metal-organic compounds
Chloridobis(ethane-1,2-diamine)(4H-1,2,4-triazole-κN1)cobalt(III) dichloride
aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Chemistry, Pondicherry University, Pondicherry 605 014, India
*Correspondence e-mail: aspandian59@gmail.com
In the title complex, [CoIIICl(C2H8N2)2(C2H3N3)]Cl2, the CoIII ion has a distorted octahedral environment. It is surrounded by four N atoms in the equatorial plane, with another N atom and a Cl atom occupying the axial positions. Both five-membered Co—N—C—C—N rings adopt a twist conformation. The Co—N bond lengths range from 1.941 (2) to 1.954 (1) Å, while the Co—Cl bond length is 2.257 (1) Å. In the crystal, molecules are linked by N—H⋯N, N—H⋯Cl and C—H⋯Cl hydrogen bonds. Dimers are formed by N—H⋯Cl hydrogen-bonding interactions between amine H-atom donors and chloride ions resulting in an R42(8) ring motif. These dimers are further connected in a head-to-tail fashion via N—H⋯Cl and C—H⋯Cl hydrogen bonds. All the interactions together combine to link the molecules into a three-dimensional framework.
Keywords: crystal structure; ethane-1,2-diamine; triazole ligand; cobalt(III) complex; hydrogen bonding; N—H⋯N; N—H⋯Cl and C—H⋯Cl interactions.
CCDC reference: 1588721
Structure description
Appropriate tailoring of the coordination environment and specific incorporation of ligands around transition metal ions are of key importance in the modification of the properties of metal complexes with respect to spectroscopic, redox activity in interfacial electron-transfer reactions, catalytic and photocatalytic properties (Xu et al., 2008; Anbalagan, 2011). As a result of the excellent coordination ability of nitrogen-containing ligands, research on transition metal complexes involving ligands that coordinate through an N atom, such as simple (Mitzi, 1996; Deeth et al., 1984), (Wu et al., 2003; Shores et al., 2002), or N-heterocyclic rings (Hagrman et al., 1999; Willett et al., 2001), has always been an active area in coordination chemistry. Polydentate amine ligands generally coordinate to transition metal ions using all of the available nitrogen atoms as donors. Metal–chelate complexes (Tweedy, 1964; Kráľová et al., 2004) find potential applications in the research fields of antitumor activity, enzyme catalysis, functioning of micro organisms and in the respiration processes of biological systems (Parekh et al., 2005; Rajevel et al., 2008). Chelating ligands such as ethylenediamine have been widely used to prepare a number of cobalt(III) complexes (Bailar & Clapp, 1945; Bailer & Rollinson, 1946). It acts as a bidentate ligand in the majority of its complexes, chelating to one metal ion through both nitrogen atoms, and there are few complexes in which it coordinates as a monodentate ligand. This paper reports the synthesis and X-ray structural characterization of [CoIII(en)2(tzl)Cl]Cl2 in order to determine the bonding mode and geometric features of two ethylenediamine (en) ligands, a triazole (tzl) and a chloride ligand.
An ORTEP representation of the title compound is given in Fig. 1. The coordination environment around the CoIII ion can be described as a slightly distorted octahedron. The coordination sphere of cobalt is formed by one triazole, one chloride ion and two ethylenediamine ligands. The CoIII ion and four N atoms almost lie in same plane whereas another N and the Cl atom are approximately perpendicular to this plane. The coordination octahedron shows a slight but significant distortion: the N(en)—Co—N(en) angles within the five-membered rings are smaller [85.5 (7) and 85.6 (7)°] than those between two nitrogen atoms of different ethylenediamine ligands. The bond lengths and angles also confirm the distortion from a regular octahedron. Both five-membered rings in the molecule adopt a twist conformation.
All of the amine H atoms of the triazole and en ligands except H3A, and additionally the carbon H3C atom are involved in hydrogen bonds with chlorine and a triazole N-atom acceptor [D⋯A distances in the range 2.898 (2)–3.382 (2) Å; Table 1]. The N—H⋯Cl hydrogen-bonding interactions between amine H-atom donors and chlorine-atom acceptors result in an R42(8) ring motif, as shown in Fig. 2. Further N—H⋯Cl and C—H⋯Cl hydrogen bonds connect the molecules in a head-to-tail fashion via these dimers (Fig. 2, Table 1). All these interactions combine to link the molecules into a three-dimensional framework (Fig. 3). It is remarkable that the chlorine ligand bonded to Co is not involved in hydrogen bonding. No π–π stacking interactions are observed.
Synthesis and crystallization
The title complex was synthesized by the reported method (Ravichandran et al., 2009) by taking 2 g of the trans-[CoIII(en)2Cl2]Cl complex and 0.5 g of 1,2,4-triazole. The cobalt(III) complex was recrystallized by addition of few drops of concentrated HCl in 10 ml of water containing 1 g of the complex. The solution was heated at 343 K with stirring for 30 min and cooled. The pure crystals were obtained by filtration, washed with ethanol after 2–3 weeks and dried under vacuum.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1588721
https://doi.org/10.1107/S241431461701728X/bt4067sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431461701728X/bt4067Isup2.hkl
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).[CoCl(C2H8N2)2(C2H3N3)]Cl2 | F(000) = 728 |
Mr = 354.56 | Dx = 1.702 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.9170 (3) Å | Cell parameters from 2202 reflections |
b = 11.0714 (3) Å | θ = 2.6–25.0° |
c = 11.6172 (3) Å | µ = 1.81 mm−1 |
β = 99.822 (2)° | T = 293 K |
V = 1383.55 (6) Å3 | Block, pink |
Z = 4 | 0.22 × 0.12 × 0.10 mm |
Oxford Diffraction Xcalibur diffractometer with Eos detector | 2202 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.025 |
ω and φ scans | θmax = 25.0°, θmin = 2.6° |
Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009) | h = −12→10 |
Tmin = 0.771, Tmax = 0.834 | k = −13→12 |
6386 measured reflections | l = −13→13 |
2422 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.058 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0275P)2 + 0.4893P] where P = (Fo2 + 2Fc2)/3 |
2422 reflections | (Δ/σ)max = 0.001 |
154 parameters | Δρmax = 0.29 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All H atoms were refined using a ring model with methylene C—H = 0.97 Å, aromatic C—H = 0.93 Å, aromatic N—H = 0.86 Å and remaining N—H = 0.89 Å. Uiso(H) was set to 1.2 Ueq(C,N). |
x | y | z | Uiso*/Ueq | ||
C1 | 0.48819 (19) | 0.53430 (18) | 0.17319 (17) | 0.0179 (5) | |
H1C | 0.4817 | 0.6209 | 0.1834 | 0.022* | |
H1D | 0.5501 | 0.5188 | 0.1242 | 0.022* | |
C2 | 0.52424 (19) | 0.47293 (18) | 0.29027 (18) | 0.0179 (4) | |
H2C | 0.5439 | 0.3886 | 0.2799 | 0.022* | |
H2D | 0.5963 | 0.5120 | 0.3355 | 0.022* | |
C3 | 0.1958 (2) | 0.24086 (18) | 0.13512 (17) | 0.0195 (5) | |
H3C | 0.1825 | 0.1554 | 0.1467 | 0.023* | |
H3D | 0.2297 | 0.2511 | 0.0638 | 0.023* | |
C4 | 0.07586 (19) | 0.30938 (19) | 0.12812 (18) | 0.0212 (5) | |
H4C | 0.0192 | 0.2887 | 0.0572 | 0.025* | |
H4D | 0.0363 | 0.2906 | 0.1947 | 0.025* | |
C5 | 0.1827 (2) | 0.80491 (19) | 0.13127 (17) | 0.0200 (5) | |
H5 | 0.1615 | 0.8620 | 0.0725 | 0.024* | |
C6 | 0.22500 (18) | 0.72412 (18) | 0.30049 (17) | 0.0168 (4) | |
H6 | 0.2395 | 0.7130 | 0.3810 | 0.020* | |
N1 | 0.41523 (15) | 0.48390 (15) | 0.35022 (14) | 0.0141 (3) | |
H1A | 0.4166 | 0.5556 | 0.3851 | 0.017* | |
H1B | 0.4189 | 0.4270 | 0.4048 | 0.017* | |
N2 | 0.36590 (15) | 0.48335 (14) | 0.11867 (13) | 0.0127 (3) | |
H2A | 0.3767 | 0.4115 | 0.0875 | 0.015* | |
H2B | 0.3294 | 0.5320 | 0.0621 | 0.015* | |
N3 | 0.28179 (15) | 0.29178 (15) | 0.23624 (13) | 0.0154 (4) | |
H3A | 0.3599 | 0.2736 | 0.2305 | 0.019* | |
H3B | 0.2653 | 0.2601 | 0.3023 | 0.019* | |
N4 | 0.10919 (15) | 0.43907 (15) | 0.12816 (14) | 0.0158 (4) | |
H4A | 0.0479 | 0.4833 | 0.1480 | 0.019* | |
H4B | 0.1198 | 0.4612 | 0.0569 | 0.019* | |
N5 | 0.23054 (15) | 0.63932 (15) | 0.22306 (13) | 0.0142 (4) | |
N6 | 0.20391 (16) | 0.69145 (15) | 0.11309 (14) | 0.0203 (4) | |
N7 | 0.19539 (15) | 0.82883 (15) | 0.24633 (14) | 0.0188 (4) | |
H7 | 0.1863 | 0.8976 | 0.2783 | 0.023* | |
Co1 | 0.26132 (2) | 0.46688 (2) | 0.23849 (2) | 0.01067 (9) | |
Cl1 | 0.15406 (5) | 0.45606 (5) | 0.38793 (4) | 0.02057 (13) | |
Cl2 | 0.83310 (5) | 0.93314 (4) | 0.63180 (4) | 0.01813 (13) | |
Cl3 | 0.49114 (5) | 0.25953 (4) | 0.53712 (4) | 0.02029 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0133 (10) | 0.0191 (11) | 0.0226 (11) | −0.0023 (9) | 0.0065 (8) | 0.0005 (9) |
C2 | 0.0106 (10) | 0.0184 (11) | 0.0238 (11) | −0.0006 (8) | 0.0004 (8) | −0.0006 (9) |
C3 | 0.0246 (12) | 0.0173 (11) | 0.0178 (10) | −0.0055 (9) | 0.0071 (9) | −0.0017 (9) |
C4 | 0.0148 (11) | 0.0280 (12) | 0.0205 (10) | −0.0081 (10) | 0.0020 (8) | −0.0005 (9) |
C5 | 0.0223 (11) | 0.0161 (11) | 0.0217 (10) | 0.0025 (9) | 0.0042 (9) | 0.0052 (9) |
C6 | 0.0144 (10) | 0.0209 (11) | 0.0158 (10) | 0.0032 (9) | 0.0044 (8) | −0.0009 (9) |
N1 | 0.0156 (9) | 0.0121 (8) | 0.0147 (8) | 0.0001 (7) | 0.0027 (7) | 0.0010 (7) |
N2 | 0.0123 (8) | 0.0129 (8) | 0.0135 (8) | 0.0013 (7) | 0.0036 (7) | 0.0004 (7) |
N3 | 0.0146 (9) | 0.0144 (9) | 0.0179 (8) | −0.0007 (7) | 0.0042 (7) | 0.0014 (7) |
N4 | 0.0106 (8) | 0.0232 (9) | 0.0140 (8) | 0.0018 (7) | 0.0033 (7) | 0.0005 (7) |
N5 | 0.0128 (8) | 0.0164 (9) | 0.0137 (7) | 0.0046 (7) | 0.0031 (6) | 0.0018 (7) |
N6 | 0.0252 (10) | 0.0186 (10) | 0.0171 (8) | 0.0034 (8) | 0.0038 (7) | 0.0020 (8) |
N7 | 0.0176 (9) | 0.0138 (9) | 0.0260 (9) | 0.0018 (7) | 0.0065 (7) | −0.0044 (7) |
Co1 | 0.00960 (15) | 0.01248 (16) | 0.01046 (14) | 0.00105 (10) | 0.00321 (10) | 0.00064 (10) |
Cl1 | 0.0225 (3) | 0.0254 (3) | 0.0164 (2) | 0.0008 (2) | 0.0106 (2) | 0.0021 (2) |
Cl2 | 0.0226 (3) | 0.0163 (3) | 0.0168 (2) | −0.0051 (2) | 0.0069 (2) | −0.0023 (2) |
Cl3 | 0.0215 (3) | 0.0150 (3) | 0.0240 (3) | −0.0043 (2) | 0.0030 (2) | 0.0004 (2) |
C1—N2 | 1.488 (2) | C6—N7 | 1.332 (3) |
C1—C2 | 1.511 (3) | C6—H6 | 0.9300 |
C1—H1C | 0.9700 | N1—Co1 | 1.9492 (16) |
C1—H1D | 0.9700 | N1—H1A | 0.8900 |
C2—N1 | 1.483 (3) | N1—H1B | 0.8900 |
C2—H2C | 0.9700 | N2—Co1 | 1.9536 (15) |
C2—H2D | 0.9700 | N2—H2A | 0.8900 |
C3—N3 | 1.484 (2) | N2—H2B | 0.8900 |
C3—C4 | 1.504 (3) | N3—Co1 | 1.9522 (16) |
C3—H3C | 0.9700 | N3—H3A | 0.8900 |
C3—H3D | 0.9700 | N3—H3B | 0.8900 |
C4—N4 | 1.481 (3) | N4—Co1 | 1.9416 (16) |
C4—H4C | 0.9700 | N4—H4A | 0.8900 |
C4—H4D | 0.9700 | N4—H4B | 0.8900 |
C5—N6 | 1.301 (3) | N5—N6 | 1.387 (2) |
C5—N7 | 1.346 (3) | N5—Co1 | 1.9414 (17) |
C5—H5 | 0.9300 | N7—H7 | 0.8600 |
C6—N5 | 1.309 (3) | Co1—Cl1 | 2.2568 (5) |
N2—C1—C2 | 106.84 (16) | Co1—N2—H2A | 109.9 |
N2—C1—H1C | 110.4 | C1—N2—H2B | 109.9 |
C2—C1—H1C | 110.4 | Co1—N2—H2B | 109.9 |
N2—C1—H1D | 110.4 | H2A—N2—H2B | 108.3 |
C2—C1—H1D | 110.4 | C3—N3—Co1 | 109.24 (12) |
H1C—C1—H1D | 108.6 | C3—N3—H3A | 109.8 |
N1—C2—C1 | 106.22 (16) | Co1—N3—H3A | 109.8 |
N1—C2—H2C | 110.5 | C3—N3—H3B | 109.8 |
C1—C2—H2C | 110.5 | Co1—N3—H3B | 109.8 |
N1—C2—H2D | 110.5 | H3A—N3—H3B | 108.3 |
C1—C2—H2D | 110.5 | C4—N4—Co1 | 109.66 (12) |
H2C—C2—H2D | 108.7 | C4—N4—H4A | 109.7 |
N3—C3—C4 | 106.17 (16) | Co1—N4—H4A | 109.7 |
N3—C3—H3C | 110.5 | C4—N4—H4B | 109.7 |
C4—C3—H3C | 110.5 | Co1—N4—H4B | 109.7 |
N3—C3—H3D | 110.5 | H4A—N4—H4B | 108.2 |
C4—C3—H3D | 110.5 | C6—N5—N6 | 107.92 (16) |
H3C—C3—H3D | 108.7 | C6—N5—Co1 | 132.03 (14) |
N4—C4—C3 | 106.10 (16) | N6—N5—Co1 | 120.01 (12) |
N4—C4—H4C | 110.5 | C5—N6—N5 | 105.51 (16) |
C3—C4—H4C | 110.5 | C6—N7—C5 | 105.86 (17) |
N4—C4—H4D | 110.5 | C6—N7—H7 | 127.1 |
C3—C4—H4D | 110.5 | C5—N7—H7 | 127.1 |
H4C—C4—H4D | 108.7 | N5—Co1—N4 | 88.85 (7) |
N6—C5—N7 | 111.10 (18) | N5—Co1—N1 | 94.73 (7) |
N6—C5—H5 | 124.4 | N4—Co1—N1 | 176.42 (7) |
N7—C5—H5 | 124.4 | N5—Co1—N3 | 173.57 (7) |
N5—C6—N7 | 109.61 (17) | N4—Co1—N3 | 85.45 (7) |
N5—C6—H6 | 125.2 | N1—Co1—N3 | 90.99 (7) |
N7—C6—H6 | 125.2 | N5—Co1—N2 | 87.45 (7) |
C2—N1—Co1 | 110.43 (12) | N4—Co1—N2 | 94.73 (7) |
C2—N1—H1A | 109.6 | N1—Co1—N2 | 85.60 (7) |
Co1—N1—H1A | 109.6 | N3—Co1—N2 | 90.06 (7) |
C2—N1—H1B | 109.6 | N5—Co1—Cl1 | 91.08 (5) |
Co1—N1—H1B | 109.6 | N4—Co1—Cl1 | 90.10 (5) |
H1A—N1—H1B | 108.1 | N1—Co1—Cl1 | 89.67 (5) |
C1—N2—Co1 | 108.86 (11) | N3—Co1—Cl1 | 91.90 (5) |
C1—N2—H2A | 109.9 | N2—Co1—Cl1 | 174.91 (5) |
N2—C1—C2—N1 | −50.6 (2) | C6—N5—Co1—Cl1 | 36.86 (18) |
N3—C3—C4—N4 | 52.03 (19) | N6—N5—Co1—Cl1 | −140.35 (13) |
C1—C2—N1—Co1 | 37.29 (18) | C4—N4—Co1—N5 | −168.10 (13) |
C2—C1—N2—Co1 | 41.09 (18) | C4—N4—Co1—N3 | 14.88 (13) |
C4—C3—N3—Co1 | −40.20 (17) | C4—N4—Co1—N2 | 104.56 (13) |
C3—C4—N4—Co1 | −40.50 (18) | C4—N4—Co1—Cl1 | −77.02 (12) |
N7—C6—N5—N6 | 0.3 (2) | C2—N1—Co1—N5 | −99.16 (13) |
N7—C6—N5—Co1 | −177.12 (13) | C2—N1—Co1—N3 | 77.89 (13) |
N7—C5—N6—N5 | 0.6 (2) | C2—N1—Co1—N2 | −12.09 (13) |
C6—N5—N6—C5 | −0.6 (2) | C2—N1—Co1—Cl1 | 169.78 (12) |
Co1—N5—N6—C5 | 177.23 (13) | C3—N3—Co1—N4 | 14.58 (13) |
N5—C6—N7—C5 | 0.0 (2) | C3—N3—Co1—N1 | −165.76 (13) |
N6—C5—N7—C6 | −0.4 (2) | C3—N3—Co1—N2 | −80.15 (13) |
C6—N5—Co1—N4 | 126.94 (19) | C3—N3—Co1—Cl1 | 104.54 (12) |
N6—N5—Co1—N4 | −50.27 (14) | C1—N2—Co1—N5 | 78.37 (13) |
C6—N5—Co1—N1 | −52.90 (19) | C1—N2—Co1—N4 | 166.99 (13) |
N6—N5—Co1—N1 | 129.89 (14) | C1—N2—Co1—N1 | −16.57 (12) |
C6—N5—Co1—N2 | −138.28 (19) | C1—N2—Co1—N3 | −107.56 (13) |
N6—N5—Co1—N2 | 44.51 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl3i | 0.89 | 2.39 | 3.2202 (17) | 155 |
N3—H3B···Cl2i | 0.89 | 2.57 | 3.2833 (17) | 138 |
C3—H3C···Cl2i | 0.97 | 2.79 | 3.382 (2) | 120 |
N2—H2A···Cl3ii | 0.89 | 2.40 | 3.2311 (17) | 156 |
N7—H7···Cl2iii | 0.86 | 2.17 | 3.0326 (17) | 177 |
N4—H4B···Cl2iv | 0.89 | 2.36 | 3.1891 (16) | 156 |
N4—H4A···Cl2v | 0.89 | 2.50 | 3.3364 (17) | 157 |
N2—H2B···N6 | 0.89 | 2.37 | 2.898 (2) | 118 |
N1—H1B···Cl3 | 0.89 | 2.45 | 3.3103 (17) | 162 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+1/2, z−1/2; (iii) −x+1, −y+2, −z+1; (iv) −x+1, y−1/2, −z+1/2; (v) x−1, −y+3/2, z−1/2. |
Acknowledgements
The authors are thankful to the Department of Chemistry, Pondicherry University, for the single-crystal XRD instrumentation facility.
Funding information
KA is thankful to CSIR, New Delhi (Lr: No. 01 (2570)/12/EMR-II/3.4.2012) for financial support through a major research project.
References
Anbalagan, K. (2011). J. Phys. Chem. C, 115, 3821–3832. Web of Science CrossRef CAS Google Scholar
Bailar, J. C. Jr & Clapp, L. B. (1945). J. Am. Chem. Soc. 67, 171–175. CrossRef CAS Google Scholar
Bailer, J. C. & Rollinson, C. L. (1946). Inorg. Synth. 22, 222–223. Google Scholar
Deeth, R. J., Hitchman, M. A., Lehmann, G. & Sachs, H. (1984). Inorg. Chem. 23, 1310–1320. CSD CrossRef CAS Web of Science Google Scholar
Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638–2684. CrossRef CAS Google Scholar
Kráľová, K., Kissová, K., Švajlenová, O. & Vančo, J. (2004). Chem. Pap. 58, 357–361. Google Scholar
Mitzi, D. B. (1996). Chem. Mater. 8, 791–800. CSD CrossRef CAS Web of Science Google Scholar
Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Parekh, J., Inamdhar, P., Nair, R., Baluja, S. & Chanda, S. (2005). J. Serb. Chem. Soc. 70, 1155–1162. Web of Science CrossRef CAS Google Scholar
Rajevel, R., Senthil Vadivu, M. & Anitha, C. (2008). Chem. Eur. J. 5, 620–626. Google Scholar
Ravichandran, K., Ramesh, P., Mahalakshmi, C. M., Anbalagan, K. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, m1458–m1459. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shores, M. P., Sokol, J. J. & Long, J. R. (2002). J. Am. Chem. Soc. 124, 2279–2292. Web of Science CSD CrossRef PubMed CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tweedy, B. G. (1964). Phytopathology, 55, 910–914. Google Scholar
Willett, R. D., Pon, G. & Nagy, C. (2001). Inorg. Chem. 40, 4342–4352. Web of Science CSD CrossRef PubMed CAS Google Scholar
Wu, A.-Q., Cai, L.-Z., Chen, W.-T., Guo, G.-C. & Huang, J.-S. (2003). Acta Cryst. C59, m491–m493. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Xu, B.-H., Peng, X.-Q., Xu, Z.-W., Li, Y.-Z. & Yan, H. (2008). Inorg. Chem. 47, 7928–7933. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.