organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-(3-Chloro-6-nitro-1H-indazol-1-yl)ethan-1-one

aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Mohammed V University, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: jalilmostafa202@gmail.com

Edited by P. Bombicz, Hungarian Academy of Sciences, Hungary (Received 19 June 2017; accepted 19 August 2017; online 8 September 2017)

The asymmetric unit of the title compound, C9H6ClN3O3, contains one full mol­ecule in a general position and a half molcule sitting on a crystallographic mirror plane. In the crystal, mol­ecules form stacks extending along the b-axis direction through a combination of offset ππ stacking between indazole units and C—Cl⋯π(ring) inter­actions with the six-membered rings of the same units. Elaboration of the C—Cl⋯π(ring) inter­actions along the a-axis direction forms slabs of mol­ecules parallel to [001]. The stacks are joined by a combination of C—H⋯O and C—H⋯N hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Studies of the structure and physicochemical properties of the indazole ring have been reviewed (Abbassi et al., 2014[Abbassi, N., Rakib, E. M., Chicha, H., Bouissane, L., Hannioui, A., Aiello, C., Gangemi, R., Castagnola, P., Rosano, C. & Viale, M. (2014). Arch. Pharm. Chem. Life Sci. 347, 423-431.]; Li et al., 2003[Li, X., Chu, S., Feher, V. A., Khalili, M., Nie, Z., Margosiak, S., Nikulin, V., Levin, J., Sprankle, K. G., Tedder, M. E., Almassy, R., Appelt, K. & Yager, K. M. (2003). J. Med. Chem. 46, 5663-5673.]; Lee et al., 2001[Lee, F. Y., Lien, J. C., Huang, L. J., Huang, T. M., Tsai, S. C., Teng, C. M., Wu, C. C., Cheng, F. C. & Kuo, S. C. (2001). J. Med. Chem. 44, 3746-3749.]). Indazole is a frequently found motif in drug substances with important biological activities, such as anti­microbial (Patel et al., 1999[Patel, M., Rodgers, J. D., McHugh, R. J., Johnson, B. L., Cordova, B. C., Klabe, R. M., Bacheler, L. T., Erickson-Viitanen, S. & Ko, S. S. (1999). Bioorg. Med. Chem. Lett. 9, 3217-3220.]) and anti-inflammatory activities (Lin et al., 2008[Lin, X., Busch-Petersen, J., Deng, J., Edwards, C., Zhang, Z. & Kerns, J. K. (2008). Synlett, 20, 3216-3220.]), and anti­cancer effects (Zhu et al., 2007[Zhu, G. D., Gong, J., Gandhi, V. B., Woods, K., Luo, Y., Liu, X., Guan, R., Klinghofer, V., Johnson, E. F., Stoll, V. S., Mamo, M., Li, Q., Rosenberg, S. H. & Giranda, V. L. (2007). Bioorg. Med. Chem. 15, 2441-2452.]). As a continuation of our studies of indazole derivatives (Mohamed Abdelahi et al., 2017a[Mohamed Abdelahi, M. M., El Bakri, Y., Benchidmi, M., Essassi, E. M. & &Mague, J. T. (2017a). IUCrData, 2, x170432.],b[Mohamed Abdelahi, M. M., El Bakri, Y., Benchidmi, M., Essassi, E. M. & &Mague, J. T. (2017b). IUCrData, 2, x170433.],c[Mohamed Abdelahi, M. M., El Bakri, Y., Benchidmi, M., Essassi, E. M. & &Mague, J. T. (2017c). IUCrData, 2, x170434.]), we report the synthesis and structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The asymmetric unit of the title compound, with the atom-labelling scheme and 50% probability ellipsoids.

The asymmetric unit of the title compound consists of one mol­ecule in a general position and a half mol­ecule located on a crystallographic mirror plane at y = 1/4. The indazole portion of the former is planar to within 0.007 (1) Å (C16) and the dihedral angle between its mean plane and the mirror on which the latter lies is 4.82 (3) Å. For the overlay of the two independent mol­ecules, values of 0.0130 and 0.0288 Å are obtained, respectively, for the r.m.s. deviation and the maximum deviation. In the crystal, mol­ecules form stacks extending along the b-axis direction. One element of the stack is a dimer formed by pairwise head-to-tail offset ππ stacking inter­actions between the indazole portions of two mol­ecules sitting on general positions [Fig. 2[link]; Cg4⋯Cg5iii = 3.6023 (8) Å]. The dimers are connected across the crystallographic mirror plane by complementary C10—Cl2⋯π(Cg2) and C1—Cl1⋯π(Cg5) inter­actions with the mol­ecule sitting on the mirror [Fig. 2[link]; Cl1⋯Cg5i = 3.2306 (6) Å, C1⋯Cg5i = 3.748 (1) Å and C1—Cl1⋯Cg5i = 95.13 (5)°; Cl2iCg2 = 3.4284 (6) Å, C10iCg2 = 3.4284 (4) Å and C10i—Cl2iCg2 = 91.73 (5)°]. Elaboration of the C10—Cl2⋯π(Cg2) and C1—Cl1⋯π(Cg5) inter­actions along the a-axis direction forms slabs of mol­ecules parallel to [001]. The stacks are joined by a combination of C—H⋯O and C—H⋯N hydrogen bonds, as well as short Cl⋯O contacts of 2.964 (2) and 2.982 (1) Å with the nitro groups of neighbouring mol­ecules (Table 1[link] and Fig. 4[link]). As shown in Fig. 3[link], an R33(19) graph set is formed by two C—H⋯O hydrogen bonds and one Cl⋯O inter­action for the mol­ecule in the general position. A corresponding set is formed with the mol­ecule in the special position.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.89 (2) 2.46 (2) 3.212 (3) 142 (2)
C9—H9B⋯N2ii 0.92 (3) 2.65 (3) 3.554 (3) 166 (2)
C13—H13⋯O4ii 0.91 (2) 2.520 (19) 3.235 (2) 135.4 (15)
C18—H18A⋯N5i 0.95 (2) 2.62 (2) 3.530 (2) 159.9 (16)
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Detail of the ππ stacking (orange dashed lines) and C—Cl⋯π(ring) (green dashed lines) inter­actions [symmetry codes: (i) x + 1, y, z; (ii) x − 1, y, z; (iii) −x + 1, −y + 1, −z + 1; (iv) x + 1, −y + [{1\over 2}], z.] Cg2 = centroid(C2–C7 ring); Cg4 = centroid (C10/C11/C16/N4/N5 ring); Cg5 = centroid(C11–C16 ring).
[Figure 4]
Figure 4
Packing viewed along the a-axis direction, showing the layer structure. The π-stacking and C—Cl⋯π(ring) inter­actions (omitted for clarity) run along the b-axis direction.
[Figure 3]
Figure 3
Detail of the R33(19) graph set formed by the Cl1⋯O3 inter­action and two C4—H4⋯O1 hydrogen bonds. Genreic atom labels without symmetry codes have been used.

Synthesis and crystallization

A mixture of 3-chloro-6-nitro-1H-indazole (0.6 g, 3 mmol), acetic acid (2 ml) and acetic anhydride (10 ml) was heated under reflux for 24 h. After completion of the reaction (monitored by thin-layer chromatography), the solvent was removed under vacuum. The residue obtained was recrystallized from ethanol to afford the title compound as colourless crystals (yield 75%).

Refinement

Crystal and refinement details are presented in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C9H6ClN3O3
Mr 239.62
Crystal system, space group Orthorhombic, Pnma
Temperature (K) 100
a, b, c (Å) 8.5638 (5), 19.2608 (12), 17.6509 (10)
V3) 2911.4 (3)
Z 12
Radiation type Mo Kα
μ (mm−1) 0.39
Crystal size (mm) 0.22 × 0.21 × 0.06
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.78, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 53113, 3866, 3016
Rint 0.061
(sin θ/λ)max−1) 0.676
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.110, 1.06
No. of reflections 3866
No. of parameters 281
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.76, −0.30
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3, SADABS, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Bruker, 2016[Bruker (2016). APEX3, SADABS, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Bruker, 2016).

1-(3-Chloro-6-nitro-1H-indazol-1-yl)ethan-1-one top
Crystal data top
C9H6ClN3O3Dx = 1.640 Mg m3
Mr = 239.62Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 9981 reflections
a = 8.5638 (5) Åθ = 2.6–28.2°
b = 19.2608 (12) ŵ = 0.39 mm1
c = 17.6509 (10) ÅT = 100 K
V = 2911.4 (3) Å3Plate, colourless
Z = 120.22 × 0.21 × 0.06 mm
F(000) = 1464
Data collection top
Bruker SMART APEX CCD
diffractometer
3866 independent reflections
Radiation source: fine-focus sealed tube3016 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 8.3333 pixels mm-1θmax = 28.7°, θmin = 1.6°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 2525
Tmin = 0.78, Tmax = 0.98l = 2323
53113 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.110All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0599P)2 + 0.705P]
where P = (Fo2 + 2Fc2)/3
3866 reflections(Δ/σ)max < 0.001
281 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.30 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 25 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.41305 (5)0.25000.55876 (3)0.01626 (13)
O10.7647 (2)0.25000.27364 (9)0.0290 (4)
O20.60283 (18)0.25000.36813 (9)0.0231 (4)
O30.72598 (17)0.25000.63055 (8)0.0212 (3)
N10.97947 (19)0.25000.59702 (10)0.0145 (3)
N21.13404 (19)0.25000.61869 (10)0.0155 (3)
N30.7358 (2)0.25000.34206 (10)0.0185 (4)
C11.2143 (2)0.25000.55576 (11)0.0133 (4)
C21.1184 (2)0.25000.48943 (11)0.0129 (4)
C31.1466 (2)0.25000.41136 (12)0.0148 (4)
H31.257 (3)0.25000.3913 (15)0.024 (6)*
C41.0184 (2)0.25000.36359 (12)0.0156 (4)
H41.042 (3)0.25000.3142 (14)0.014 (6)*
C50.8683 (2)0.25000.39485 (11)0.0156 (4)
C60.8350 (2)0.25000.47147 (11)0.0143 (4)
H60.733 (3)0.25000.4899 (12)0.010 (5)*
C70.9653 (2)0.25000.51857 (11)0.0133 (4)
C80.8598 (2)0.25000.65156 (12)0.0180 (4)
C90.9129 (3)0.25000.73218 (13)0.0260 (5)
H9A0.978 (3)0.2910 (11)0.7411 (13)0.046 (6)*
H9B0.827 (4)0.25000.7640 (17)0.037 (8)*
Cl20.02758 (4)0.42726 (2)0.43856 (2)0.01905 (11)
O40.67364 (16)0.41371 (7)0.72589 (7)0.0386 (3)
O50.83539 (14)0.40821 (6)0.63194 (7)0.0277 (3)
O60.71422 (12)0.40330 (6)0.36968 (6)0.0206 (2)
N40.46081 (14)0.41264 (6)0.40256 (7)0.0152 (3)
N50.30658 (13)0.41789 (6)0.38006 (7)0.0158 (3)
N60.70329 (16)0.41177 (7)0.65786 (8)0.0223 (3)
C100.22560 (17)0.42214 (7)0.44273 (8)0.0151 (3)
C110.32115 (16)0.42031 (7)0.50930 (8)0.0145 (3)
C120.29228 (18)0.42324 (7)0.58742 (9)0.0172 (3)
H120.188 (2)0.4277 (9)0.6083 (11)0.025 (5)*
C130.41978 (18)0.41991 (8)0.63526 (9)0.0187 (3)
H130.405 (2)0.4224 (8)0.6865 (12)0.022 (5)*
C140.57019 (17)0.41413 (7)0.60457 (9)0.0169 (3)
C150.60411 (17)0.41083 (7)0.52825 (9)0.0157 (3)
H150.711 (2)0.4055 (8)0.5104 (9)0.015 (4)*
C160.47364 (17)0.41386 (7)0.48071 (8)0.0142 (3)
C170.58083 (17)0.40742 (7)0.34803 (9)0.0171 (3)
C180.5292 (2)0.40755 (10)0.26742 (9)0.0244 (4)
H18A0.617 (2)0.4013 (10)0.2350 (13)0.037 (6)*
H18B0.478 (2)0.4507 (11)0.2553 (12)0.034 (5)*
H18C0.454 (2)0.3699 (10)0.2578 (13)0.040 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0087 (2)0.0177 (3)0.0224 (3)0.0000.00009 (17)0.000
O10.0306 (9)0.0417 (10)0.0146 (8)0.0000.0063 (7)0.000
O20.0149 (7)0.0292 (9)0.0252 (8)0.0000.0065 (6)0.000
O30.0110 (7)0.0346 (9)0.0181 (8)0.0000.0007 (6)0.000
N10.0083 (7)0.0222 (9)0.0131 (8)0.0000.0019 (6)0.000
N20.0078 (7)0.0200 (9)0.0188 (8)0.0000.0030 (6)0.000
N30.0191 (9)0.0190 (9)0.0175 (9)0.0000.0055 (7)0.000
C10.0109 (8)0.0132 (9)0.0158 (9)0.0000.0004 (7)0.000
C20.0112 (9)0.0102 (9)0.0174 (10)0.0000.0008 (7)0.000
C30.0145 (9)0.0142 (10)0.0157 (9)0.0000.0030 (8)0.000
C40.0178 (10)0.0154 (10)0.0135 (9)0.0000.0005 (8)0.000
C50.0145 (9)0.0170 (10)0.0154 (10)0.0000.0054 (8)0.000
C60.0119 (9)0.0163 (10)0.0148 (9)0.0000.0010 (7)0.000
C70.0122 (9)0.0153 (10)0.0124 (9)0.0000.0002 (7)0.000
C80.0138 (9)0.0234 (11)0.0168 (10)0.0000.0041 (8)0.000
C90.0168 (10)0.0482 (16)0.0131 (10)0.0000.0025 (8)0.000
Cl20.01007 (17)0.0234 (2)0.0237 (2)0.00078 (13)0.00004 (13)0.00311 (13)
O40.0349 (7)0.0635 (10)0.0174 (6)0.0032 (6)0.0067 (5)0.0010 (5)
O50.0171 (5)0.0339 (7)0.0320 (7)0.0015 (5)0.0070 (5)0.0052 (5)
O60.0127 (5)0.0268 (6)0.0224 (6)0.0012 (4)0.0013 (4)0.0011 (4)
N40.0098 (5)0.0199 (6)0.0159 (6)0.0003 (4)0.0014 (5)0.0004 (5)
N50.0097 (6)0.0196 (6)0.0181 (6)0.0002 (4)0.0026 (5)0.0019 (5)
N60.0239 (7)0.0239 (7)0.0192 (7)0.0005 (5)0.0066 (5)0.0019 (5)
C100.0123 (6)0.0143 (7)0.0185 (7)0.0003 (5)0.0008 (5)0.0010 (5)
C110.0128 (6)0.0130 (7)0.0176 (7)0.0011 (5)0.0006 (5)0.0004 (5)
C120.0167 (7)0.0155 (7)0.0194 (7)0.0005 (5)0.0031 (6)0.0013 (5)
C130.0216 (8)0.0185 (7)0.0161 (7)0.0009 (6)0.0000 (6)0.0004 (5)
C140.0170 (7)0.0163 (7)0.0172 (7)0.0005 (5)0.0053 (5)0.0005 (5)
C150.0139 (7)0.0142 (7)0.0188 (7)0.0005 (5)0.0007 (6)0.0016 (5)
C160.0142 (6)0.0120 (7)0.0165 (7)0.0013 (5)0.0003 (5)0.0012 (5)
C170.0147 (7)0.0174 (7)0.0193 (7)0.0006 (5)0.0027 (5)0.0005 (6)
C180.0185 (7)0.0378 (10)0.0168 (7)0.0021 (7)0.0013 (6)0.0036 (6)
Geometric parameters (Å, º) top
Cl1—C11.703 (2)O4—N61.2280 (18)
O1—N31.233 (2)O5—N61.2222 (18)
O2—N31.228 (2)O6—C171.2071 (18)
O3—C81.205 (3)N4—N51.3829 (16)
N1—N21.378 (2)N4—C161.3840 (19)
N1—C71.390 (3)N4—C171.4116 (19)
N1—C81.406 (3)N5—C101.3083 (18)
N2—C11.306 (3)N6—C141.4785 (19)
N3—C51.468 (3)C10—C111.432 (2)
C1—C21.430 (3)C11—C121.402 (2)
C2—C31.399 (3)C11—C161.406 (2)
C2—C71.408 (3)C12—C131.382 (2)
C3—C41.384 (3)C12—H120.97 (2)
C3—H31.01 (3)C13—C141.402 (2)
C4—C51.399 (3)C13—H130.91 (2)
C4—H40.89 (2)C14—C151.380 (2)
C5—C61.382 (3)C15—C161.399 (2)
C6—C71.391 (3)C15—H150.975 (17)
C6—H60.93 (2)C17—C181.490 (2)
C8—C91.494 (3)C18—H18A0.95 (2)
C9—H9A0.98 (2)C18—H18B0.96 (2)
C9—H9B0.92 (3)C18—H18C0.98 (2)
Cl2—C101.7003 (16)
N2—N1—C7111.11 (16)C16—N4—C17128.53 (12)
N2—N1—C8120.67 (17)C10—N5—N4105.55 (12)
C7—N1—C8128.22 (17)O5—N6—O4123.99 (14)
C1—N2—N1105.63 (16)O5—N6—C14118.50 (13)
O2—N3—O1123.61 (18)O4—N6—C14117.50 (14)
O2—N3—C5118.60 (17)N5—C10—C11112.91 (13)
O1—N3—C5117.79 (18)N5—C10—Cl2119.71 (11)
N2—C1—C2113.19 (17)C11—C10—Cl2127.36 (11)
N2—C1—Cl1119.97 (15)C12—C11—C16121.37 (13)
C2—C1—Cl1126.84 (15)C12—C11—C10134.84 (14)
C3—C2—C7121.37 (18)C16—C11—C10103.79 (13)
C3—C2—C1134.99 (18)C13—C12—C11117.37 (14)
C7—C2—C1103.63 (17)C13—C12—H12119.9 (11)
C4—C3—C2117.59 (18)C11—C12—H12122.8 (11)
C4—C3—H3122.0 (15)C12—C13—C14119.58 (14)
C2—C3—H3120.4 (15)C12—C13—H13119.5 (12)
C3—C4—C5119.23 (19)C14—C13—H13120.9 (12)
C3—C4—H4114.7 (15)C15—C14—C13125.07 (14)
C5—C4—H4126.1 (15)C15—C14—N6117.22 (13)
C6—C5—C4125.13 (18)C13—C14—N6117.71 (13)
C6—C5—N3117.49 (18)C14—C15—C16114.57 (13)
C4—C5—N3117.38 (18)C14—C15—H15121.2 (10)
C5—C6—C7114.79 (18)C16—C15—H15124.2 (10)
C5—C6—H6122.4 (14)N4—C16—C15131.36 (14)
C7—C6—H6122.8 (14)N4—C16—C11106.60 (12)
N1—C7—C6131.68 (18)C15—C16—C11122.04 (14)
N1—C7—C2106.43 (16)O6—C17—N4118.55 (14)
C6—C7—C2121.89 (18)O6—C17—C18125.69 (14)
O3—C8—N1118.86 (19)N4—C17—C18115.76 (13)
O3—C8—C9125.63 (19)C17—C18—H18A109.8 (13)
N1—C8—C9115.51 (18)C17—C18—H18B110.4 (13)
C8—C9—H9A109.0 (14)H18A—C18—H18B109.6 (17)
C8—C9—H9B109.8 (18)C17—C18—H18C110.9 (13)
H9A—C9—H9B110.6 (17)H18A—C18—H18C108.6 (18)
N5—N4—C16111.15 (12)H18B—C18—H18C107.5 (17)
N5—N4—C17120.32 (12)
C7—N1—N2—C10.000 (1)C16—N4—N5—C100.12 (15)
C8—N1—N2—C1180.000 (1)C17—N4—N5—C10179.72 (12)
N1—N2—C1—C20.000 (1)N4—N5—C10—C110.31 (16)
N1—N2—C1—Cl1180.000 (1)N4—N5—C10—Cl2178.42 (10)
N2—C1—C2—C3180.000 (1)N5—C10—C11—C12179.83 (15)
Cl1—C1—C2—C30.000 (1)Cl2—C10—C11—C121.6 (2)
N2—C1—C2—C70.000 (1)N5—C10—C11—C160.38 (16)
Cl1—C1—C2—C7180.000 (1)Cl2—C10—C11—C16178.23 (11)
C7—C2—C3—C40.000 (1)C16—C11—C12—C130.3 (2)
C1—C2—C3—C4180.000 (1)C10—C11—C12—C13179.91 (15)
C2—C3—C4—C50.000 (1)C11—C12—C13—C140.3 (2)
C3—C4—C5—C60.000 (1)C12—C13—C14—C150.5 (2)
C3—C4—C5—N3180.000 (1)C12—C13—C14—N6179.12 (13)
O2—N3—C5—C60.000 (1)O5—N6—C14—C151.2 (2)
O1—N3—C5—C6180.000 (1)O4—N6—C14—C15179.00 (14)
O2—N3—C5—C4180.000 (1)O5—N6—C14—C13178.49 (13)
O1—N3—C5—C40.000 (1)O4—N6—C14—C131.3 (2)
C4—C5—C6—C70.000 (1)C13—C14—C15—C160.1 (2)
N3—C5—C6—C7180.000 (1)N6—C14—C15—C16179.49 (12)
N2—N1—C7—C6180.000 (1)N5—N4—C16—C15179.17 (14)
C8—N1—C7—C60.000 (1)C17—N4—C16—C150.4 (2)
N2—N1—C7—C20.000 (1)N5—N4—C16—C110.11 (15)
C8—N1—C7—C2180.000 (1)C17—N4—C16—C11179.44 (13)
C5—C6—C7—N1180.000 (1)C14—C15—C16—N4179.41 (14)
C5—C6—C7—C20.000 (1)C14—C15—C16—C110.5 (2)
C3—C2—C7—N1180.000 (1)C12—C11—C16—N4179.90 (12)
C1—C2—C7—N10.000 (1)C10—C11—C16—N40.28 (14)
C3—C2—C7—C60.000 (1)C12—C11—C16—C150.7 (2)
C1—C2—C7—C6180.000 (1)C10—C11—C16—C15179.45 (13)
N2—N1—C8—O3180.000 (1)N5—N4—C17—O6179.59 (13)
C7—N1—C8—O30.000 (1)C16—N4—C17—O60.1 (2)
N2—N1—C8—C90.000 (1)N5—N4—C17—C180.40 (19)
C7—N1—C8—C9180.000 (1)C16—N4—C17—C18179.92 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.89 (2)2.46 (2)3.212 (3)142 (2)
C9—H9B···N2ii0.92 (3)2.65 (3)3.554 (3)166 (2)
C13—H13···O4ii0.91 (2)2.520 (19)3.235 (2)135.4 (15)
C18—H18A···N5i0.95 (2)2.62 (2)3.530 (2)159.9 (16)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x1/2, y, z+3/2.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAbbassi, N., Rakib, E. M., Chicha, H., Bouissane, L., Hannioui, A., Aiello, C., Gangemi, R., Castagnola, P., Rosano, C. & Viale, M. (2014). Arch. Pharm. Chem. Life Sci. 347, 423–431.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLee, F. Y., Lien, J. C., Huang, L. J., Huang, T. M., Tsai, S. C., Teng, C. M., Wu, C. C., Cheng, F. C. & Kuo, S. C. (2001). J. Med. Chem. 44, 3746–3749.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, X., Chu, S., Feher, V. A., Khalili, M., Nie, Z., Margosiak, S., Nikulin, V., Levin, J., Sprankle, K. G., Tedder, M. E., Almassy, R., Appelt, K. & Yager, K. M. (2003). J. Med. Chem. 46, 5663–5673.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLin, X., Busch-Petersen, J., Deng, J., Edwards, C., Zhang, Z. & Kerns, J. K. (2008). Synlett, 20, 3216–3220.  Web of Science CrossRef Google Scholar
First citationMohamed Abdelahi, M. M., El Bakri, Y., Benchidmi, M., Essassi, E. M. & &Mague, J. T. (2017a). IUCrData, 2, x170432.  Google Scholar
First citationMohamed Abdelahi, M. M., El Bakri, Y., Benchidmi, M., Essassi, E. M. & &Mague, J. T. (2017b). IUCrData, 2, x170433.  Google Scholar
First citationMohamed Abdelahi, M. M., El Bakri, Y., Benchidmi, M., Essassi, E. M. & &Mague, J. T. (2017c). IUCrData, 2, x170434.  Google Scholar
First citationPatel, M., Rodgers, J. D., McHugh, R. J., Johnson, B. L., Cordova, B. C., Klabe, R. M., Bacheler, L. T., Erickson-Viitanen, S. & Ko, S. S. (1999). Bioorg. Med. Chem. Lett. 9, 3217–3220.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhu, G. D., Gong, J., Gandhi, V. B., Woods, K., Luo, Y., Liu, X., Guan, R., Klinghofer, V., Johnson, E. F., Stoll, V. S., Mamo, M., Li, Q., Rosenberg, S. H. & Giranda, V. L. (2007). Bioorg. Med. Chem. 15, 2441–2452.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]