organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-3-[4-(Benzo[d]oxazol-2-yl)styr­yl]-1-methyl­pyridin-1-ium tri­fluoro­acetate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Anhui University, Hefei 230601, People's Republic of China, and bKey Laboratory of Functional Inorganic Materials Chemistry, Hefei 230601, People's Republic of China
*Correspondence e-mail: 24886084@qq.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 4 September 2017; accepted 4 December 2017; online 8 December 2017)

In the title mol­ecular salt, C21H17N2O+·CF3CO2, the dihedral angles between the benzene ring and pendant pyridyl and benzoxazole substituents of the cation are 15.35 (10) and 2.55 (9)°, respectively. In the crystal, the components are linked by weak C—H⋯O hydrogen bonds, C—F⋯π inter­actions and aromatic ππ stacking inter­actions. The F atoms of the anion are disordered over two set of sites in a 0.536 (6):0.464 (6) ratio.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In the title mol­ecular salt (Fig. 1[link]), the dihedral angles between the benzene ring and pendant pyridyl and benzoxazole substituents of the cation are 15.35 (10) and 2.55 (9)°, respectively. The near co-planarity of the ring systems was also found in a similar structure (Centore et al., 2013[Centore, R., Piccialli, V. & Tuzi, A. (2013). Acta Cryst. E69, o667-o668.]).

[Figure 1]
Figure 1
The mol­ecular structure, with displacement ellipsoids drawn at the 50% probability level.

In the crystal (Figs. 2[link] and 3[link]), the components are linked by weak C—H⋯O hydrogen bonds, C—F⋯π inter­actions (Table 1[link]) and aromatic ππ stacking inter­actions [shortest centroid-centroid separation = 3.7709 (11) Å].

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C5/N2 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2i 0.93 2.49 3.375 (3) 158
C3—H3⋯O2ii 0.93 2.40 3.213 (3) 146
C11—H11A⋯O1i 0.96 2.34 3.245 (5) 157
C22—F2⋯Cg2iii 1.35 (1) 3.24 (1) 4.072 (4) 120 (1)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
Hydrogen-bonded chain in the crystal.
[Figure 3]
Figure 3
The unit-cell packing.

Synthesis and crystallization

Silver tri­fluoro­acetate (0.15 g, 0.68 mmol) was added to a solution of 3-(4-(benzo[d]oxazol-2-yl)styr­yl)-1-methyl­pyridin-1-ium iodide (0.3 g, 0.68 mmol) in aceto­nitrile. The reaction mixture was refluxed for 4 h, then filtered and evaporated, and concentrated in vacuo to give an off-yellow solid. Yellow single crystals were obtained in 15% yield by recrystallization from aceto­nitrile solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The F atoms of the anion are disordered over two set of sites in a 0.536 (6):0.464 (6) ratio.

Table 2
Experimental details

Crystal data
Chemical formula C21H17N2O+·C2F3O2
Mr 426.39
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 19.817 (2), 8.4268 (9), 12.4459 (14)
β (°) 101.220 (1)
V3) 2038.6 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.2 × 0.2 × 0.2
 
Data collection
Diffractometer Bruker SMART CCD
Absorption correction Multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.950, 0.966
No. of measured, independent and observed [I > 2σ(I)] reflections 14029, 3593, 2798
Rint 0.037
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.161, 1.12
No. of reflections 3593
No. of parameters 311
No. of restraints 92
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.23
Computer programs: SMART and SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(E)-3-[4-(Benzo[d]oxazol-2-yl)styryl]-1-methylpyridin-1-ium trifluoroacetate top
Crystal data top
C21H17N2O+·C2F3O2F(000) = 880
Mr = 426.39Dx = 1.389 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 19.817 (2) ÅCell parameters from 4829 reflections
b = 8.4268 (9) Åθ = 2.6–26.7°
c = 12.4459 (14) ŵ = 0.11 mm1
β = 101.220 (1)°T = 296 K
V = 2038.6 (4) Å3Block, yellow
Z = 40.2 × 0.2 × 0.2 mm
Data collection top
Bruker SMART CCD
diffractometer
2798 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.037
phi and ω scansθmax = 25.0°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2223
Tmin = 0.950, Tmax = 0.966k = 109
14029 measured reflectionsl = 1414
3593 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0891P)2 + 0.3359P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
3593 reflectionsΔρmax = 0.37 e Å3
311 parametersΔρmin = 0.23 e Å3
92 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and and Uiso(H) = 1.5Ueq(C) for the methyl H atoms and 1.2Ueq(C) for the others.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O30.43709 (6)0.38309 (16)0.38049 (9)0.0493 (4)
C120.49287 (9)0.2408 (2)0.54155 (13)0.0443 (4)
C150.43415 (9)0.3313 (2)0.48389 (14)0.0462 (4)
N10.37833 (8)0.3688 (2)0.51762 (13)0.0555 (4)
C70.66050 (10)0.0328 (2)0.71466 (15)0.0508 (5)
H70.65250.08610.77640.061*
C80.60374 (9)0.0606 (2)0.65363 (14)0.0459 (4)
C50.77889 (10)0.1425 (2)0.75259 (15)0.0507 (5)
C100.54997 (10)0.2117 (2)0.49481 (14)0.0514 (5)
H100.55130.25180.42560.062*
C140.54614 (10)0.0900 (2)0.69936 (15)0.0515 (5)
H140.54430.04820.76790.062*
C130.49192 (10)0.1796 (2)0.64546 (14)0.0507 (5)
H130.45450.19940.67840.061*
C60.72239 (10)0.0490 (2)0.69052 (16)0.0538 (5)
H60.73060.00370.62870.065*
C160.37561 (9)0.4620 (2)0.34662 (15)0.0476 (5)
C90.60454 (10)0.1243 (2)0.54981 (14)0.0524 (5)
H90.64250.10730.51770.063*
N20.89569 (9)0.2225 (2)0.77180 (15)0.0688 (5)
C10.84123 (11)0.1384 (3)0.71989 (17)0.0597 (5)
H10.84590.07590.66020.072*
C30.83135 (13)0.3201 (3)0.89581 (19)0.0718 (6)
H30.82820.38190.95650.086*
C20.89154 (13)0.3125 (3)0.8594 (2)0.0714 (6)
H20.92970.36930.89490.086*
C200.28822 (12)0.6107 (3)0.23782 (19)0.0676 (6)
H200.26970.66280.17290.081*
C170.33959 (10)0.4538 (2)0.43082 (16)0.0527 (5)
C210.35254 (11)0.5396 (3)0.24913 (17)0.0602 (5)
H210.37830.54420.19430.072*
C40.77489 (12)0.2364 (3)0.84290 (17)0.0623 (6)
H40.73370.24280.86790.075*
C180.27540 (12)0.5279 (3)0.4186 (2)0.0721 (7)
H180.25000.52510.47400.087*
C190.25131 (12)0.6053 (3)0.3212 (2)0.0723 (7)
H190.20880.65560.31130.087*
C110.96006 (15)0.2176 (5)0.7288 (3)0.1203 (13)
H11A0.95430.14820.66660.180*
H11B0.99680.17920.78470.180*
H11C0.97100.32250.70730.180*
O20.17618 (10)0.6468 (2)0.02605 (16)0.0915 (6)
C230.11504 (13)0.6724 (3)0.03020 (19)0.0677 (6)
O10.06594 (13)0.5908 (3)0.0700 (2)0.1265 (9)
C220.09873 (16)0.8216 (4)0.0293 (3)0.1014 (10)
F20.1534 (4)0.8663 (7)0.1057 (5)0.150 (3)0.536 (6)
F30.0446 (5)0.8467 (13)0.0561 (8)0.167 (3)0.536 (6)
F10.1012 (3)0.9471 (6)0.0515 (7)0.150 (2)0.536 (6)
F2'0.1024 (4)0.7737 (10)0.1428 (4)0.158 (3)0.464 (6)
F1'0.1287 (4)0.9425 (9)0.0258 (9)0.155 (3)0.464 (6)
F3'0.0297 (4)0.8498 (11)0.0030 (8)0.138 (3)0.464 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0469 (7)0.0595 (8)0.0440 (7)0.0070 (6)0.0151 (5)0.0010 (6)
C120.0451 (10)0.0481 (10)0.0409 (9)0.0034 (8)0.0114 (8)0.0060 (7)
C150.0493 (10)0.0511 (11)0.0400 (9)0.0028 (8)0.0133 (8)0.0052 (8)
N10.0509 (9)0.0703 (11)0.0496 (9)0.0083 (8)0.0209 (7)0.0003 (8)
C70.0584 (12)0.0512 (11)0.0430 (10)0.0026 (9)0.0103 (8)0.0013 (8)
C80.0499 (10)0.0465 (10)0.0406 (9)0.0037 (8)0.0076 (8)0.0028 (7)
C50.0575 (12)0.0431 (10)0.0487 (10)0.0002 (8)0.0038 (8)0.0003 (8)
C100.0540 (11)0.0640 (12)0.0387 (9)0.0074 (9)0.0156 (8)0.0036 (8)
C140.0577 (12)0.0586 (12)0.0405 (9)0.0042 (9)0.0151 (8)0.0030 (8)
C130.0501 (11)0.0607 (12)0.0450 (9)0.0028 (9)0.0183 (8)0.0004 (8)
C60.0602 (12)0.0529 (11)0.0486 (10)0.0035 (9)0.0113 (9)0.0076 (9)
C160.0435 (10)0.0494 (11)0.0502 (10)0.0036 (8)0.0102 (8)0.0068 (8)
C90.0497 (11)0.0667 (13)0.0440 (10)0.0066 (9)0.0166 (8)0.0004 (9)
N20.0612 (11)0.0721 (12)0.0708 (11)0.0161 (9)0.0076 (9)0.0102 (10)
C10.0627 (13)0.0602 (13)0.0548 (11)0.0120 (10)0.0080 (10)0.0086 (9)
C30.0831 (17)0.0618 (14)0.0659 (13)0.0016 (12)0.0027 (12)0.0180 (11)
C20.0772 (16)0.0582 (13)0.0710 (14)0.0106 (12)0.0048 (12)0.0103 (11)
C200.0672 (14)0.0611 (13)0.0688 (13)0.0112 (11)0.0008 (11)0.0003 (11)
C170.0482 (11)0.0575 (12)0.0544 (11)0.0037 (9)0.0149 (9)0.0066 (9)
C210.0640 (13)0.0633 (13)0.0537 (11)0.0078 (10)0.0121 (10)0.0012 (10)
C40.0668 (13)0.0558 (12)0.0622 (12)0.0027 (10)0.0074 (10)0.0080 (10)
C180.0557 (13)0.0858 (17)0.0798 (15)0.0149 (12)0.0252 (11)0.0055 (13)
C190.0540 (13)0.0723 (15)0.0882 (17)0.0171 (11)0.0081 (12)0.0074 (13)
C110.0751 (18)0.162 (3)0.131 (3)0.048 (2)0.0386 (18)0.052 (2)
O20.0895 (13)0.0849 (13)0.1105 (14)0.0171 (10)0.0453 (11)0.0163 (10)
C230.0698 (15)0.0606 (14)0.0690 (14)0.0011 (12)0.0044 (12)0.0095 (11)
O10.1061 (17)0.0880 (15)0.162 (2)0.0031 (13)0.0307 (15)0.0219 (15)
C220.0757 (18)0.080 (2)0.155 (3)0.0000 (16)0.039 (2)0.0221 (17)
F20.181 (5)0.116 (4)0.131 (4)0.011 (3)0.021 (4)0.066 (3)
F30.142 (5)0.183 (5)0.206 (7)0.036 (4)0.111 (5)0.010 (5)
F10.159 (5)0.066 (2)0.225 (6)0.027 (3)0.034 (4)0.017 (3)
F2'0.158 (5)0.226 (6)0.098 (3)0.031 (5)0.044 (3)0.031 (4)
F1'0.152 (6)0.102 (4)0.226 (7)0.045 (4)0.068 (5)0.065 (5)
F3'0.096 (3)0.119 (4)0.197 (7)0.036 (3)0.024 (4)0.049 (5)
Geometric parameters (Å, º) top
O3—C151.371 (2)N2—C21.344 (3)
O3—C161.380 (2)N2—C11.346 (3)
C12—C101.391 (3)N2—C111.477 (3)
C12—C131.396 (2)C3—C21.357 (4)
C12—C151.458 (3)C3—C41.377 (3)
C15—N11.296 (2)C20—C191.382 (3)
N1—C171.395 (3)C20—C211.390 (3)
C7—C61.325 (3)C17—C181.398 (3)
C7—C81.459 (3)C18—C191.377 (4)
C8—C141.393 (3)O2—C231.222 (3)
C8—C91.402 (3)C23—O11.215 (3)
C5—C11.374 (3)C23—C221.525 (4)
C5—C41.390 (3)C22—F1'1.184 (6)
C5—C61.461 (3)C22—F31.203 (7)
C10—C91.375 (3)C22—F21.348 (6)
C14—C131.376 (3)C22—F3'1.365 (8)
C16—C211.376 (3)C22—F2'1.456 (6)
C16—C171.380 (3)C22—F11.467 (7)
C15—O3—C16104.12 (13)N2—C1—C5121.8 (2)
C10—C12—C13118.74 (17)C2—C3—C4120.1 (2)
C10—C12—C15121.51 (16)N2—C2—C3119.6 (2)
C13—C12—C15119.74 (16)C19—C20—C21121.2 (2)
N1—C15—O3114.91 (16)C16—C17—C18119.3 (2)
N1—C15—C12128.15 (16)C16—C17—N1109.01 (16)
O3—C15—C12116.93 (14)C18—C17—N1131.69 (19)
C15—N1—C17104.48 (15)C16—C21—C20115.8 (2)
C6—C7—C8126.23 (18)C3—C4—C5120.6 (2)
C14—C8—C9117.73 (17)C19—C18—C17117.3 (2)
C14—C8—C7119.54 (17)C20—C19—C18122.2 (2)
C9—C8—C7122.72 (17)O1—C23—O2128.7 (3)
C1—C5—C4116.73 (19)O1—C23—C22115.8 (3)
C1—C5—C6118.07 (17)O2—C23—C22115.3 (2)
C4—C5—C6125.20 (19)F3—C22—F2113.1 (6)
C9—C10—C12120.73 (17)F1'—C22—F3'109.1 (7)
C13—C14—C8121.50 (17)F1'—C22—F2'110.1 (6)
C14—C13—C12120.30 (17)F3'—C22—F2'98.1 (5)
C7—C6—C5125.69 (18)F3—C22—F1102.3 (6)
C21—C16—C17124.16 (19)F2—C22—F198.7 (5)
C21—C16—O3128.35 (17)F1'—C22—C23122.4 (4)
C17—C16—O3107.47 (16)F3—C22—C23124.4 (6)
C10—C9—C8120.99 (17)F2—C22—C23110.9 (3)
C2—N2—C1121.1 (2)F3'—C22—C23108.9 (4)
C2—N2—C11120.2 (2)F2'—C22—C23105.5 (4)
C1—N2—C11118.7 (2)F1—C22—C23102.9 (4)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C5/N2 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.932.493.375 (3)158
C3—H3···O2ii0.932.403.213 (3)146
C11—H11A···O1i0.962.343.245 (5)157
C22—F2···Cg2iii1.35 (1)3.24 (1)4.072 (4)120 (1)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1.
 

Funding information

This work was supported by the Graduate Students Innovative Program of Anhui University (J18515024, J18515019, 201310357155).

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCentore, R., Piccialli, V. & Tuzi, A. (2013). Acta Cryst. E69, o667–o668.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]