metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Potassium 3-formyl-[1,1′-biphen­yl]-4-olate monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
*Correspondence e-mail: akitsu@rs.kagu.tus.ac.jp

Edited by O. Blacque, University of Zürich, Switzerland (Received 14 September 2017; accepted 21 September 2017; online 26 September 2017)

The title salt, K+·C13H9O2·H2O, was synthesized from 5-bromo­salicyl­aldehyde and a phenyl­boronic acid derivative using the Suzuki–Miyaura cross-coupling reaction (Miyaura & Suzuki, 1979[Miyaura, N. & Suzuki, A. (1979). J. Chem. Soc. Chem. Commun. pp. 866-867.]). In addition to the inter­molecular inter­actions between the charged species, two O—H⋯O hydrogen bonds involving the isolated water mol­ecules further stabilize the crystal packing of the title salt leading to the formation of a three-dimensional framework structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Biaryl is an important basic skeleton for various kinds of mol­ecules: physiologically active substances (e.g. diflunisal, which shows analgesic and anti-inflammatory action) and liquid crystals (e.g. 4-alkyl 4′-cyano­biphen­yl). In addition, phenyl­phenol comprising a biaryl skeleton, is used as reagent, reactant (Kikushima & Nishina, 2013[Kikushima, K. & Nishina, Y. (2013). RSC Adv. 3, 20150-20156.]; Hall et al., 2017[Hall, E. A., Sarkar, M. R. & Bell, S. G. (2017). Catal. Sci. Technol. 7, 1537-1548.]; Yuan et al., 2017[Yuan, X., Kim, E. G., Sanders, C. A., Richter, B. E., Cunningham, M. F., Jessopa, P. G. & Oleschuk, R. D. (2017). Green Chem. 19, 1757-1765.]) and drug (Jiratthiya et al. 2015[Jiratthiya, T., ChunMei, L., Suzuki, A., Watanabe, G. & Taya, K. (2015). J. Reprod. Dev. 61, 134-137.]).

In the crystal structure of the title compound (Fig. 1[link]), the O atom of the formyl group is tilted towards the phenoxide O atom: the torsion angle C10—C9—C13—O2 is 3.0 (2)° and the torsion angle O2—C13—C9—C8 is −179.71 (13)°. The K+ cations are surrounded by seven O atoms from three isolated water mol­ecules and three different [C13H9O2] anions. The seven K⋯O distances are in the range of 2.717 (1)–2.960 (1) Å. Two O—H⋯O hydrogen bonds (Table 1[link]) involving the isolated water mol­ecules further stabilize the crystal packing of the title salt (Fig. 2[link]) leading to the formation of a three-dimensional framework structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H14⋯O1i 0.82 (3) 1.96 (3) 2.7751 (15) 168 (2)
O3—H15⋯O1 0.86 (2) 1.87 (2) 2.7136 (15) 168 (2)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
A packing diagram of the title compound.

Synthesis and crystallization

Treatment of 5-bromo­salicyl­aldehyde (0.402 g, 2.00 mmol), phenyl­boronic acid (0.366 g, 3.00 mmol), K2CO3 (0.553 g, 4.00 mmol) and Pd(PPh3)4 (0.5 mol%) in EtOH–H2O (4:1 v/v) for 5 h at 353 K in degassed N2 (Morris & Nguyen, 2001[Morris, G. A. & Nguyen, S. T. (2001). Tetrahedron Lett. 42, 2093-2096.]) gave rise to a yellow precursor after evaporation and was dried in a desiccator for several days (68% yield). This crude yellow compound was filtered off and recrystallized by slow evaporation from a methanol solution to give yellow prismatic single crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The formyl H atom and the water H atoms were located and freely refined, while the other aromatic H atoms were placed in calculated positions.

Table 2
Experimental details

Crystal data
Chemical formula K+·C13H9O2·HO
Mr 254.32
Crystal system, space group Monoclinic, P21/c
Temperature (K) 103
a, b, c (Å) 23.213 (5), 6.7398 (15), 7.2711 (16)
β (°) 90.593 (3)
V3) 1137.5 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.46
Crystal size (mm) 0.27 × 0.18 × 0.10
 
Data collection
Diffractometer Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.886, 0.957
No. of measured, independent and observed [I > 2σ(I)] reflections 5890, 2532, 2402
Rint 0.024
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.073, 1.12
No. of reflections 2532
No. of parameters 170
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.25
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Potassium 3-formyl-[1,1'-biphenyl]-4-olate monohydrate top
Crystal data top
K+·C13H9O2·HOF(000) = 528
Mr = 254.32Dx = 1.485 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 23.213 (5) ÅCell parameters from 4464 reflections
b = 6.7398 (15) Åθ = 1.8–27.5°
c = 7.2711 (16) ŵ = 0.46 mm1
β = 90.593 (3)°T = 103 K
V = 1137.5 (4) Å3Prism, orange
Z = 40.27 × 0.18 × 0.10 mm
Data collection top
Bruker APEXII
diffractometer
2532 independent reflections
Radiation source: fine-focus sealed tube2402 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.024
φ and ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1829
Tmin = 0.886, Tmax = 0.957k = 78
5890 measured reflectionsl = 98
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: mixed
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0255P)2 + 0.8435P]
where P = (Fo2 + 2Fc2)/3
2532 reflections(Δ/σ)max = 0.001
170 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.59348 (4)0.52653 (14)0.58043 (13)0.0108 (2)
O30.53358 (4)0.72835 (16)0.83869 (14)0.0128 (2)
O20.61886 (4)0.43723 (15)0.20229 (13)0.0127 (2)
C100.64935 (6)0.52030 (19)0.59788 (18)0.0095 (3)
C120.73524 (6)0.5543 (2)0.79525 (18)0.0115 (3)
H120.75110.58430.9130.014*
C110.67639 (6)0.5623 (2)0.77061 (19)0.0115 (3)
C90.68751 (6)0.4706 (2)0.45135 (18)0.0099 (3)
C80.74752 (6)0.4621 (2)0.48228 (19)0.0111 (3)
H80.77170.42670.38280.013*
C70.77284 (6)0.5032 (2)0.65162 (19)0.0108 (3)
C130.66859 (6)0.4365 (2)0.26244 (19)0.0112 (3)
C60.83627 (6)0.4996 (2)0.68178 (19)0.0118 (3)
C50.86217 (6)0.6294 (2)0.8087 (2)0.0150 (3)
H50.83890.71990.8750.018*
C10.87173 (6)0.3692 (2)0.5851 (2)0.0151 (3)
H10.85510.27960.49870.018*
C40.92142 (6)0.6274 (2)0.8388 (2)0.0174 (3)
H40.93820.71510.92650.021*
C30.95605 (6)0.4978 (2)0.7413 (2)0.0178 (3)
H30.99660.49680.76130.021*
C20.93100 (7)0.3692 (2)0.6139 (2)0.0182 (3)
H20.95460.28090.54610.022*
H110.6529 (7)0.601 (3)0.873 (2)0.015 (4)*
H130.7009 (7)0.408 (3)0.178 (2)0.012 (4)*
H140.5538 (10)0.807 (4)0.897 (3)0.040 (7)*
H150.5545 (9)0.680 (3)0.753 (3)0.027 (5)*
K10.55412 (2)0.31194 (4)0.91130 (4)0.01045 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0090 (5)0.0120 (5)0.0113 (4)0.0002 (4)0.0007 (3)0.0005 (4)
O30.0108 (5)0.0155 (5)0.0122 (5)0.0005 (4)0.0019 (4)0.0030 (4)
O20.0127 (5)0.0142 (5)0.0111 (5)0.0022 (4)0.0012 (4)0.0005 (4)
C100.0120 (6)0.0056 (6)0.0109 (6)0.0008 (5)0.0005 (5)0.0011 (5)
C120.0152 (7)0.0104 (6)0.0088 (6)0.0013 (5)0.0015 (5)0.0003 (5)
C110.0137 (7)0.0112 (6)0.0097 (6)0.0005 (5)0.0022 (5)0.0008 (5)
C90.0125 (6)0.0075 (6)0.0097 (6)0.0008 (5)0.0008 (5)0.0005 (5)
C80.0118 (6)0.0102 (6)0.0115 (6)0.0001 (5)0.0028 (5)0.0006 (5)
C70.0113 (6)0.0085 (6)0.0126 (6)0.0007 (5)0.0001 (5)0.0007 (5)
C130.0133 (7)0.0094 (6)0.0109 (6)0.0012 (5)0.0023 (5)0.0002 (5)
C60.0120 (7)0.0124 (6)0.0110 (6)0.0003 (5)0.0000 (5)0.0025 (5)
C50.0146 (7)0.0152 (7)0.0153 (7)0.0002 (6)0.0012 (5)0.0025 (6)
C10.0156 (7)0.0158 (7)0.0140 (7)0.0013 (6)0.0013 (5)0.0022 (6)
C40.0154 (7)0.0201 (7)0.0166 (7)0.0032 (6)0.0015 (6)0.0021 (6)
C30.0105 (7)0.0239 (8)0.0192 (7)0.0007 (6)0.0019 (5)0.0026 (6)
C20.0166 (7)0.0202 (7)0.0178 (7)0.0046 (6)0.0017 (6)0.0013 (6)
K10.01107 (15)0.01123 (15)0.00905 (15)0.00107 (11)0.00014 (10)0.00008 (11)
Geometric parameters (Å, º) top
O1—C101.3026 (17)C7—C61.4864 (19)
O1—K1i2.7437 (11)C13—K1i3.3310 (15)
O1—K12.9597 (11)C13—H130.992 (17)
O3—K1ii2.7567 (11)C6—C11.399 (2)
O3—K1iii2.7730 (12)C6—C51.402 (2)
O3—K12.8943 (13)C5—C41.391 (2)
O3—H140.82 (3)C5—H50.95
O3—H150.86 (2)C1—C21.390 (2)
O2—C131.2302 (17)C1—H10.95
O2—K1iv2.7170 (11)C4—C31.387 (2)
O2—K1i2.7268 (11)C4—H40.95
C10—C111.4266 (19)C3—C21.391 (2)
C10—C91.4324 (19)C3—H30.95
C10—K1i3.4175 (14)C2—H20.95
C10—K13.4866 (14)K1—O2v2.7171 (11)
C12—C111.377 (2)K1—O2vi2.7269 (11)
C12—C71.4107 (19)K1—O1vi2.7437 (11)
C12—H120.95K1—O3ii2.7566 (11)
C11—K13.4656 (15)K1—O3vii2.7730 (12)
C11—H110.962 (18)K1—C13vi3.3311 (15)
C9—C81.4098 (19)K1—C10vi3.4175 (14)
C9—C131.4561 (19)K1—K1vi3.7302 (8)
C8—C71.3869 (19)K1—H113.022 (18)
C8—H80.95K1—H152.74 (2)
C10—O1—K1i110.09 (8)O1vi—K1—O3160.29 (3)
C10—O1—K1102.74 (8)O3ii—K1—O395.42 (3)
K1i—O1—K181.60 (3)O3vii—K1—O387.65 (2)
K1ii—O3—K1iii84.84 (3)O2v—K1—O1107.95 (3)
K1ii—O3—K184.58 (3)O2vi—K1—O170.82 (3)
K1iii—O3—K1115.79 (4)O1vi—K1—O1131.80 (4)
K1ii—O3—H1498.1 (16)O3ii—K1—O1145.13 (3)
K1iii—O3—H14128.3 (16)O3vii—K1—O178.29 (3)
K1—O3—H14115.9 (16)O3—K1—O155.22 (3)
K1ii—O3—H15150.4 (14)O2v—K1—C13vi88.43 (4)
K1iii—O3—H1590.9 (14)O2vi—K1—C13vi20.48 (3)
K1—O3—H1571.0 (14)O1vi—K1—C13vi57.63 (3)
H14—O3—H15107 (2)O3ii—K1—C13vi139.62 (4)
C13—O2—K1iv141.72 (9)O3vii—K1—C13vi105.52 (4)
C13—O2—K1i108.66 (8)O3—K1—C13vi123.96 (3)
K1iv—O2—K1i86.51 (3)O1—K1—C13vi74.19 (3)
O1—C10—C11120.53 (12)O2v—K1—C10vi62.89 (3)
O1—C10—C9123.92 (12)O2vi—K1—C10vi57.30 (3)
C11—C10—C9115.55 (12)O1vi—K1—C10vi20.97 (3)
O1—C10—K1i48.94 (6)O3ii—K1—C10vi98.79 (4)
C11—C10—K1i139.15 (9)O3vii—K1—C10vi126.48 (3)
C9—C10—K1i87.36 (8)O3—K1—C10vi144.33 (3)
O1—C10—K155.89 (6)O1—K1—C10vi116.04 (3)
C11—C10—K177.33 (8)C13vi—K1—C10vi44.33 (3)
C9—C10—K1142.48 (9)O2v—K1—C1168.31 (3)
K1i—C10—K165.40 (3)O2vi—K1—C1171.19 (3)
C11—C12—C7122.26 (12)O1vi—K1—C11105.50 (3)
C11—C12—H12118.9O3ii—K1—C11148.79 (3)
C7—C12—H12118.9O3vii—K1—C11120.22 (4)
C12—C11—C10122.25 (13)O3—K1—C1166.92 (3)
C12—C11—K1139.20 (9)O1—K1—C1142.39 (3)
C10—C11—K178.99 (8)C13vi—K1—C1159.36 (4)
C12—C11—H11118.6 (10)C10vi—K1—C1184.71 (4)
C10—C11—H11119.1 (10)O2v—K1—C1091.98 (3)
K1—C11—H1155.2 (11)O2vi—K1—C1061.77 (3)
C8—C9—C10120.56 (12)O1vi—K1—C10114.67 (3)
C8—C9—C13115.60 (12)O3ii—K1—C10161.48 (3)
C10—C9—C13123.75 (12)O3vii—K1—C1096.86 (4)
C7—C8—C9122.86 (13)O3—K1—C1066.08 (3)
C7—C8—H8118.6O1—K1—C1021.37 (3)
C9—C8—H8118.6C13vi—K1—C1058.45 (3)
C8—C7—C12116.50 (12)C10vi—K1—C1096.40 (4)
C8—C7—C6122.53 (12)C11—K1—C1023.68 (3)
C12—C7—C6120.95 (12)O2v—K1—K1vi46.86 (2)
O2—C13—C9127.42 (13)O2vi—K1—K1vi114.26 (3)
O2—C13—K1i50.86 (7)O1vi—K1—K1vi51.71 (2)
C9—C13—K1i90.38 (8)O3ii—K1—K1vi47.76 (2)
O2—C13—H13119.7 (10)O3vii—K1—K1vi125.88 (3)
C9—C13—H13112.9 (10)O3—K1—K1vi113.15 (2)
K1i—C13—H13135.7 (10)O1—K1—K1vi154.79 (2)
C1—C6—C5118.17 (13)C13vi—K1—K1vi102.25 (3)
C1—C6—C7121.55 (13)C10vi—K1—K1vi58.19 (2)
C5—C6—C7120.28 (13)C11—K1—K1vi113.89 (2)
C4—C5—C6120.96 (14)C10—K1—K1vi137.19 (2)
C4—C5—H5119.5O2v—K1—H1157.2 (3)
C6—C5—H5119.5O2vi—K1—H1185.5 (4)
C2—C1—C6120.73 (14)O1vi—K1—H11109.1 (3)
C2—C1—H1119.6O3ii—K1—H11133.7 (4)
C6—C1—H1119.6O3vii—K1—H11128.5 (3)
C3—C4—C5120.20 (14)O3—K1—H1158.8 (3)
C3—C4—H4119.9O1—K1—H1150.9 (3)
C5—C4—H4119.9C13vi—K1—H1171.6 (3)
C4—C3—C2119.47 (14)C10vi—K1—H1188.3 (3)
C4—C3—H3120.3C11—K1—H1115.2 (3)
C2—C3—H3120.3C10—K1—H1136.3 (3)
C1—C2—C3120.46 (14)K1vi—K1—H11104.0 (3)
C1—C2—H2119.8O2v—K1—H1592.4 (4)
C3—C2—H2119.8O2vi—K1—H15108.6 (5)
O2v—K1—O2vi108.77 (4)O1vi—K1—H15160.1 (4)
O2v—K1—O1vi74.36 (3)O3ii—K1—H15111.9 (5)
O2vi—K1—O1vi63.57 (3)O3vii—K1—H1585.0 (4)
O2v—K1—O3ii85.61 (4)O3—K1—H1517.2 (5)
O2vi—K1—O3ii136.21 (3)O1—K1—H1538.0 (5)
O1vi—K1—O3ii82.37 (3)C13vi—K1—H15108.3 (5)
O2v—K1—O3vii165.93 (3)C10vi—K1—H15139.2 (4)
O2vi—K1—O3vii85.10 (3)C11—K1—H1555.1 (4)
O1vi—K1—O3vii111.33 (3)C10—K1—H1549.8 (5)
O3ii—K1—O3vii82.54 (3)K1vi—K1—H15127.9 (5)
O2v—K1—O385.95 (3)H11—K1—H1551.1 (5)
O2vi—K1—O3125.89 (3)
K1i—O1—C10—C11130.61 (11)C13—C9—C8—C7175.89 (13)
K1—O1—C10—C1145.02 (13)C9—C8—C7—C120.2 (2)
K1i—O1—C10—C948.75 (14)C9—C8—C7—C6178.19 (13)
K1—O1—C10—C9134.34 (11)C11—C12—C7—C80.4 (2)
K1—O1—C10—K1i85.59 (5)C11—C12—C7—C6178.84 (13)
K1i—O1—C10—K185.59 (5)K1iv—O2—C13—C9161.18 (10)
C7—C12—C11—C100.3 (2)K1i—O2—C13—C952.27 (16)
C7—C12—C11—K1112.39 (15)K1iv—O2—C13—K1i108.92 (14)
O1—C10—C11—C12178.99 (12)C8—C9—C13—O2179.71 (13)
C9—C10—C11—C120.42 (19)C10—C9—C13—O23.0 (2)
K1i—C10—C11—C12117.93 (14)C8—C9—C13—K1i142.45 (11)
K1—C10—C11—C12142.10 (13)C10—C9—C13—K1i40.80 (13)
O1—C10—C11—K136.89 (11)C8—C7—C6—C132.3 (2)
C9—C10—C11—K1142.53 (11)C12—C7—C6—C1149.29 (14)
K1i—C10—C11—K124.17 (12)C8—C7—C6—C5147.29 (14)
O1—C10—C9—C8178.37 (12)C12—C7—C6—C531.1 (2)
C11—C10—C9—C81.02 (19)C1—C6—C5—C40.5 (2)
K1i—C10—C9—C8143.79 (12)C7—C6—C5—C4179.81 (13)
K1—C10—C9—C8101.90 (16)C5—C6—C1—C20.2 (2)
O1—C10—C9—C135.0 (2)C7—C6—C1—C2179.40 (13)
C11—C10—C9—C13175.58 (13)C6—C5—C4—C30.8 (2)
K1i—C10—C9—C1339.61 (13)C5—C4—C3—C20.3 (2)
K1—C10—C9—C1381.51 (19)C6—C1—C2—C30.7 (2)
C10—C9—C8—C71.0 (2)C4—C3—C2—C10.4 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+2; (iii) x+1, y+1/2, z+3/2; (iv) x, y, z1; (v) x, y, z+1; (vi) x, y+1/2, z+1/2; (vii) x+1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H14···O1viii0.82 (3)1.96 (3)2.7751 (15)168 (2)
O3—H15···O10.86 (2)1.87 (2)2.7136 (15)168 (2)
Symmetry code: (viii) x, y+3/2, z+1/2.
 

References

First citationBruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHall, E. A., Sarkar, M. R. & Bell, S. G. (2017). Catal. Sci. Technol. 7, 1537–1548.  CrossRef CAS Google Scholar
First citationJiratthiya, T., ChunMei, L., Suzuki, A., Watanabe, G. & Taya, K. (2015). J. Reprod. Dev. 61, 134–137.  PubMed Google Scholar
First citationKikushima, K. & Nishina, Y. (2013). RSC Adv. 3, 20150–20156.  CrossRef CAS Google Scholar
First citationMiyaura, N. & Suzuki, A. (1979). J. Chem. Soc. Chem. Commun. pp. 866–867.  CrossRef Web of Science Google Scholar
First citationMorris, G. A. & Nguyen, S. T. (2001). Tetrahedron Lett. 42, 2093–2096.  CrossRef CAS Google Scholar
First citation[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYuan, X., Kim, E. G., Sanders, C. A., Richter, B. E., Cunningham, M. F., Jessopa, P. G. & Oleschuk, R. D. (2017). Green Chem. 19, 1757–1765.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]