metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Chlorido­bis­­(ethane-1,2-di­amine)(4H-1,2,4-triazole-κN1)cobalt(III) dichloride

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Chemistry, Pondicherry University, Pondicherry 605 014, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 21 November 2017; accepted 2 December 2017; online 8 December 2017)

In the title complex, [CoIIICl(C2H8N2)2(C2H3N3)]Cl2, the CoIII ion has a distorted octa­hedral environment. It is surrounded by four N atoms in the equatorial plane, with another N atom and a Cl atom occupying the axial positions. Both five-membered Co—N—C—C—N rings adopt a twist conformation. The Co—N bond lengths range from 1.941 (2) to 1.954 (1) Å, while the Co—Cl bond length is 2.257 (1) Å. In the crystal, mol­ecules are linked by N—H⋯N, N—H⋯Cl and C—H⋯Cl hydrogen bonds. Dimers are formed by N—H⋯Cl hydrogen-bonding inter­actions between amine H-atom donors and chloride ions resulting in an R42(8) ring motif. These dimers are further connected in a head-to-tail fashion via N—H⋯Cl and C—H⋯Cl hydrogen bonds. All the inter­actions together combine to link the mol­ecules into a three-dimensional framework.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Appropriate tailoring of the coordination environment and specific incorporation of ligands around transition metal ions are of key importance in the modification of the properties of metal complexes with respect to spectroscopic, redox activity in inter­facial electron-transfer reactions, catalytic and photocatalytic properties (Xu et al., 2008[Xu, B.-H., Peng, X.-Q., Xu, Z.-W., Li, Y.-Z. & Yan, H. (2008). Inorg. Chem. 47, 7928-7933.]; Anbalagan, 2011[Anbalagan, K. (2011). J. Phys. Chem. C, 115, 3821-3832.]). As a result of the excellent coordination ability of nitro­gen-containing ligands, research on transition metal complexes involving ligands that coordinate through an N atom, such as simple amines (Mitzi, 1996[Mitzi, D. B. (1996). Chem. Mater. 8, 791-800.]; Deeth et al., 1984[Deeth, R. J., Hitchman, M. A., Lehmann, G. & Sachs, H. (1984). Inorg. Chem. 23, 1310-1320.]), cyanides (Wu et al., 2003[Wu, A.-Q., Cai, L.-Z., Chen, W.-T., Guo, G.-C. & Huang, J.-S. (2003). Acta Cryst. C59, m491-m493.]; Shores et al., 2002[Shores, M. P., Sokol, J. J. & Long, J. R. (2002). J. Am. Chem. Soc. 124, 2279-2292.]), or N-heterocyclic rings (Hagrman et al., 1999[Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638-2684.]; Willett et al., 2001[Willett, R. D., Pon, G. & Nagy, C. (2001). Inorg. Chem. 40, 4342-4352.]), has always been an active area in coordination chemistry. Polydentate amine ligands generally coordinate to transition metal ions using all of the available nitro­gen atoms as donors. Metal–chelate complexes (Tweedy, 1964[Tweedy, B. G. (1964). Phytopathology, 55, 910-914.]; Kráľová et al., 2004[Kráľová, K., Kissová, K., Švajlenová, O. & Vančo, J. (2004). Chem. Pap. 58, 357-361.]) find potential applications in the research fields of anti­tumor activity, enzyme catalysis, functioning of micro organisms and in the respiration processes of biological systems (Parekh et al., 2005[Parekh, J., Inamdhar, P., Nair, R., Baluja, S. & Chanda, S. (2005). J. Serb. Chem. Soc. 70, 1155-1162.]; Rajevel et al., 2008[Rajevel, R., Senthil Vadivu, M. & Anitha, C. (2008). Chem. Eur. J. 5, 620-626.]). Chelating ligands such as ethyl­enedi­amine have been widely used to prepare a number of cobalt(III) complexes (Bailar & Clapp, 1945[Bailar, J. C. Jr & Clapp, L. B. (1945). J. Am. Chem. Soc. 67, 171-175.]; Bailer & Rollinson, 1946[Bailer, J. C. & Rollinson, C. L. (1946). Inorg. Synth. 22, 222-223.]). It acts as a bidentate ligand in the majority of its complexes, chelating to one metal ion through both nitro­gen atoms, and there are few complexes in which it coordinates as a monodentate ligand. This paper reports the synthesis and X-ray structural characterization of [CoIII(en)2(tzl)Cl]Cl2 in order to determine the bonding mode and geometric features of two ethyl­enedi­amine (en) ligands, a triazole (tzl) and a chloride ligand.

An ORTEP representation of the title compound is given in Fig. 1[link]. The coordination environment around the CoIII ion can be described as a slightly distorted octa­hedron. The coordination sphere of cobalt is formed by one triazole, one chloride ion and two ethyl­enedi­amine ligands. The CoIII ion and four N atoms almost lie in same plane whereas another N and the Cl atom are approximately perpendicular to this plane. The coordination octa­hedron shows a slight but significant distortion: the N(en)—Co—N(en) angles within the five-membered rings are smaller [85.5 (7) and 85.6 (7)°] than those between two nitro­gen atoms of different ethyl­enedi­amine ligands. The bond lengths and angles also confirm the distortion from a regular octa­hedron. Both five-membered rings in the mol­ecule adopt a twist conformation.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title salt, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

All of the amine H atoms of the triazole and en ligands except H3A, and additionally the carbon H3C atom are involved in hydrogen bonds with chlorine and a triazole N-atom acceptor [DA distances in the range 2.898 (2)–3.382 (2) Å; Table 1[link]]. The N—H⋯Cl hydrogen-bonding inter­actions between amine H-atom donors and chlorine-atom acceptors result in an R42(8) ring motif, as shown in Fig. 2[link]. Further N—H⋯Cl and C—H⋯Cl hydrogen bonds connect the mol­ecules in a head-to-tail fashion via these dimers (Fig. 2[link], Table 1[link]). All these inter­actions combine to link the mol­ecules into a three-dimensional framework (Fig. 3[link]). It is remarkable that the chlorine ligand bonded to Co is not involved in hydrogen bonding. No ππ stacking inter­actions are observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl3i 0.89 2.39 3.2202 (17) 155
N3—H3B⋯Cl2i 0.89 2.57 3.2833 (17) 138
C3—H3C⋯Cl2i 0.97 2.79 3.382 (2) 120
N2—H2A⋯Cl3ii 0.89 2.40 3.2311 (17) 156
N7—H7⋯Cl2iii 0.86 2.17 3.0326 (17) 177
N4—H4B⋯Cl2iv 0.89 2.36 3.1891 (16) 156
N4—H4A⋯Cl2v 0.89 2.50 3.3364 (17) 157
N2—H2B⋯N6 0.89 2.37 2.898 (2) 118
N1—H1B⋯Cl3 0.89 2.45 3.3103 (17) 162
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+2, -z+1; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title complex. The N—H⋯N, N—H⋯Cl and C—H⋯Cl hydrogen bonds are shown as dashed lines (see Table 1[link] for details; H atoms not involved in hydrogen bonding have been omitted for clarity). N—H⋯Cl hydrogen bonds form dimers resulting in an R42(8) ring motif.
[Figure 3]
Figure 3
Partial packing diagram of the title structure viewed parallel to (100). N—H⋯Cl and C—H⋯Cl hydrogen bonds are drawn as dashed light-blue lines.

Synthesis and crystallization

The title complex was synthesized by the reported method (Ravichandran et al., 2009[Ravichandran, K., Ramesh, P., Mahalakshmi, C. M., Anbalagan, K. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, m1458-m1459.]) by taking 2 g of the trans-[CoIII(en)2Cl2]Cl complex and 0.5 g of 1,2,4-triazole. The cobalt(III) complex was recrystallized by addition of few drops of concentrated HCl in 10 ml of water containing 1 g of the complex. The solution was heated at 343 K with stirring for 30 min and cooled. The pure crystals were obtained by filtration, washed with ethanol after 2–3 weeks and dried under vacuum.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [CoCl(C2H8N2)2(C2H3N3)]Cl2
Mr 354.56
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 10.9170 (3), 11.0714 (3), 11.6172 (3)
β (°) 99.822 (2)
V3) 1383.55 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.81
Crystal size (mm) 0.22 × 0.12 × 0.10
 
Data collection
Diffractometer Oxford Diffraction Xcalibur diffractometer with Eos detector
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.771, 0.834
No. of measured, independent and observed [I > 2σ(I)] reflections 6386, 2422, 2202
Rint 0.025
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.058, 1.05
No. of reflections 2422
No. of parameters 154
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.26
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Chloridobis(ethane-1,2-diamine)(4H-1,2,4-triazole-κN1)cobalt(III) dichloride top
Crystal data top
[CoCl(C2H8N2)2(C2H3N3)]Cl2F(000) = 728
Mr = 354.56Dx = 1.702 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.9170 (3) ÅCell parameters from 2202 reflections
b = 11.0714 (3) Åθ = 2.6–25.0°
c = 11.6172 (3) ŵ = 1.81 mm1
β = 99.822 (2)°T = 293 K
V = 1383.55 (6) Å3Block, pink
Z = 40.22 × 0.12 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Eos detector
2202 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
ω and φ scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis Pro; Oxford Diffraction, 2009)
h = 1210
Tmin = 0.771, Tmax = 0.834k = 1312
6386 measured reflectionsl = 1313
2422 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0275P)2 + 0.4893P]
where P = (Fo2 + 2Fc2)/3
2422 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were refined using a ring model with methylene C—H = 0.97 Å, aromatic C—H = 0.93 Å, aromatic N—H = 0.86 Å and remaining N—H = 0.89 Å. Uiso(H) was set to 1.2 Ueq(C,N).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.48819 (19)0.53430 (18)0.17319 (17)0.0179 (5)
H1C0.48170.62090.18340.022*
H1D0.55010.51880.12420.022*
C20.52424 (19)0.47293 (18)0.29027 (18)0.0179 (4)
H2C0.54390.38860.27990.022*
H2D0.59630.51200.33550.022*
C30.1958 (2)0.24086 (18)0.13512 (17)0.0195 (5)
H3C0.18250.15540.14670.023*
H3D0.22970.25110.06380.023*
C40.07586 (19)0.30938 (19)0.12812 (18)0.0212 (5)
H4C0.01920.28870.05720.025*
H4D0.03630.29060.19470.025*
C50.1827 (2)0.80491 (19)0.13127 (17)0.0200 (5)
H50.16150.86200.07250.024*
C60.22500 (18)0.72412 (18)0.30049 (17)0.0168 (4)
H60.23950.71300.38100.020*
N10.41523 (15)0.48390 (15)0.35022 (14)0.0141 (3)
H1A0.41660.55560.38510.017*
H1B0.41890.42700.40480.017*
N20.36590 (15)0.48335 (14)0.11867 (13)0.0127 (3)
H2A0.37670.41150.08750.015*
H2B0.32940.53200.06210.015*
N30.28179 (15)0.29178 (15)0.23624 (13)0.0154 (4)
H3A0.35990.27360.23050.019*
H3B0.26530.26010.30230.019*
N40.10919 (15)0.43907 (15)0.12816 (14)0.0158 (4)
H4A0.04790.48330.14800.019*
H4B0.11980.46120.05690.019*
N50.23054 (15)0.63932 (15)0.22306 (13)0.0142 (4)
N60.20391 (16)0.69145 (15)0.11309 (14)0.0203 (4)
N70.19539 (15)0.82883 (15)0.24633 (14)0.0188 (4)
H70.18630.89760.27830.023*
Co10.26132 (2)0.46688 (2)0.23849 (2)0.01067 (9)
Cl10.15406 (5)0.45606 (5)0.38793 (4)0.02057 (13)
Cl20.83310 (5)0.93314 (4)0.63180 (4)0.01813 (13)
Cl30.49114 (5)0.25953 (4)0.53712 (4)0.02029 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0133 (10)0.0191 (11)0.0226 (11)0.0023 (9)0.0065 (8)0.0005 (9)
C20.0106 (10)0.0184 (11)0.0238 (11)0.0006 (8)0.0004 (8)0.0006 (9)
C30.0246 (12)0.0173 (11)0.0178 (10)0.0055 (9)0.0071 (9)0.0017 (9)
C40.0148 (11)0.0280 (12)0.0205 (10)0.0081 (10)0.0020 (8)0.0005 (9)
C50.0223 (11)0.0161 (11)0.0217 (10)0.0025 (9)0.0042 (9)0.0052 (9)
C60.0144 (10)0.0209 (11)0.0158 (10)0.0032 (9)0.0044 (8)0.0009 (9)
N10.0156 (9)0.0121 (8)0.0147 (8)0.0001 (7)0.0027 (7)0.0010 (7)
N20.0123 (8)0.0129 (8)0.0135 (8)0.0013 (7)0.0036 (7)0.0004 (7)
N30.0146 (9)0.0144 (9)0.0179 (8)0.0007 (7)0.0042 (7)0.0014 (7)
N40.0106 (8)0.0232 (9)0.0140 (8)0.0018 (7)0.0033 (7)0.0005 (7)
N50.0128 (8)0.0164 (9)0.0137 (7)0.0046 (7)0.0031 (6)0.0018 (7)
N60.0252 (10)0.0186 (10)0.0171 (8)0.0034 (8)0.0038 (7)0.0020 (8)
N70.0176 (9)0.0138 (9)0.0260 (9)0.0018 (7)0.0065 (7)0.0044 (7)
Co10.00960 (15)0.01248 (16)0.01046 (14)0.00105 (10)0.00321 (10)0.00064 (10)
Cl10.0225 (3)0.0254 (3)0.0164 (2)0.0008 (2)0.0106 (2)0.0021 (2)
Cl20.0226 (3)0.0163 (3)0.0168 (2)0.0051 (2)0.0069 (2)0.0023 (2)
Cl30.0215 (3)0.0150 (3)0.0240 (3)0.0043 (2)0.0030 (2)0.0004 (2)
Geometric parameters (Å, º) top
C1—N21.488 (2)C6—N71.332 (3)
C1—C21.511 (3)C6—H60.9300
C1—H1C0.9700N1—Co11.9492 (16)
C1—H1D0.9700N1—H1A0.8900
C2—N11.483 (3)N1—H1B0.8900
C2—H2C0.9700N2—Co11.9536 (15)
C2—H2D0.9700N2—H2A0.8900
C3—N31.484 (2)N2—H2B0.8900
C3—C41.504 (3)N3—Co11.9522 (16)
C3—H3C0.9700N3—H3A0.8900
C3—H3D0.9700N3—H3B0.8900
C4—N41.481 (3)N4—Co11.9416 (16)
C4—H4C0.9700N4—H4A0.8900
C4—H4D0.9700N4—H4B0.8900
C5—N61.301 (3)N5—N61.387 (2)
C5—N71.346 (3)N5—Co11.9414 (17)
C5—H50.9300N7—H70.8600
C6—N51.309 (3)Co1—Cl12.2568 (5)
N2—C1—C2106.84 (16)Co1—N2—H2A109.9
N2—C1—H1C110.4C1—N2—H2B109.9
C2—C1—H1C110.4Co1—N2—H2B109.9
N2—C1—H1D110.4H2A—N2—H2B108.3
C2—C1—H1D110.4C3—N3—Co1109.24 (12)
H1C—C1—H1D108.6C3—N3—H3A109.8
N1—C2—C1106.22 (16)Co1—N3—H3A109.8
N1—C2—H2C110.5C3—N3—H3B109.8
C1—C2—H2C110.5Co1—N3—H3B109.8
N1—C2—H2D110.5H3A—N3—H3B108.3
C1—C2—H2D110.5C4—N4—Co1109.66 (12)
H2C—C2—H2D108.7C4—N4—H4A109.7
N3—C3—C4106.17 (16)Co1—N4—H4A109.7
N3—C3—H3C110.5C4—N4—H4B109.7
C4—C3—H3C110.5Co1—N4—H4B109.7
N3—C3—H3D110.5H4A—N4—H4B108.2
C4—C3—H3D110.5C6—N5—N6107.92 (16)
H3C—C3—H3D108.7C6—N5—Co1132.03 (14)
N4—C4—C3106.10 (16)N6—N5—Co1120.01 (12)
N4—C4—H4C110.5C5—N6—N5105.51 (16)
C3—C4—H4C110.5C6—N7—C5105.86 (17)
N4—C4—H4D110.5C6—N7—H7127.1
C3—C4—H4D110.5C5—N7—H7127.1
H4C—C4—H4D108.7N5—Co1—N488.85 (7)
N6—C5—N7111.10 (18)N5—Co1—N194.73 (7)
N6—C5—H5124.4N4—Co1—N1176.42 (7)
N7—C5—H5124.4N5—Co1—N3173.57 (7)
N5—C6—N7109.61 (17)N4—Co1—N385.45 (7)
N5—C6—H6125.2N1—Co1—N390.99 (7)
N7—C6—H6125.2N5—Co1—N287.45 (7)
C2—N1—Co1110.43 (12)N4—Co1—N294.73 (7)
C2—N1—H1A109.6N1—Co1—N285.60 (7)
Co1—N1—H1A109.6N3—Co1—N290.06 (7)
C2—N1—H1B109.6N5—Co1—Cl191.08 (5)
Co1—N1—H1B109.6N4—Co1—Cl190.10 (5)
H1A—N1—H1B108.1N1—Co1—Cl189.67 (5)
C1—N2—Co1108.86 (11)N3—Co1—Cl191.90 (5)
C1—N2—H2A109.9N2—Co1—Cl1174.91 (5)
N2—C1—C2—N150.6 (2)C6—N5—Co1—Cl136.86 (18)
N3—C3—C4—N452.03 (19)N6—N5—Co1—Cl1140.35 (13)
C1—C2—N1—Co137.29 (18)C4—N4—Co1—N5168.10 (13)
C2—C1—N2—Co141.09 (18)C4—N4—Co1—N314.88 (13)
C4—C3—N3—Co140.20 (17)C4—N4—Co1—N2104.56 (13)
C3—C4—N4—Co140.50 (18)C4—N4—Co1—Cl177.02 (12)
N7—C6—N5—N60.3 (2)C2—N1—Co1—N599.16 (13)
N7—C6—N5—Co1177.12 (13)C2—N1—Co1—N377.89 (13)
N7—C5—N6—N50.6 (2)C2—N1—Co1—N212.09 (13)
C6—N5—N6—C50.6 (2)C2—N1—Co1—Cl1169.78 (12)
Co1—N5—N6—C5177.23 (13)C3—N3—Co1—N414.58 (13)
N5—C6—N7—C50.0 (2)C3—N3—Co1—N1165.76 (13)
N6—C5—N7—C60.4 (2)C3—N3—Co1—N280.15 (13)
C6—N5—Co1—N4126.94 (19)C3—N3—Co1—Cl1104.54 (12)
N6—N5—Co1—N450.27 (14)C1—N2—Co1—N578.37 (13)
C6—N5—Co1—N152.90 (19)C1—N2—Co1—N4166.99 (13)
N6—N5—Co1—N1129.89 (14)C1—N2—Co1—N116.57 (12)
C6—N5—Co1—N2138.28 (19)C1—N2—Co1—N3107.56 (13)
N6—N5—Co1—N244.51 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl3i0.892.393.2202 (17)155
N3—H3B···Cl2i0.892.573.2833 (17)138
C3—H3C···Cl2i0.972.793.382 (2)120
N2—H2A···Cl3ii0.892.403.2311 (17)156
N7—H7···Cl2iii0.862.173.0326 (17)177
N4—H4B···Cl2iv0.892.363.1891 (16)156
N4—H4A···Cl2v0.892.503.3364 (17)157
N2—H2B···N60.892.372.898 (2)118
N1—H1B···Cl30.892.453.3103 (17)162
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2; (iii) x+1, y+2, z+1; (iv) x+1, y1/2, z+1/2; (v) x1, y+3/2, z1/2.
 

Acknowledgements

The authors are thankful to the Department of Chemistry, Pondicherry University, for the single-crystal XRD instrumentation facility.

Funding information

KA is thankful to CSIR, New Delhi (Lr: No. 01 (2570)/12/EMR-II/3.4.2012) for financial support through a major research project.

References

First citationAnbalagan, K. (2011). J. Phys. Chem. C, 115, 3821–3832.  Web of Science CrossRef CAS Google Scholar
First citationBailar, J. C. Jr & Clapp, L. B. (1945). J. Am. Chem. Soc. 67, 171–175.  CrossRef CAS Google Scholar
First citationBailer, J. C. & Rollinson, C. L. (1946). Inorg. Synth. 22, 222–223.  Google Scholar
First citationDeeth, R. J., Hitchman, M. A., Lehmann, G. & Sachs, H. (1984). Inorg. Chem. 23, 1310–1320.  CSD CrossRef CAS Web of Science Google Scholar
First citationHagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638–2684.  CrossRef CAS Google Scholar
First citationKráľová, K., Kissová, K., Švajlenová, O. & Vančo, J. (2004). Chem. Pap. 58, 357–361.  Google Scholar
First citationMitzi, D. B. (1996). Chem. Mater. 8, 791–800.  CSD CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationParekh, J., Inamdhar, P., Nair, R., Baluja, S. & Chanda, S. (2005). J. Serb. Chem. Soc. 70, 1155–1162.  Web of Science CrossRef CAS Google Scholar
First citationRajevel, R., Senthil Vadivu, M. & Anitha, C. (2008). Chem. Eur. J. 5, 620–626.  Google Scholar
First citationRavichandran, K., Ramesh, P., Mahalakshmi, C. M., Anbalagan, K. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, m1458–m1459.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShores, M. P., Sokol, J. J. & Long, J. R. (2002). J. Am. Chem. Soc. 124, 2279–2292.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTweedy, B. G. (1964). Phytopathology, 55, 910–914.  Google Scholar
First citationWillett, R. D., Pon, G. & Nagy, C. (2001). Inorg. Chem. 40, 4342–4352.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWu, A.-Q., Cai, L.-Z., Chen, W.-T., Guo, G.-C. & Huang, J.-S. (2003). Acta Cryst. C59, m491–m493.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationXu, B.-H., Peng, X.-Q., Xu, Z.-W., Li, Y.-Z. & Yan, H. (2008). Inorg. Chem. 47, 7928–7933.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]