organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4,4′,4′′,4′′′-({4′λ5,6λ5,6′λ5-Spiro­[dibenzo[d,f][1,3,2]dioxaphosphepine-6,2′-[1,3,5,2,4,6]tri­aza­triphosphinine]-4′,4′,6′,6′-tetra­yl}tetra­kis­(­­oxy))tetra­benzaldehyde

CROSSMARK_Color_square_no_text.svg

aSchool of Chemical Engineering and Environment, Henan University of Technology, Zhengzhou 450001, People's Republic of China, and bSchool of Architecture, Sias International University, Zhengzhou 451150, People's Republic of China
*Correspondence e-mail: zhujing1960@126.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 28 October 2017; accepted 28 November 2017; online 8 December 2017)

The complete mol­ecule of the title compound, C40H28N3O10P3, is generated by crystallographic twofold symmetry, with one P and one N atom lying on the rotation axis. The central P3N3 ring is close to planar, with an r.m.s. deviation of the six fitted atoms of 0.077 Å. The 2,2′-biphen­oxy moiety generates a seven-membered spiro­cyclic structure with an endocyclic C—C—C—C torsion angle about the central biphen­oxy C—C bond of 38.5 (4)°. The formyl-substituted phenyl rings subtend dihedral angles of 56.83 (10) and 61.02 (13)° with respect to the phosphazene core. The C=O and C—H groups of the formyl groups are disordered over two orientations in a 0.640 (4):0.360 (4) ratio. No directional inter­actions beyond normal van der Waals contacts could be identified in the crystal.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Cyclic phosphazenes are an important family of inorganic ring systems with possible applications as flame retardants, anti-microbial agents, lithium-ion batteries, liquid crystals, organic light emitting diodes, membrane hydro­gels, drug carriers, surfactants and phase-transfer catalysts (Uslu et al., 2013[Uslu, A., Ün, Ş. Ş., Kılıç, A., Yılmaz, Ş., Yuksel, F. & Hacıvelioğlu, F. (2013). Inorg. Chim. Acta, 405, 140-146.]). The title compound is a new cyclo­triphosphazene. Herein, we report its synthesis and crystal structure.

The title compound (Fig. 1[link]), crystallizing in C2/c space group with Z = 4, comprises a cyclo­triphosphazene core, a 2,2′-biphen­oxy group and four 4-formyl-phen­oxy groups. The central phosphazene ring, which is generated by crystallographic twofold symmetry (P1 and N2 lie on the axis) is close to planar, with an r.m.s. deviation of the six fitted atoms of 0.077 Å.

[Figure 1]
Figure 1
The mol­ecular structure, showing 50% probability displacement ellipsoids (only the major disorder components of the formyl groups are shown).

Incorporation of the 2,2'-biphen­oxy moiety at P1 promotes a seven-membered spiro­cyclic structure with an endocyclic torsion angle about the central biphen­oxy C—C bond of 38.5 (4)° for for C6—C5—C5i—C6i [symmetry code: (i) 1 − x, y, [{1\over 2}] − z]. The C7 and C14 benzene rings make dihedral angles of 56.83 (10) and 61.02 (13)°, respectively, with the cyclo­triphosphazene ring. In the extended structure, there are no directional inter­actions, the crystal structure being enforced by van der Waals forces only.

Synthesis and crystallization

The title compound was synthesized by two steps: [N3P3Cl4(O2C12H8)] (T1) was synthesized as previously reported in the literature (Carriedo et al. 1996[Carriedo, G. A., Fernández-Catuxo, L., Alonso, F. J. G., Gómez-Elipe, P. & González, P. A. (1996). Macromolecules, 29, 5320-5325.]).

A mixture of 4-hy­droxy­benzaldehyde (2.6816 g, 0.0220 mol) and K2CO3 (5.8048 g, 0.0420 mol) in THF (50 ml) was stirred under reflux at room temperature for 0.5 h under nitro­gen atmosphere. T1 (2.3047 g, 0.0050 mol) dissolved in 30 ml THF, was added dropwise into the mixture for 1 h at room temperature. The reaction mixture was heated slowly to reflux temperature and then allowed to stir strongly for 6 h. After that, the mixture was filtered twice to remove the white solid that formed. The filtrate was concentrated under vacuum to remove part of the solvent and was poured into a large amount of water to precipitate the crude product, which was recrystallized using a solvent of THF. Colourless prismatic crystals of the title compound were obtained by slow evaporation of the solvent.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The C=O and C—H moieties of both the C13 and C20 formyl groups are disordered over two overlapping orientations in 0.640 (4):0.360 (4) ratios.

Table 1
Experimental details

Crystal data
Chemical formula C40H28N3O10P3
Mr 803.56
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 32.3691 (16), 10.7492 (2), 13.1332 (7)
β (°) 125.578 (7)
V3) 3716.6 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.03
Crystal size (mm) 0.23 × 0.2 × 0.17
 
Data collection
Diffractometer Agilent Xcalibur Eos Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlisPro. Agilent Technolgies Ltd, Yarnton, England.])
Tmin, Tmax 0.812, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12837, 3323, 2939
Rint 0.027
(sin θ/λ)max−1) 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.143, 1.06
No. of reflections 3323
No. of parameters 262
No. of restraints 13
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.31
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlisPro. Agilent Technolgies Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

4,4',4'',4'''-({4'λ5,6λ5,6'λ5-Spiro[dibenzo[d,f][1,3,2]dioxaphosphepine-6,2'-[1,3,5,2,4,6]triazatriphosphinine]-4',4',6',6'-tetrayl}tetrakis(oxy))tetrabenzaldehyde top
Crystal data top
C40H28N3O10P3F(000) = 1656
Mr = 803.56Dx = 1.436 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 32.3691 (16) ÅCell parameters from 5579 reflections
b = 10.7492 (2) Åθ = 4.2–70.6°
c = 13.1332 (7) ŵ = 2.03 mm1
β = 125.578 (7)°T = 293 K
V = 3716.6 (4) Å3Prism, colourless
Z = 40.23 × 0.2 × 0.17 mm
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
3323 independent reflections
Radiation source: Enhance (Cu) X-ray Source2939 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 16.2312 pixels mm-1θmax = 67.1°, θmin = 4.4°
ω scansh = 3835
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 127
Tmin = 0.812, Tmax = 1.000l = 1515
12837 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0923P)2 + 1.510P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.143(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.43 e Å3
3323 reflectionsΔρmin = 0.31 e Å3
262 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
13 restraintsExtinction coefficient: 0.00127 (14)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All C-bound hydrogen atoms were included in calculated positions with C—H = 0.93 Å and allowed to ride, with Uiso(H) = 1.2Ueq(C). DELU and ISOR restraints in SHELXL2014 were applied to atoms C16 and C16. The aldehyde groups at C13 and C20 are disordered over two orientations in 0.640 (4): 0.360 (4) ratios. The disordered O atoms bonded to C13 and C20 were constrained with equal anisotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.39125 (8)0.3337 (2)0.0572 (2)0.0601 (5)
H10.37350.40440.01170.072*
C20.36550 (9)0.2259 (2)0.0461 (2)0.0666 (6)
H20.33020.22350.00740.080*
C30.39210 (9)0.1229 (2)0.1142 (3)0.0656 (6)
H30.37480.05030.10590.079*
C40.44445 (9)0.12598 (18)0.1951 (2)0.0572 (5)
H40.46190.05570.24210.069*
C50.47189 (8)0.23294 (17)0.20792 (19)0.0477 (4)
C60.44343 (8)0.33485 (17)0.13615 (19)0.0493 (5)
C70.54295 (10)0.7863 (2)0.5226 (2)0.0635 (6)
C80.56244 (12)0.6753 (2)0.5849 (3)0.0752 (7)
H80.54130.60760.56670.090*
C90.61402 (15)0.6669 (3)0.6748 (3)0.0913 (9)
H90.62790.59250.71780.110*
C100.64567 (13)0.7686 (3)0.7023 (3)0.0876 (9)
C110.62481 (12)0.8787 (3)0.6388 (3)0.0849 (8)
H110.64570.94700.65710.102*
C120.57340 (11)0.8885 (2)0.5486 (2)0.0744 (7)
H120.55940.96290.50580.089*
C130.7014 (2)0.7618 (6)0.7995 (5)0.140 (2)
H130.71260.68410.83710.168*0.640 (4)
H13A0.71750.83600.83940.168*0.360 (4)
C140.37139 (9)0.74268 (19)0.1778 (2)0.0572 (5)
C150.34686 (12)0.6838 (3)0.0639 (3)0.0816 (8)
H150.35970.68630.01640.098*
C160.30203 (12)0.6200 (3)0.0216 (3)0.0908 (8)
H160.28460.57940.05520.109*
C170.28356 (10)0.6166 (3)0.0920 (3)0.0837 (7)
C180.30870 (11)0.6759 (3)0.2045 (3)0.0869 (9)
H180.29570.67370.25180.104*
C190.35297 (10)0.7389 (3)0.2488 (3)0.0726 (7)
H190.37030.77860.32610.087*
C200.23542 (14)0.5504 (4)0.0424 (6)0.1275 (17)
H200.21650.52500.04080.153*0.640 (4)
H20A0.22540.54260.09560.153*0.360 (4)
N10.46628 (6)0.60788 (16)0.27931 (18)0.0562 (5)
N20.50000.82493 (19)0.25000.0527 (6)
O10.46806 (5)0.44141 (12)0.13432 (13)0.0549 (4)
O20.49050 (7)0.79716 (15)0.43020 (18)0.0688 (5)
O30.41462 (6)0.81152 (14)0.2194 (2)0.0759 (6)
O40.7329 (2)0.8334 (7)0.8366 (6)0.165 (2)0.640 (4)
O4A0.7238 (4)0.6851 (13)0.8270 (10)0.165 (2)0.360 (4)
O50.21843 (19)0.5264 (6)0.1045 (8)0.173 (2)0.640 (4)
O5A0.2100 (4)0.5091 (10)0.0525 (15)0.173 (2)0.360 (4)
P10.50000.53226 (6)0.25000.0489 (2)
P20.46970 (2)0.75408 (4)0.29196 (6)0.0529 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0565 (12)0.0501 (11)0.0595 (12)0.0009 (9)0.0257 (10)0.0006 (9)
C20.0550 (12)0.0647 (14)0.0738 (14)0.0110 (10)0.0339 (11)0.0090 (11)
C30.0652 (13)0.0478 (12)0.0908 (16)0.0157 (10)0.0492 (13)0.0081 (11)
C40.0653 (12)0.0361 (10)0.0784 (13)0.0028 (9)0.0465 (11)0.0009 (9)
C50.0555 (11)0.0335 (9)0.0588 (11)0.0015 (8)0.0358 (10)0.0027 (8)
C60.0555 (11)0.0360 (9)0.0550 (10)0.0052 (8)0.0313 (9)0.0034 (8)
C70.0836 (16)0.0536 (12)0.0714 (14)0.0020 (11)0.0554 (13)0.0024 (10)
C80.105 (2)0.0516 (13)0.0810 (16)0.0016 (13)0.0608 (17)0.0017 (11)
C90.119 (3)0.0693 (17)0.0797 (17)0.0216 (17)0.0549 (19)0.0082 (14)
C100.094 (2)0.091 (2)0.0702 (16)0.0075 (17)0.0433 (16)0.0076 (14)
C110.093 (2)0.0838 (19)0.0741 (16)0.0188 (16)0.0465 (15)0.0105 (14)
C120.0965 (19)0.0578 (13)0.0734 (15)0.0053 (13)0.0520 (15)0.0009 (11)
C130.121 (4)0.139 (5)0.118 (3)0.037 (4)0.046 (3)0.007 (3)
C140.0521 (11)0.0437 (11)0.0767 (14)0.0099 (8)0.0381 (11)0.0088 (9)
C150.0864 (18)0.0823 (19)0.0831 (17)0.0124 (14)0.0533 (16)0.0025 (14)
C160.0761 (17)0.0814 (19)0.0839 (18)0.0100 (15)0.0289 (13)0.0155 (15)
C170.0522 (12)0.0652 (15)0.110 (2)0.0079 (11)0.0341 (13)0.0031 (15)
C180.0696 (16)0.097 (2)0.108 (2)0.0019 (15)0.0602 (17)0.0059 (18)
C190.0632 (14)0.0820 (18)0.0752 (15)0.0005 (12)0.0418 (13)0.0019 (12)
C200.065 (2)0.092 (3)0.196 (5)0.0006 (18)0.059 (3)0.005 (3)
N10.0547 (9)0.0357 (9)0.0829 (12)0.0009 (7)0.0427 (9)0.0057 (8)
N20.0595 (14)0.0292 (10)0.0733 (15)0.0000.0409 (12)0.000
O10.0606 (8)0.0349 (7)0.0574 (8)0.0061 (6)0.0277 (7)0.0038 (6)
O20.0819 (11)0.0558 (9)0.0927 (12)0.0021 (8)0.0644 (10)0.0036 (8)
O30.0621 (10)0.0417 (8)0.1282 (16)0.0085 (7)0.0579 (11)0.0123 (8)
O40.097 (3)0.187 (6)0.139 (4)0.012 (3)0.029 (3)0.024 (4)
O4A0.097 (3)0.187 (6)0.139 (4)0.012 (3)0.029 (3)0.024 (4)
O50.093 (3)0.149 (4)0.274 (7)0.045 (3)0.104 (4)0.047 (4)
O5A0.093 (3)0.149 (4)0.274 (7)0.045 (3)0.104 (4)0.047 (4)
P10.0493 (4)0.0284 (3)0.0638 (4)0.0000.0300 (3)0.000
P20.0546 (4)0.0330 (3)0.0794 (4)0.00327 (18)0.0436 (3)0.0026 (2)
Geometric parameters (Å, º) top
C1—H10.9300C13—O4A1.015 (12)
C1—C21.386 (3)C14—C151.374 (4)
C1—C61.375 (3)C14—C191.369 (4)
C2—H20.9300C14—O31.384 (3)
C2—C31.367 (4)C15—H150.9300
C3—H30.9300C15—C161.395 (5)
C3—C41.381 (3)C16—H160.9300
C4—H40.9300C16—C171.363 (5)
C4—C51.402 (3)C17—C181.361 (5)
C5—C5i1.481 (4)C17—C201.475 (5)
C5—C61.388 (3)C18—H180.9300
C6—O11.404 (2)C18—C191.371 (4)
C7—C81.374 (4)C19—H190.9300
C7—C121.380 (4)C20—H200.9300
C7—O21.404 (3)C20—H20A0.9300
C8—H80.9300C20—O51.248 (9)
C8—C91.377 (5)C20—O5A1.111 (14)
C9—H90.9300N1—P11.5776 (18)
C9—C101.395 (5)N1—P21.5773 (17)
C10—C111.377 (5)N2—P2i1.5732 (11)
C10—C131.486 (6)N2—P21.5731 (11)
C11—H110.9300O1—P11.5821 (14)
C11—C121.375 (4)O2—P21.5943 (19)
C12—H120.9300O3—P21.5783 (17)
C13—H130.9300P1—N1i1.5776 (18)
C13—H13A0.9300P1—O1i1.5821 (14)
C13—O41.136 (8)
C2—C1—H1120.4C15—C14—O3119.2 (2)
C6—C1—H1120.4C19—C14—C15121.6 (2)
C6—C1—C2119.1 (2)C19—C14—O3119.2 (2)
C1—C2—H2120.1C14—C15—H15121.1
C3—C2—C1119.8 (2)C14—C15—C16117.9 (3)
C3—C2—H2120.1C16—C15—H15121.1
C2—C3—H3119.7C15—C16—H16119.7
C2—C3—C4120.5 (2)C17—C16—C15120.6 (3)
C4—C3—H3119.7C17—C16—H16119.7
C3—C4—H4119.3C16—C17—C20118.7 (4)
C3—C4—C5121.3 (2)C18—C17—C16120.2 (3)
C5—C4—H4119.3C18—C17—C20121.1 (4)
C4—C5—C5i120.48 (14)C17—C18—H18119.7
C6—C5—C4116.23 (19)C17—C18—C19120.6 (3)
C6—C5—C5i123.28 (13)C19—C18—H18119.7
C1—C6—C5122.96 (19)C14—C19—C18119.2 (3)
C1—C6—O1117.06 (18)C14—C19—H19120.4
C5—C6—O1119.77 (18)C18—C19—H19120.4
C8—C7—C12122.0 (3)C17—C20—H20117.8
C8—C7—O2119.5 (2)C17—C20—H20A116.9
C12—C7—O2118.6 (2)O5—C20—C17124.4 (6)
C7—C8—H8120.8O5—C20—H20117.8
C7—C8—C9118.4 (3)O5A—C20—C17126.3 (8)
C9—C8—H8120.8O5A—C20—H20A116.9
C8—C9—H9119.6P2—N1—P1121.54 (11)
C8—C9—C10120.8 (3)P2—N2—P2i122.09 (14)
C10—C9—H9119.6C6—O1—P1123.20 (13)
C9—C10—C13121.7 (4)C7—O2—P2117.22 (14)
C11—C10—C9119.3 (3)C14—O3—P2123.85 (13)
C11—C10—C13119.0 (4)N1—P1—N1i117.97 (13)
C10—C11—H11119.7N1—P1—O1i104.01 (9)
C12—C11—C10120.6 (3)N1i—P1—O1i113.21 (9)
C12—C11—H11119.7N1i—P1—O1104.01 (9)
C7—C12—H12120.5N1—P1—O1113.21 (9)
C11—C12—C7119.0 (3)O1i—P1—O1103.77 (10)
C11—C12—H12120.5N1—P2—O2111.51 (10)
C10—C13—H13113.8N1—P2—O3109.93 (9)
C10—C13—H13A116.4N2—P2—N1117.73 (10)
O4—C13—C10132.3 (7)N2—P2—O2108.79 (8)
O4—C13—H13113.8N2—P2—O3108.35 (8)
O4A—C13—C10127.1 (9)O3—P2—O298.85 (11)
O4A—C13—H13A116.4
C1—C2—C3—C40.8 (4)C13—C10—C11—C12179.8 (3)
C1—C6—O1—P1114.63 (19)C14—C15—C16—C170.2 (4)
C2—C1—C6—C51.2 (4)C14—O3—P2—N114.2 (2)
C2—C1—C6—O1173.4 (2)C14—O3—P2—N2144.1 (2)
C2—C3—C4—C51.5 (4)C14—O3—P2—O2102.7 (2)
C3—C4—C5—C5i178.0 (2)C15—C14—C19—C180.7 (4)
C3—C4—C5—C60.8 (3)C15—C14—O3—P285.2 (3)
C4—C5—C6—C10.6 (3)C15—C16—C17—C180.2 (5)
C4—C5—C6—O1173.89 (18)C15—C16—C17—C20178.6 (3)
C5i—C5—C6—C1179.3 (2)C16—C17—C18—C190.5 (5)
C5i—C5—C6—O14.8 (3)C16—C17—C20—O5169.7 (5)
C5—C6—O1—P170.6 (2)C16—C17—C20—O5A6.1 (10)
C6—C1—C2—C30.5 (4)C17—C18—C19—C140.7 (4)
C6—O1—P1—N1i162.08 (16)C18—C17—C20—O511.9 (6)
C6—O1—P1—N168.66 (17)C18—C17—C20—O5A172.4 (9)
C6—O1—P1—O1i43.44 (13)C19—C14—C15—C160.4 (4)
C7—C8—C9—C100.1 (4)C19—C14—O3—P297.3 (3)
C7—O2—P2—N177.14 (18)C20—C17—C18—C19178.9 (3)
C7—O2—P2—N254.33 (18)O2—C7—C8—C9179.8 (2)
C7—O2—P2—O3167.25 (16)O2—C7—C12—C11179.9 (2)
C8—C7—C12—C110.5 (4)O3—C14—C15—C16177.0 (2)
C8—C7—O2—P285.8 (2)O3—C14—C19—C18176.7 (2)
C8—C9—C10—C110.4 (5)P1—N1—P2—N211.19 (17)
C8—C9—C10—C13179.7 (4)P1—N1—P2—O2115.56 (14)
C9—C10—C11—C120.5 (5)P1—N1—P2—O3135.85 (14)
C9—C10—C13—O4178.3 (8)P2—N1—P1—N1i5.75 (9)
C9—C10—C13—O4A28.3 (14)P2—N1—P1—O1127.48 (12)
C10—C11—C12—C70.0 (4)P2—N1—P1—O1i120.57 (13)
C11—C10—C13—O41.0 (10)P2i—N2—P2—N15.44 (8)
C11—C10—C13—O4A152.4 (12)P2i—N2—P2—O2122.61 (8)
C12—C7—C8—C90.6 (4)P2i—N2—P2—O3130.89 (9)
C12—C7—O2—P294.5 (2)
Symmetry code: (i) x+1, y, z+1/2.
 

Acknowledgements

We would like to thank Ms Y. Zhu for technical assistance.

Funding information

Funding for this research was provided by: the Science and Technology Hall of Henan Province (award No. No. 162102210038); the Science and Technology Bureau of Zheng-zhou City (award No. No. 20150250).

References

First citationAgilent (2014). CrysAlisPro. Agilent Technolgies Ltd, Yarnton, England.  Google Scholar
First citationCarriedo, G. A., Fernández-Catuxo, L., Alonso, F. J. G., Gómez-Elipe, P. & González, P. A. (1996). Macromolecules, 29, 5320–5325.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUslu, A., Ün, Ş. Ş., Kılıç, A., Yılmaz, Ş., Yuksel, F. & Hacıvelioğlu, F. (2013). Inorg. Chim. Acta, 405, 140–146.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]