324 (16)0.5821 (4)0.19661 (18)0.0659 (9)
H40.23750.50590.23680.079*
C50.17401 (16)0.5914 (4)0.14940 (17)0.0658 (9)
H50.13920.51970.15820.079*
C60.16364 (15)0.7044 (4)0.08843 (16)0.0578 (8)
C70.21890 (16)0.8012 (4)0.07624 (17)0.0619 (8)
H70.21500.87360.03490.074*
C80.27912 (16)0.7939 (4)0.12295 (17)0.0637 (9)
H80.31440.86220.11280.076*
C90.10106 (16)0.7265 (4)0.03870 (17)0.0614 (8)
H90.10510.75360.00990.074*
C100.03833 (16)0.7142 (4)0.05177 (16)0.0593 (8)
C110.01972 (17)0.6781 (5)0.12709 (17)0.0714 (10)
H11A0.01660.55220.13380.086*
H11B0.05470.72200.16500.086*
C120.04529 (19)0.7616 (6)0.1373 (2)0.0830 (11)
H12A0.05660.72530.18450.100*
H12B0.04030.88830.13820.100*
C130.10030 (18)0.7122 (5)0.0772 (2)0.0778 (10)
H130.10180.58360.07550.093*
C140.08539 (17)0.7743 (5)0.00311 (19)0.0738 (10)
H14A0.11540.71440.03550.089*
H14B0.09540.89880.00140.089*
C150.01578 (17)0.7473 (4)0.01116 (18)0.0676 (9)
C160.1685 (2)0.7745 (6)0.0903 (3)0.1008 (14)
H16A0.20180.73300.05090.151*
H16B0.16930.90050.09140.151*
H16C0.17740.72920.13660.151*
N10.34694 (14)0.6815 (4)0.23302 (15)0.0731 (8)
O10.00436 (13)0.7606 (4)0.07460 (13)0.0917 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.068 (2)0.119 (3)0.084 (3)0.014 (2)0.0187 (19)0.003 (2)
C20.091 (3)0.114 (3)0.080 (3)0.011 (2)0.011 (2)0.023 (2)
C30.0627 (19)0.068 (2)0.0508 (17)0.0034 (15)0.0157 (15)0.0007 (15)
C40.071 (2)0.068 (2)0.0604 (19)0.0013 (17)0.0127 (16)0.0149 (16)
C50.069 (2)0.063 (2)0.066 (2)0.0061 (16)0.0114 (16)0.0093 (16)
C60.0641 (19)0.0634 (19)0.0476 (16)0.0003 (15)0.0144 (14)0.0014 (14)
C70.070 (2)0.068 (2)0.0523 (17)0.0066 (16)0.0229 (15)0.0073 (15)
C80.066 (2)0.070 (2)0.0610 (19)0.0038 (16)0.0251 (16)0.0043 (16)
C90.074 (2)0.063 (2)0.0482 (17)0.0002 (16)0.0143 (15)0.0002 (14)
C100.071 (2)0.0618 (19)0.0446 (16)0.0026 (15)0.0094 (14)0.0016 (14)
C110.074 (2)0.092 (3)0.0482 (17)0.0057 (19)0.0105 (15)0.0011 (17)
C120.084 (3)0.106 (3)0.062 (2)0.003 (2)0.0206 (19)0.004 (2)
C130.074 (2)0.088 (3)0.074 (2)0.0013 (19)0.0185 (18)0.003 (2)
C140.074 (2)0.077 (2)0.069 (2)0.0023 (18)0.0063 (17)0.0050 (18)
C150.079 (2)0.070 (2)0.0534 (19)0.0015 (17)0.0084 (16)0.0005 (16)
C160.082 (3)0.114 (4)0.109 (3)0.013 (2)0.022 (2)0.003 (3)
N10.0655 (17)0.089 (2)0.0648 (17)0.0025 (15)0.0109 (14)0.0141 (15)
O10.0925 (19)0.129 (2)0.0523 (14)0.0035 (16)0.0089 (12)0.0090 (14)
Geometric parameters (Å, º) top
C1—N11.437 (4)C9—C101.340 (4)
C1—H1A0.9600C9—H90.9300
C1—H1B0.9600C10—C151.482 (5)
C1—H1C0.9600C10—C111.512 (4)
C2—N11.440 (4)C11—C121.507 (5)
C2—H2A0.9600C11—H11A0.9700
C2—H2B0.9600C11—H11B0.9700
C2—H2C0.9600C12—C131.486 (5)
C3—N11.369 (4)C12—H12A0.9700
C3—C81.395 (4)C12—H12B0.9700
C3—C41.406 (4)C13—C141.513 (5)
C4—C51.368 (4)C13—C161.522 (5)
C4—H40.9300C13—H130.9800
C5—C61.398 (4)C14—C151.497 (5)
C5—H50.9300C14—H14A0.9700
C6—C71.393 (4)C14—H14B0.9700
C6—C91.452 (4)C15—O11.224 (4)
C7—C81.379 (4)C16—H16A0.9600
C7—H70.9300C16—H16B0.9600
C8—H80.9300C16—H16C0.9600
N1—C1—H1A109.5C12—C11—C10113.0 (3)
N1—C1—H1B109.5C12—C11—H11A109.0
H1A—C1—H1B109.5C10—C11—H11A109.0
N1—C1—H1C109.5C12—C11—H11B109.0
H1A—C1—H1C109.5C10—C11—H11B109.0
H1B—C1—H1C109.5H11A—C11—H11B107.8
N1—C2—H2A109.5C13—C12—C11112.0 (3)
N1—C2—H2B109.5C13—C12—H12A109.2
H2A—C2—H2B109.5C11—C12—H12A109.2
N1—C2—H2C109.5C13—C12—H12B109.2
H2A—C2—H2C109.5C11—C12—H12B109.2
H2B—C2—H2C109.5H12A—C12—H12B107.9
N1—C3—C8121.2 (3)C12—C13—C14110.4 (3)
N1—C3—C4121.8 (3)C12—C13—C16113.8 (3)
C8—C3—C4116.9 (3)C14—C13—C16111.3 (3)
C5—C4—C3121.0 (3)C12—C13—H13107.0
C5—C4—H4119.5C14—C13—H13107.0
C3—C4—H4119.5C16—C13—H13107.0
C4—C5—C6122.7 (3)C15—C14—C13116.5 (3)
C4—C5—H5118.6C15—C14—H14A108.2
C6—C5—H5118.6C13—C14—H14A108.2
C7—C6—C5115.5 (3)C15—C14—H14B108.2
C7—C6—C9119.2 (3)C13—C14—H14B108.2
C5—C6—C9125.2 (3)H14A—C14—H14B107.3
C8—C7—C6122.7 (3)O1—C15—C10121.3 (3)
C8—C7—H7118.6O1—C15—C14118.9 (3)
C6—C7—H7118.6C10—C15—C14119.7 (3)
C7—C8—C3120.9 (3)C13—C16—H16A109.5
C7—C8—H8119.5C13—C16—H16B109.5
C3—C8—H8119.5H16A—C16—H16B109.5
C10—C9—C6130.2 (3)C13—C16—H16C109.5
C10—C9—H9114.9H16A—C16—H16C109.5
C6—C9—H9114.9H16B—C16—H16C109.5
C9—C10—C15117.4 (3)C3—N1—C1121.6 (3)
C9—C10—C11124.1 (3)C3—N1—C2120.3 (3)
C15—C10—C11118.4 (3)C1—N1—C2117.9 (3)
N1—C3—C4—C5178.2 (3)C10—C11—C12—C1353.8 (4)
C8—C3—C4—C51.6 (5)C11—C12—C13—C1461.4 (4)
C3—C4—C5—C60.9 (5)C11—C12—C13—C16172.7 (3)
C4—C5—C6—C73.3 (5)C12—C13—C14—C1543.0 (5)
C4—C5—C6—C9176.7 (3)C16—C13—C14—C15170.3 (3)
C5—C6—C7—C83.2 (5)C9—C10—C15—O110.1 (5)
C9—C6—C7—C8176.8 (3)C11—C10—C15—O1172.9 (3)
C6—C7—C8—C30.8 (5)C9—C10—C15—C14166.7 (3)
N1—C3—C8—C7178.2 (3)C11—C10—C15—C1410.3 (5)
C4—C3—C8—C71.7 (5)C13—C14—C15—O1165.0 (3)
C7—C6—C9—C10148.5 (3)C13—C14—C15—C1018.1 (5)
C5—C6—C9—C1031.5 (5)C8—C3—N1—C13.9 (5)
C6—C9—C10—C15179.0 (3)C4—C3—N1—C1176.2 (3)
C6—C9—C10—C112.3 (6)C8—C3—N1—C2179.2 (3)
C9—C10—C11—C12149.3 (3)C4—C3—N1—C21.0 (5)
C15—C10—C11—C1227.4 (5)
 

Acknowledgements

The authors thank the Central Instrumentation Facility, Queen Mary's College, Chennai-4, for the computing facility and the SAIF, IIT, Madras, for the X-ray data collection facility.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, L., Zhang, L., Wang, Z., Wu, Y. & Liang, G. (2010). Acta Cryst. E66, o3309.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShalini, S., Girija, C. R., Karunakar, P., Jotani, M. M., Venugopala, K. N. & Venkatesha, T. V. (2013). Indian J. Chem. Sect. B, 52, 282–288.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]