metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

trans-Chlorido­tetra­kis­(4-methyl­pyridine-κN)(nitrosyl-κN)ruthenium(II) bis­­(hexa­fluorido­phosphate) acetone 0.75-solvate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie de Coordination, UPR-CNRS 8241, 205, route de Narbonne, 31077 Toulouse cedex, France
*Correspondence e-mail: sonia.ladeira@lcc-toulouse.fr

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 25 October 2017; accepted 8 December 2017; online 15 December 2017)

The title compound, [RuCl(NO)(C6H7N)4](PF6)2·0.75(CH3)2CO, comprises four ligands of 4-picoline in equatorial position around the central atom. Overall, the complex features an octa­hedral coordination environment around the central RuII atom, with the chlorido ligand trans to the nitrosyl. The bond length of the nitrosyl N=O ligand is 1.140 (5) Å, while the angle Ru—N=O is 179.0 (4)°. The asymmetric unit contains four PF6 counter-anions, two with occupancy of 0.25 and one with occupancy of 0.5. One PF6 anion is disordered over two sets of sites and one other is disordered with an acetone mol­ecule that occupies the same site.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Ruthenium nitrosyl complexes with substituted pyridine ligands possess unique photochromic properties such as Ru(NO) [\longleftrightarrow] Ru(ON) photoisomerization, which could allow for their use as high data storage optics and sensors (Schaniel et al., 2007[Schaniel, D., Cormary, B., Malfant, I., Valade, L., Woike, T., Delley, B., Krämer, K. W. & Güdel, H. U. (2007). Phys. Chem. Chem. Phys. 9, 3717-3724.]; García et al., 2016[García, J. S., Alary, F., Boggio-Pasqua, M., Dixon, I. M. & Heully, J.-L. (2016). J. Mol. Model. 22, 284.]). In addition, nitric oxide donors such as ruthenium(II) nitrosyl complexes are capable of releasing NO upon irradiation (De Candia et al., 2010[De Candia, A. G., Marcolongo, J. P., Etchenique, R. & Slep, L. D. (2010). Inorg. Chem. 49, 6925-6930.]) and could find use as a means of inducing apoptosis in living beings (Kumar et al., 2015[Kumar, S., Kumar, R., Ratnam, A., Mishra, N. C. & Ghosh, K. (2015). Inorg. Chem. Commun. 53, 23-25.]), as anti­microbial agents (Schairer et al., 2012[Schairer, D. O., Chouake, J. S., Nosanchuk, J. D. & Friedman, A. J. (2012). Virulence, 3, 271-279.]) and as a way to help wounds heal (Childress et al., 2008[Childress, B., Stechmiller, J. K. & Schultz, G. S. (2008). Biol. Res. Nurs. 10, 87-92.]).

The asymmetric unit of the title salt (Fig. 1[link]) is composed of a trans-[Ru(C6H7N)4Cl(NO)]2+ cation and two PF6 anions (the asymmetric unit contains four sites for PF6 anions with different occupancies). The RuII atom of the trans-[Ru(C6H7N)4Cl(NO)]2+ cation features a compressed octa­hedral coordination sphere with the four N atoms of the 4-picoline ligands in the equatorial positions, and chlorido and nitrosyl ligands located at the trans axial sites. The N1=O1 bond length is 1.140 (5) Å, which is in the range of N=O groups in other examples of octa­hedral RuII–NO+ complexes, but shorter than the N=O bond of trans-[Ru(py)4(Cl)(NO)](PF6)2 which is 1.146 (2) Å (Cormary et al., 2009a[Cormary, B., Malfant, I., Buron-Le Cointe, M., Toupet, L., Delley, B., Schaniel, D., Mockus, N., Woike, T., Fejfarová, K., Petříček, V. & Dušek, M. (2009a). Acta Cryst. B65, 612-623.],b[Cormary, B., Malfant, I., Valade, L., Buron-Le Cointe, M., Toupet, L., Todorova, T., Delley, B., Schaniel, D., Mockus, N., Woike, T., Fejfarová, K., Petříček, V. & Dušek, M. (2009b). Acta Cryst. B65, 787.]), and longer than the N=O bond of trans-[Ru(4-Clpy)4(Cl)(NO)](PF6)2 (Tassé et al., 2016[Tassé, M., Mohammed, H. S., Sabourdy, C., Mallet-Ladeira, S., Lacroix, P. G. & Malfant, I. (2016). Polyhedron, 119, 350-358.]), which is 1.125 (5) Å. These differences are due to the substituents (electron donating or withdrawing) on the pyridine ligands. The Ru1—N1=O1 angle is essentially linear [179.0 (4)]°, which implies that the {RuIINO+}6 should be {RuIINO+}6 (McCleverty, 2004[McCleverty, J. A. (2004). Chem. Rev. 104, 403-418.]).

[Figure 1]
Figure 1
The structures of the molecular entities in the title salt with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level. The acetone mol­ecule (open bond) is disordered with one hexa­fluorido­phosphate anion. Hydrogen atoms are omitted for clarity.

The Ru1—Cl1 bond length in the position trans to nitrosyl is 2.3163 (11) Å, which is shorter than that observed in trans-[Ru(py)4ClNO](PF6)2 (2.3206 Å; Cormary et al., 2012[Cormary, B., Ladeira, S., Jacob, K., Lacroix, P. G., Woike, T., Schaniel, D. & Malfant, I. (2012). Inorg. Chem. 51, 7492-7501.]). The length of the Ru—Cl bond in other complexes without nitrosyl, as trans(Cl,pyz)-[Ru(py)4Cl(pyz)]PF6 and trans-(Cl,PhCN)-[Ru(py)4Cl(PhCN)]PF6 are 2.415 and 2.3931 Å, respectively (Coe et al., 1995[Coe, B. J., Meyer, T. J. & White, P. S. (1995). Inorg. Chem. 34, 593-602.]), reflecting the ability of nitrosyl as a π acceptor and the ability of chlorido ligand as a good σ donor. The Ru1—N1 distance is 1.757 (4) Å, in agreement with the Ru—N distances found in other ruthenium(II) nitrosyl complexes (Ferlay et al., 2004[Ferlay, S., Schmalle, H. W., Francese, G., Stoeckli-Evans, H., Imlau, M., Schaniel, D. & Woike, T. (2004). Inorg. Chem. 43, 3500-3506.]), which is further supported by the stretching vibration of nitrosyl, which is 1895 cm−1 (Becker et al., 2015[Becker, T., Kupfer, S., Wolfram, M., Görls, H., Schubert, U. S., Anslyn, E. V., Dietzek, B., Gräfe, S. & Schiller, A. (2015). Chem. Eur. J. 21, 15554-15563.]; Sauaia & da Silva, 2003[Sauaia, M. G. & da Silva, R. S. (2003). Transition Met. Chem. 28, 254-259.]; Togano et al., 1992[Togano, T., Kuroda, H., Nagao, N., Maekawa, Y., Nishimura, H., Howell, F. S. & Mukaida, M. (1992). Inorg. Chim. Acta, 196, 57-63.]).

The overall packing shows the presence of rows of cations with PF6 anions and acetone mol­ecules inserted in between (Fig. 2[link]). The investigation of the inter­actions in the crystal shows that C—H⋯F hydrogen bonds (Table 1[link]) are dominant (Mohammed et al., 2017[Mohammed, H. S., Tassé, M., Malfant, I. & Vendier, L. (2017). IUCrData, 2, x171013.]; Cormary et al., 2009a[Cormary, B., Malfant, I., Buron-Le Cointe, M., Toupet, L., Delley, B., Schaniel, D., Mockus, N., Woike, T., Fejfarová, K., Petříček, V. & Dušek, M. (2009a). Acta Cryst. B65, 612-623.],b[Cormary, B., Malfant, I., Valade, L., Buron-Le Cointe, M., Toupet, L., Todorova, T., Delley, B., Schaniel, D., Mockus, N., Woike, T., Fejfarová, K., Petříček, V. & Dušek, M. (2009b). Acta Cryst. B65, 787.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯F8 0.95 2.47 3.194 (12) 133
C1—H1⋯F11 0.95 2.48 3.405 (15) 165
C1—H1⋯F10′ 0.95 2.3 3.243 (18) 173
C5—H5⋯F3 0.95 2.49 3.328 (6) 147
C7—H7⋯O2 0.95 2.45 3.320 (7) 153
C7—H7⋯F20 0.95 2.51 3.264 (18) 136
C13—H13⋯F22i 0.95 2.54 3.16 (2) 123
C13—H13⋯F23i 0.95 2.26 3.047 (18) 140
C14—H14⋯F19i 0.95 2.4 2.995 (18) 120
C27—H27A⋯F7 0.98 2.41 3.297 (17) 150
C27—H27B⋯F7ii 0.98 2.55 3.418 (17) 147
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+2, -z.
[Figure 2]
Figure 2
Crystal packing of trans-[Ru(C6H7N)4Cl(NO)](PF6)2·0.75(CH3)2CO viewed along the b axis, showing cationic rows. Hydrogen atoms and solvent mol­ecules are omitted for clarity.

Synthesis and crystallization

According to literature reports (Cormary et al., 2009a[Cormary, B., Malfant, I., Buron-Le Cointe, M., Toupet, L., Delley, B., Schaniel, D., Mockus, N., Woike, T., Fejfarová, K., Petříček, V. & Dušek, M. (2009a). Acta Cryst. B65, 612-623.],b[Cormary, B., Malfant, I., Valade, L., Buron-Le Cointe, M., Toupet, L., Todorova, T., Delley, B., Schaniel, D., Mockus, N., Woike, T., Fejfarová, K., Petříček, V. & Dušek, M. (2009b). Acta Cryst. B65, 787.]), four steps are required to synthesize trans-[Ru(py)4(Cl)(NO)](PF6)2, where the pyridine acts as both a solvent and a ligand. However, in our case, we used ethanol as a solvent, and 4-picoline instead of pyridine, which afforded an orange solid in good yield (142 mg, 81.5%). 1H NMR (400 MHz, acetone d6, 298 K): δ (p.p.m.) 8.58 (8Hα, d, J = 6.4 Hz), 7.67 (8Hβ, d, J = 6.0 Hz), 2.61 (12H, s, CH3). Crystals of the title complex were grown by slow diffusion of diethyl ether vapour into acetone solution over the course of one week.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The asymmetric unit contains four PF6 counter-anions, two with occupancy of 0.25 and one with occupancy of 0.5. One PF6 anion is disordered over two sets of sites and one other is disordered with an acetone mol­ecule that occupies the same site. Similarity restraints on bond lengths and angles as well as on displacement parameters were used to model those disorders.

Table 2
Experimental details

Crystal data
Chemical formula [RuCl(NO)(C6H7N)4](PF6)2·0.75C3H6O
Mr 872.53
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 11.9904 (7), 12.0159 (8), 13.4432 (9)
α, β, γ (°) 107.065 (2), 98.270 (2), 90.388 (2)
V3) 1829.8 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.68
Crystal size (mm) 0.20 × 0.16 × 0.02
 
Data collection
Diffractometer Bruker Kappa APEXII Quazar
Absorption correction Multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.708, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 56033, 6707, 6081
Rint 0.039
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.149, 1.05
No. of reflections 6707
No. of parameters 635
No. of restraints 441
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.97, −1.45
Computer programs: APEX2 and SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows and WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

trans-Chloridotetrakis(4-methylpyridine-κN)(nitrosyl-κN)ruthenium(II) bis(hexafluoridophosphate) acetone 0.75-solvate top
Crystal data top
[RuCl(NO)(C6H7N)4](PF6)2·0.75C3H6OZ = 2
Mr = 872.53F(000) = 876.0
Triclinic, P1Dx = 1.584 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.9904 (7) ÅCell parameters from 9786 reflections
b = 12.0159 (8) Åθ = 2.4–30.8°
c = 13.4432 (9) ŵ = 0.68 mm1
α = 107.065 (2)°T = 100 K
β = 98.270 (2)°Plate, orange
γ = 90.388 (2)°0.20 × 0.16 × 0.02 mm
V = 1829.8 (2) Å3
Data collection top
Bruker Kappa APEXII Quazar
diffractometer
6707 independent reflections
Radiation source: microfocus sealed tube6081 reflections with I > 2σ(I)
Multilayer optics monochromatorRint = 0.039
phi and ω scansθmax = 25.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1414
Tmin = 0.708, Tmax = 0.747k = 1414
56033 measured reflectionsl = 1616
Refinement top
Refinement on F2441 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0779P)2 + 9.4314P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.017
6707 reflectionsΔρmax = 1.97 e Å3
635 parametersΔρmin = 1.45 e Å3
Special details top

Refinement. All H atoms were fixed geometrically and treated as riding with C—H = 0.95 Å (aromatic), 0.98 Å (methyl) and Uiso(H) =1.2Ueq (aromatic) or Uiso(H) =1.5Ueq (methyl).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6304 (4)0.8881 (4)0.2326 (4)0.0309 (11)
H10.685390.8692110.1868220.037*
C20.5718 (4)0.9868 (4)0.2372 (4)0.0305 (11)
H20.587111.0350770.1956090.037*
C30.4900 (4)1.0160 (4)0.3028 (4)0.0228 (9)
C40.4713 (4)0.9410 (4)0.3609 (3)0.0201 (9)
H40.415420.9569750.4059650.024*
C50.5332 (4)0.8437 (4)0.3534 (3)0.0197 (9)
H50.5191630.7937540.3939850.024*
C60.4249 (4)1.1235 (4)0.3076 (5)0.0325 (11)
H6A0.475421.1864810.3046130.049*
H6B0.3931691.147390.3734520.049*
H6C0.3635631.1066260.2477430.049*
C70.4743 (4)0.5714 (4)0.2188 (3)0.0206 (9)
H70.4742730.6143330.1696970.025*
C80.3770 (4)0.5116 (4)0.2197 (4)0.0222 (9)
H80.311220.5138740.1718320.027*
C90.3740 (4)0.4475 (4)0.2903 (4)0.0211 (9)
C100.4744 (4)0.4457 (4)0.3566 (4)0.0224 (9)
H100.4769490.4014140.4048210.027*
C110.5696 (4)0.5074 (4)0.3527 (3)0.0195 (9)
H110.636860.5048210.3987120.023*
C120.2682 (4)0.3837 (5)0.2947 (4)0.0330 (11)
H12A0.2059130.436560.2994610.05*
H12B0.2788120.3554180.3565390.05*
H12C0.2503840.3174570.23080.05*
C130.7807 (4)0.4245 (4)0.2301 (4)0.0238 (10)
H130.7116790.4133940.1829350.029*
C140.8425 (4)0.3295 (4)0.2337 (4)0.0256 (10)
H140.8149920.2540360.1901470.031*
C150.9449 (4)0.3427 (4)0.3005 (4)0.0206 (9)
C160.9802 (4)0.4553 (4)0.3614 (3)0.0212 (9)
H161.0502190.4686970.4073690.025*
C170.9153 (4)0.5477 (4)0.3561 (3)0.0201 (9)
H170.9413250.6238790.3989050.024*
C181.0115 (4)0.2393 (4)0.3056 (4)0.0312 (11)
H18A0.959830.172140.2959930.047*
H18B1.0594680.2566660.3742870.047*
H18C1.0588110.2212710.2497740.047*
C190.9380 (4)0.7351 (4)0.2357 (4)0.0267 (10)
H190.9274690.6574480.1900190.032*
C201.0349 (4)0.7994 (5)0.2391 (4)0.0303 (11)
H201.090180.7655190.1969320.036*
C211.0520 (4)0.9135 (4)0.3042 (4)0.0277 (10)
C220.9687 (4)0.9581 (4)0.3645 (4)0.0274 (10)
H220.9769021.0360210.4095720.033*
C230.8739 (4)0.8894 (4)0.3589 (4)0.0247 (10)
H230.8182410.9210060.4014610.03*
C241.1574 (4)0.9848 (5)0.3070 (5)0.0374 (13)
H24A1.22240.9356490.3048720.056*
H24B1.1693871.0502790.3718810.056*
H24C1.1486211.0146550.2460020.056*
N10.6939 (3)0.6304 (3)0.1466 (3)0.0218 (8)
N20.6131 (3)0.8170 (3)0.2904 (3)0.0221 (8)
N30.5707 (3)0.5715 (3)0.2856 (3)0.0172 (7)
N40.8151 (3)0.5331 (3)0.2917 (3)0.0175 (7)
N50.8578 (3)0.7784 (3)0.2947 (3)0.0223 (8)
O10.6796 (3)0.6032 (3)0.0569 (3)0.0347 (8)
F10.1192 (3)0.7558 (3)0.4962 (3)0.0464 (8)
F20.2736 (3)0.7858 (3)0.6215 (3)0.0485 (9)
F30.3860 (3)0.7323 (4)0.4967 (3)0.0552 (10)
F40.2325 (3)0.7029 (4)0.3722 (3)0.0610 (12)
F50.2396 (3)0.6116 (3)0.4982 (3)0.0464 (8)
F60.2656 (3)0.8772 (3)0.4964 (3)0.0581 (10)
F70.6950 (9)0.9466 (11)0.0035 (9)0.0340 (9)0.27
F80.8214 (10)0.9891 (10)0.1350 (9)0.0348 (9)0.27
F90.9526 (10)0.9017 (11)0.0352 (9)0.0334 (9)0.27
F100.8320 (10)0.8690 (10)0.1035 (9)0.0338 (9)0.27
F110.7843 (12)0.8057 (13)0.0314 (9)0.0316 (10)0.27
F120.8570 (10)1.0561 (10)0.0154 (10)0.0338 (9)0.27
F7'0.7009 (11)0.8999 (13)0.0515 (11)0.0340 (9)0.23
F8'0.8494 (11)1.0266 (12)0.0347 (11)0.0334 (10)0.23
F9'0.9531 (12)0.9422 (13)0.0748 (11)0.0335 (10)0.23
F10'0.7997 (14)0.8134 (15)0.0592 (10)0.0303 (11)0.23
F11'0.7765 (12)1.0179 (12)0.1058 (10)0.0341 (9)0.23
F12'0.8823 (12)0.8345 (12)0.0761 (10)0.0332 (10)0.23
P10.25256 (11)0.74423 (12)0.49665 (11)0.0304 (3)
P20.8262 (2)0.9222 (2)0.0147 (2)0.0315 (5)0.5
P30.0096 (7)0.4947 (8)1.0065 (7)0.0235 (11)0.25
F130.0554 (15)0.5012 (18)0.8912 (15)0.055 (3)0.25
F140.0159 (14)0.6360 (14)1.0186 (13)0.043 (3)0.25
F150.0819 (13)0.5449 (11)1.1104 (12)0.037 (3)0.25
F160.0327 (13)0.3706 (15)0.9944 (14)0.044 (3)0.25
F170.1002 (13)0.4859 (13)1.0649 (11)0.035 (3)0.25
F180.1247 (11)0.4940 (14)0.9658 (13)0.044 (3)0.25
O20.4360 (6)0.6354 (5)0.0073 (5)0.0506 (13)0.75
C250.3205 (8)0.7753 (7)0.0657 (7)0.0543 (17)0.75
H25A0.2460980.7537240.0224340.081*0.75
H25B0.3306310.8604410.0927970.081*0.75
H25C0.3260490.742440.1247470.081*0.75
C260.4079 (9)0.7297 (10)0.0018 (8)0.0626 (17)0.75
C270.4482 (11)0.8030 (10)0.0534 (10)0.072 (2)0.75
H27A0.5162950.8480730.0114980.107*0.75
H27B0.3898590.8564270.0653220.107*0.75
H27C0.465950.7548740.1212790.107*0.75
P40.3853 (8)0.7754 (8)0.0142 (8)0.0695 (16)0.25
F190.2485 (12)0.7786 (15)0.0055 (14)0.073 (3)0.25
F200.3720 (17)0.7832 (16)0.1335 (11)0.078 (3)0.25
F210.5042 (14)0.7665 (17)0.0707 (15)0.081 (3)0.25
F220.3936 (17)0.7839 (17)0.0996 (13)0.075 (3)0.25
F230.3516 (18)0.6382 (13)0.0083 (15)0.073 (3)0.25
F240.3869 (17)0.9163 (12)0.0572 (15)0.079 (3)0.25
Ru10.71356 (3)0.67328 (3)0.28492 (3)0.01662 (13)
Cl10.73954 (9)0.73137 (9)0.46724 (8)0.0205 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.029 (3)0.031 (3)0.046 (3)0.011 (2)0.022 (2)0.025 (2)
C20.029 (3)0.028 (3)0.047 (3)0.008 (2)0.018 (2)0.025 (2)
C30.018 (2)0.019 (2)0.032 (2)0.0013 (17)0.0030 (18)0.0085 (19)
C40.016 (2)0.024 (2)0.019 (2)0.0009 (17)0.0035 (16)0.0033 (17)
C50.017 (2)0.022 (2)0.021 (2)0.0001 (17)0.0038 (17)0.0080 (17)
C60.027 (3)0.023 (2)0.050 (3)0.009 (2)0.008 (2)0.014 (2)
C70.021 (2)0.023 (2)0.022 (2)0.0048 (17)0.0031 (17)0.0119 (18)
C80.021 (2)0.023 (2)0.023 (2)0.0028 (18)0.0007 (18)0.0078 (18)
C90.024 (2)0.014 (2)0.024 (2)0.0010 (17)0.0038 (18)0.0034 (17)
C100.032 (2)0.015 (2)0.020 (2)0.0028 (18)0.0015 (18)0.0067 (17)
C110.025 (2)0.015 (2)0.018 (2)0.0014 (17)0.0010 (17)0.0053 (16)
C120.028 (3)0.031 (3)0.043 (3)0.008 (2)0.003 (2)0.015 (2)
C130.016 (2)0.021 (2)0.029 (2)0.0004 (17)0.0018 (18)0.0022 (19)
C140.021 (2)0.015 (2)0.037 (3)0.0017 (17)0.0027 (19)0.0030 (19)
C150.017 (2)0.024 (2)0.026 (2)0.0038 (17)0.0099 (17)0.0128 (18)
C160.014 (2)0.030 (2)0.021 (2)0.0014 (18)0.0020 (16)0.0093 (19)
C170.017 (2)0.021 (2)0.021 (2)0.0024 (17)0.0028 (17)0.0042 (17)
C180.029 (3)0.028 (3)0.044 (3)0.009 (2)0.009 (2)0.019 (2)
C190.025 (2)0.024 (2)0.034 (3)0.0040 (19)0.012 (2)0.010 (2)
C200.023 (2)0.036 (3)0.041 (3)0.008 (2)0.013 (2)0.021 (2)
C210.024 (2)0.027 (2)0.041 (3)0.0039 (19)0.005 (2)0.024 (2)
C220.028 (2)0.022 (2)0.039 (3)0.0017 (19)0.005 (2)0.019 (2)
C230.027 (2)0.019 (2)0.033 (3)0.0049 (18)0.010 (2)0.0129 (19)
C240.024 (3)0.036 (3)0.060 (4)0.001 (2)0.006 (2)0.027 (3)
N10.0195 (19)0.025 (2)0.026 (2)0.0052 (15)0.0081 (15)0.0129 (16)
N20.0233 (19)0.0204 (19)0.028 (2)0.0043 (15)0.0112 (16)0.0126 (16)
N30.0185 (18)0.0170 (17)0.0171 (17)0.0026 (14)0.0031 (14)0.0062 (14)
N40.0172 (17)0.0154 (17)0.0184 (18)0.0016 (14)0.0013 (14)0.0031 (14)
N50.0224 (19)0.0203 (19)0.029 (2)0.0023 (15)0.0092 (16)0.0120 (16)
O10.041 (2)0.044 (2)0.0202 (19)0.0019 (17)0.0056 (15)0.0116 (16)
F10.0316 (17)0.053 (2)0.054 (2)0.0105 (15)0.0143 (15)0.0123 (17)
F20.060 (2)0.051 (2)0.0327 (18)0.0212 (17)0.0054 (16)0.0112 (15)
F30.0299 (18)0.082 (3)0.073 (3)0.0146 (17)0.0175 (17)0.048 (2)
F40.068 (3)0.089 (3)0.0325 (18)0.048 (2)0.0165 (17)0.0241 (19)
F50.049 (2)0.0329 (17)0.055 (2)0.0018 (15)0.0028 (16)0.0152 (15)
F60.071 (3)0.045 (2)0.080 (3)0.0111 (18)0.037 (2)0.039 (2)
F70.0338 (17)0.0376 (18)0.0283 (17)0.0025 (15)0.0035 (16)0.0068 (15)
F80.0351 (17)0.0380 (18)0.0277 (18)0.0029 (16)0.0015 (16)0.0059 (16)
F90.0347 (17)0.0374 (18)0.0272 (18)0.0027 (16)0.0038 (16)0.0090 (16)
F100.0348 (16)0.0385 (17)0.0269 (16)0.0036 (14)0.0046 (15)0.0078 (15)
F110.0341 (17)0.0341 (17)0.0267 (18)0.0038 (15)0.0025 (16)0.0104 (16)
F120.0345 (17)0.0371 (18)0.0277 (18)0.0026 (15)0.0032 (16)0.0073 (16)
F7'0.0343 (16)0.0379 (17)0.0278 (17)0.0031 (14)0.0026 (15)0.0077 (15)
F8'0.0345 (17)0.0377 (18)0.0270 (18)0.0025 (16)0.0037 (16)0.0089 (16)
F9'0.0348 (17)0.0372 (18)0.0268 (18)0.0027 (16)0.0023 (16)0.0081 (16)
F10'0.0338 (19)0.0328 (19)0.025 (2)0.0036 (17)0.0028 (18)0.0111 (18)
F11'0.0343 (16)0.0375 (17)0.0279 (17)0.0030 (15)0.0034 (15)0.0066 (15)
F12'0.0342 (17)0.0377 (18)0.0269 (17)0.0034 (16)0.0054 (16)0.0083 (16)
P10.0291 (7)0.0357 (7)0.0323 (7)0.0069 (5)0.0102 (5)0.0167 (6)
P20.0325 (12)0.0361 (12)0.0257 (12)0.0032 (9)0.0039 (10)0.0092 (10)
P30.0237 (14)0.0231 (13)0.0212 (13)0.0048 (9)0.0046 (10)0.0021 (9)
F130.044 (7)0.072 (8)0.045 (5)0.002 (6)0.003 (5)0.017 (6)
F140.048 (6)0.030 (4)0.042 (5)0.001 (5)0.007 (5)0.006 (4)
F150.043 (5)0.017 (5)0.033 (4)0.000 (4)0.000 (4)0.017 (4)
F160.037 (6)0.036 (4)0.049 (6)0.011 (5)0.004 (5)0.000 (4)
F170.034 (3)0.036 (3)0.034 (3)0.0025 (19)0.008 (2)0.0086 (19)
F180.023 (5)0.062 (6)0.047 (5)0.017 (4)0.012 (4)0.014 (5)
O20.056 (3)0.046 (3)0.054 (3)0.015 (2)0.013 (3)0.019 (2)
C250.058 (3)0.041 (3)0.050 (3)0.016 (3)0.030 (3)0.011 (3)
C260.066 (3)0.059 (3)0.054 (3)0.018 (3)0.015 (3)0.015 (3)
C270.083 (4)0.056 (4)0.068 (4)0.003 (4)0.017 (4)0.019 (3)
P40.0704 (18)0.0676 (18)0.0678 (17)0.0055 (10)0.0040 (10)0.0192 (10)
F190.084 (5)0.058 (6)0.064 (6)0.004 (5)0.023 (5)0.014 (5)
F200.093 (5)0.063 (5)0.064 (4)0.014 (5)0.019 (4)0.011 (4)
F210.087 (4)0.067 (4)0.073 (4)0.014 (4)0.019 (4)0.009 (4)
F220.080 (6)0.063 (5)0.070 (5)0.003 (5)0.018 (5)0.014 (4)
F230.082 (5)0.059 (4)0.065 (5)0.010 (4)0.012 (5)0.011 (4)
F240.084 (6)0.057 (4)0.077 (5)0.008 (4)0.029 (5)0.009 (4)
Ru10.0176 (2)0.0165 (2)0.0185 (2)0.00384 (13)0.00650 (13)0.00763 (14)
Cl10.0243 (5)0.0185 (5)0.0186 (5)0.0003 (4)0.0055 (4)0.0041 (4)
Geometric parameters (Å, º) top
C1—N21.344 (6)C23—N51.354 (6)
C1—C21.373 (7)C23—H230.95
C1—H10.95C24—H24A0.98
C2—C31.391 (7)C24—H24B0.98
C2—H20.95C24—H24C0.98
C3—C41.391 (6)N1—O11.140 (5)
C3—C61.504 (6)N1—Ru11.757 (4)
C4—C51.375 (6)N2—Ru12.102 (4)
C4—H40.95N3—Ru12.101 (4)
C5—N21.348 (6)N4—Ru12.101 (4)
C5—H50.95N5—Ru12.101 (4)
C6—H6A0.98F1—P11.605 (3)
C6—H6B0.98F2—P11.585 (3)
C6—H6C0.98F3—P11.607 (3)
C7—N31.358 (6)F4—P11.580 (4)
C7—C81.369 (6)F5—P11.606 (3)
C7—H70.95F6—P11.605 (4)
C8—C91.391 (6)F7—P21.600 (12)
C8—H80.95F8—P21.590 (11)
C9—C101.395 (6)F9—P21.535 (12)
C9—C121.495 (6)F10—P21.541 (11)
C10—C111.372 (6)F11—P21.572 (16)
C10—H100.95F12—P21.645 (12)
C11—N31.348 (6)F7'—P21.610 (13)
C11—H110.95F8'—P21.621 (14)
C12—H12A0.98F9'—P21.597 (14)
C12—H12B0.98F10'—P21.635 (17)
C12—H12C0.98F11'—P21.603 (13)
C13—N41.349 (6)F12'—P21.595 (13)
C13—C141.374 (7)P3—F161.484 (19)
C13—H130.95P3—F151.489 (16)
C14—C151.391 (7)P3—F181.555 (17)
C14—H140.95P3—F171.644 (18)
C15—C161.387 (7)P3—F131.655 (19)
C15—C181.495 (6)P3—F141.658 (19)
C16—C171.373 (6)O2—C261.161 (12)
C16—H160.95C25—C261.459 (16)
C17—N41.353 (6)C25—H25A0.98
C17—H170.95C25—H25B0.98
C18—H18A0.98C25—H25C0.98
C18—H18B0.98C26—C271.428 (17)
C18—H18C0.98C27—H27A0.98
C19—N51.345 (6)C27—H27B0.98
C19—C201.379 (7)C27—H27C0.98
C19—H190.95P4—F211.535 (13)
C20—C211.389 (7)P4—F221.580 (14)
C20—H200.95P4—F201.610 (14)
C21—C221.388 (7)P4—F241.620 (13)
C21—C241.511 (7)P4—F231.624 (14)
C22—C231.380 (7)P4—F191.626 (14)
C22—H220.95Ru1—Cl12.3163 (11)
N2—C1—C2122.7 (4)F2—P1—F689.9 (2)
N2—C1—H1118.7F1—P1—F690.2 (2)
C2—C1—H1118.7F4—P1—F590.6 (2)
C1—C2—C3120.0 (4)F2—P1—F589.52 (19)
C1—C2—H2120F1—P1—F589.8 (2)
C3—C2—H2120F6—P1—F5179.4 (2)
C2—C3—C4117.0 (4)F4—P1—F389.9 (2)
C2—C3—C6120.3 (4)F2—P1—F389.7 (2)
C4—C3—C6122.7 (4)F1—P1—F3179.8 (3)
C5—C4—C3120.3 (4)F6—P1—F389.9 (2)
C5—C4—H4119.8F5—P1—F390.1 (2)
C3—C4—H4119.8F9—P2—F1087.3 (6)
N2—C5—C4122.1 (4)F9—P2—F1195.7 (7)
N2—C5—H5119F10—P2—F1195.3 (6)
C4—C5—H5119F9—P2—F893.5 (6)
C3—C6—H6A109.5F10—P2—F8174.5 (7)
C3—C6—H6B109.5F11—P2—F890.0 (6)
H6A—C6—H6B109.5F12'—P2—F9'82.8 (7)
C3—C6—H6C109.5F9—P2—F7178.3 (7)
H6A—C6—H6C109.5F10—P2—F794.2 (6)
H6B—C6—H6C109.5F11—P2—F784.9 (7)
N3—C7—C8122.4 (4)F8—P2—F785.0 (6)
N3—C7—H7118.8F12'—P2—F11'175.7 (7)
C8—C7—H7118.8F9'—P2—F11'94.7 (7)
C7—C8—C9120.4 (4)F12'—P2—F7'94.5 (7)
C7—C8—H8119.8F9'—P2—F7'177.0 (8)
C9—C8—H8119.8F11'—P2—F7'87.9 (7)
C8—C9—C10116.7 (4)F12'—P2—F8'89.3 (7)
C8—C9—C12121.4 (4)F9'—P2—F8'89.2 (7)
C10—C9—C12121.9 (4)F11'—P2—F8'87.0 (7)
C11—C10—C9120.6 (4)F7'—P2—F8'89.6 (7)
C11—C10—H10119.7F12'—P2—F10'89.1 (8)
C9—C10—H10119.7F9'—P2—F10'92.8 (7)
N3—C11—C10122.1 (4)F11'—P2—F10'94.6 (8)
N3—C11—H11118.9F7'—P2—F10'88.3 (7)
C10—C11—H11118.9F8'—P2—F10'177.3 (7)
C9—C12—H12A109.5F9—P2—F1289.9 (6)
C9—C12—H12B109.5F10—P2—F1294.1 (6)
H12A—C12—H12B109.5F11—P2—F12169.2 (7)
C9—C12—H12C109.5F8—P2—F1280.4 (6)
H12A—C12—H12C109.5F7—P2—F1289.2 (6)
H12B—C12—H12C109.5F16—P3—F1597.2 (10)
N4—C13—C14121.9 (4)F16—P3—F1882.2 (10)
N4—C13—H13119F15—P3—F1882.2 (10)
C14—C13—H13119F16—P3—F1791.7 (10)
C13—C14—C15120.7 (4)F15—P3—F1790.8 (10)
C13—C14—H14119.7F18—P3—F17170.0 (8)
C15—C14—H14119.7F16—P3—F13107.0 (11)
C16—C15—C14116.6 (4)F15—P3—F13153.1 (10)
C16—C15—C18122.6 (4)F18—P3—F1389.5 (10)
C14—C15—C18120.8 (4)F17—P3—F1399.9 (9)
C17—C16—C15120.8 (4)F16—P3—F14166.5 (10)
C17—C16—H16119.6F15—P3—F1477.2 (9)
C15—C16—H16119.6F18—P3—F1484.9 (10)
N4—C17—C16121.8 (4)F17—P3—F14100.5 (9)
N4—C17—H17119.1F13—P3—F1476.6 (10)
C16—C17—H17119.1C26—C25—H25A109.5
C15—C18—H18A109.5C26—C25—H25B109.5
C15—C18—H18B109.5H25A—C25—H25B109.5
H18A—C18—H18B109.5C26—C25—H25C109.5
C15—C18—H18C109.5H25A—C25—H25C109.5
H18A—C18—H18C109.5H25B—C25—H25C109.5
H18B—C18—H18C109.5O2—C26—C27123.4 (12)
N5—C19—C20122.3 (5)O2—C26—C25119.9 (11)
N5—C19—H19118.9C27—C26—C25116.5 (10)
C20—C19—H19118.9C26—C27—H27A109.5
C19—C20—C21120.1 (5)C26—C27—H27B109.5
C19—C20—H20119.9H27A—C27—H27B109.5
C21—C20—H20119.9C26—C27—H27C109.5
C22—C21—C20117.4 (4)H27A—C27—H27C109.5
C22—C21—C24122.4 (5)H27B—C27—H27C109.5
C20—C21—C24120.3 (5)F21—P4—F22109.3 (13)
C23—C22—C21120.1 (5)F21—P4—F2073.6 (12)
C23—C22—H22119.9F22—P4—F20172.8 (12)
C21—C22—H22119.9F21—P4—F2494.8 (11)
N5—C23—C22122.0 (4)F22—P4—F2489.3 (11)
N5—C23—H23119F20—P4—F2483.8 (11)
C22—C23—H23119F21—P4—F2393.5 (11)
C21—C24—H24A109.5F22—P4—F23102.7 (11)
C21—C24—H24B109.5F20—P4—F2383.6 (11)
H24A—C24—H24B109.5F24—P4—F23162.2 (14)
C21—C24—H24C109.5F21—P4—F19158.8 (13)
H24A—C24—H24C109.5F22—P4—F1991.9 (11)
H24B—C24—H24C109.5F20—P4—F1985.5 (11)
O1—N1—Ru1179.0 (4)F24—P4—F1986.5 (10)
C1—N2—C5117.9 (4)F23—P4—F1980.2 (10)
C1—N2—Ru1119.9 (3)N1—Ru1—N391.79 (16)
C5—N2—Ru1122.1 (3)N1—Ru1—N492.55 (15)
C11—N3—C7117.8 (4)N3—Ru1—N489.70 (14)
C11—N3—Ru1122.3 (3)N1—Ru1—N591.84 (16)
C7—N3—Ru1119.9 (3)N3—Ru1—N5176.37 (14)
C13—N4—C17118.1 (4)N4—Ru1—N590.17 (14)
C13—N4—Ru1119.6 (3)N1—Ru1—N291.71 (16)
C17—N4—Ru1122.2 (3)N3—Ru1—N289.97 (14)
C19—N5—C23118.1 (4)N4—Ru1—N2175.74 (14)
C19—N5—Ru1119.5 (3)N5—Ru1—N289.90 (15)
C23—N5—Ru1122.4 (3)N1—Ru1—Cl1179.52 (13)
F4—P1—F2179.6 (2)N3—Ru1—Cl188.51 (10)
F4—P1—F189.9 (2)N4—Ru1—Cl187.83 (10)
F2—P1—F190.4 (2)N5—Ru1—Cl187.86 (11)
F4—P1—F690.0 (2)N2—Ru1—Cl187.92 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···F80.952.473.194 (12)133
C1—H1···F110.952.483.405 (15)165
C1—H1···F100.952.33.243 (18)173
C5—H5···F30.952.493.328 (6)147
C7—H7···O20.952.453.320 (7)153
C7—H7···F200.952.513.264 (18)136
C13—H13···F22i0.952.543.16 (2)123
C13—H13···F23i0.952.263.047 (18)140
C14—H14···F19i0.952.42.995 (18)120
C27—H27A···F70.982.413.297 (17)150
C27—H27B···F7ii0.982.553.418 (17)147
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z.
 

Funding information

HSM thanks the Iraqi/French institution for a grant, and Campus France (Moyen-Orient, 776290 J) for financial support.

References

First citationBecker, T., Kupfer, S., Wolfram, M., Görls, H., Schubert, U. S., Anslyn, E. V., Dietzek, B., Gräfe, S. & Schiller, A. (2015). Chem. Eur. J. 21, 15554–15563.  CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChildress, B., Stechmiller, J. K. & Schultz, G. S. (2008). Biol. Res. Nurs. 10, 87–92.  CrossRef PubMed CAS Google Scholar
First citationCoe, B. J., Meyer, T. J. & White, P. S. (1995). Inorg. Chem. 34, 593–602.  CSD CrossRef CAS Web of Science Google Scholar
First citationCormary, B., Ladeira, S., Jacob, K., Lacroix, P. G., Woike, T., Schaniel, D. & Malfant, I. (2012). Inorg. Chem. 51, 7492–7501.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCormary, B., Malfant, I., Buron-Le Cointe, M., Toupet, L., Delley, B., Schaniel, D., Mockus, N., Woike, T., Fejfarová, K., Petříček, V. & Dušek, M. (2009a). Acta Cryst. B65, 612–623.  CSD CrossRef IUCr Journals Google Scholar
First citationCormary, B., Malfant, I., Valade, L., Buron-Le Cointe, M., Toupet, L., Todorova, T., Delley, B., Schaniel, D., Mockus, N., Woike, T., Fejfarová, K., Petříček, V. & Dušek, M. (2009b). Acta Cryst. B65, 787.  CrossRef IUCr Journals Google Scholar
First citationDe Candia, A. G., Marcolongo, J. P., Etchenique, R. & Slep, L. D. (2010). Inorg. Chem. 49, 6925–6930.  CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerlay, S., Schmalle, H. W., Francese, G., Stoeckli-Evans, H., Imlau, M., Schaniel, D. & Woike, T. (2004). Inorg. Chem. 43, 3500–3506.  CSD CrossRef PubMed CAS Google Scholar
First citationGarcía, J. S., Alary, F., Boggio-Pasqua, M., Dixon, I. M. & Heully, J.-L. (2016). J. Mol. Model. 22, 284.  PubMed Google Scholar
First citationKumar, S., Kumar, R., Ratnam, A., Mishra, N. C. & Ghosh, K. (2015). Inorg. Chem. Commun. 53, 23–25.  CrossRef CAS Google Scholar
First citationMcCleverty, J. A. (2004). Chem. Rev. 104, 403–418.  CrossRef PubMed CAS Google Scholar
First citationMohammed, H. S., Tassé, M., Malfant, I. & Vendier, L. (2017). IUCrData, 2, x171013.  Google Scholar
First citationSauaia, M. G. & da Silva, R. S. (2003). Transition Met. Chem. 28, 254–259.  Google Scholar
First citationSchairer, D. O., Chouake, J. S., Nosanchuk, J. D. & Friedman, A. J. (2012). Virulence, 3, 271–279.  CrossRef PubMed Google Scholar
First citationSchaniel, D., Cormary, B., Malfant, I., Valade, L., Woike, T., Delley, B., Krämer, K. W. & Güdel, H. U. (2007). Phys. Chem. Chem. Phys. 9, 3717–3724.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTassé, M., Mohammed, H. S., Sabourdy, C., Mallet-Ladeira, S., Lacroix, P. G. & Malfant, I. (2016). Polyhedron, 119, 350–358.  Google Scholar
First citationTogano, T., Kuroda, H., Nagao, N., Maekawa, Y., Nishimura, H., Howell, F. S. & Mukaida, M. (1992). Inorg. Chim. Acta, 196, 57–63.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]