organic compounds
1-(3-Chloro-6-nitro-1H-indazol-1-yl)ethan-1-one
aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Mohammed V University, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: jalilmostafa202@gmail.com
The 9H6ClN3O3, contains one full molecule in a general position and a half molcule sitting on a crystallographic mirror plane. In the crystal, molecules form stacks extending along the b-axis direction through a combination of offset π–π stacking between indazole units and C—Cl⋯π(ring) interactions with the six-membered rings of the same units. Elaboration of the C—Cl⋯π(ring) interactions along the a-axis direction forms slabs of molecules parallel to [001]. The stacks are joined by a combination of C—H⋯O and C—H⋯N hydrogen bonds.
of the title compound, CKeywords: crystal structure; indazole; π–π stacking.
CCDC reference: 1569991
Structure description
Studies of the structure and physicochemical properties of the indazole ring have been reviewed (Abbassi et al., 2014; Li et al., 2003; Lee et al., 2001). Indazole is a frequently found motif in drug substances with important biological activities, such as antimicrobial (Patel et al., 1999) and anti-inflammatory activities (Lin et al., 2008), and anticancer effects (Zhu et al., 2007). As a continuation of our studies of indazole derivatives (Mohamed Abdelahi et al., 2017a,b,c), we report the synthesis and structure of the title compound (Fig. 1).
The y = 1/4. The indazole portion of the former is planar to within 0.007 (1) Å (C16) and the dihedral angle between its mean plane and the mirror on which the latter lies is 4.82 (3) Å. For the overlay of the two independent molecules, values of 0.0130 and 0.0288 Å are obtained, respectively, for the r.m.s. deviation and the maximum deviation. In the crystal, molecules form stacks extending along the b-axis direction. One element of the stack is a dimer formed by pairwise head-to-tail offset π–π stacking interactions between the indazole portions of two molecules sitting on general positions [Fig. 2; Cg4⋯Cg5iii = 3.6023 (8) Å]. The dimers are connected across the crystallographic mirror plane by complementary C10—Cl2⋯π(Cg2) and C1—Cl1⋯π(Cg5) interactions with the molecule sitting on the mirror [Fig. 2; Cl1⋯Cg5i = 3.2306 (6) Å, C1⋯Cg5i = 3.748 (1) Å and C1—Cl1⋯Cg5i = 95.13 (5)°; Cl2i⋯Cg2 = 3.4284 (6) Å, C10i⋯Cg2 = 3.4284 (4) Å and C10i—Cl2i⋯Cg2 = 91.73 (5)°]. Elaboration of the C10—Cl2⋯π(Cg2) and C1—Cl1⋯π(Cg5) interactions along the a-axis direction forms slabs of molecules parallel to [001]. The stacks are joined by a combination of C—H⋯O and C—H⋯N hydrogen bonds, as well as short Cl⋯O contacts of 2.964 (2) and 2.982 (1) Å with the nitro groups of neighbouring molecules (Table 1 and Fig. 4). As shown in Fig. 3, an R33(19) graph set is formed by two C—H⋯O hydrogen bonds and one Cl⋯O interaction for the molecule in the general position. A corresponding set is formed with the molecule in the special position.
of the title compound consists of one molecule in a general position and a half molecule located on a crystallographic mirror plane atSynthesis and crystallization
A mixture of 3-chloro-6-nitro-1H-indazole (0.6 g, 3 mmol), acetic acid (2 ml) and acetic anhydride (10 ml) was heated under reflux for 24 h. After completion of the reaction (monitored by thin-layer chromatography), the solvent was removed under vacuum. The residue obtained was recrystallized from ethanol to afford the title compound as colourless crystals (yield 75%).
Refinement
details are presented in Table 2Structural data
CCDC reference: 1569991
https://doi.org/10.1107/S2414314617012020/zp4017sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617012020/zp4017Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617012020/zp4017Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2414314617012020/zp4017Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Bruker, 2016).C9H6ClN3O3 | Dx = 1.640 Mg m−3 |
Mr = 239.62 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pnma | Cell parameters from 9981 reflections |
a = 8.5638 (5) Å | θ = 2.6–28.2° |
b = 19.2608 (12) Å | µ = 0.39 mm−1 |
c = 17.6509 (10) Å | T = 100 K |
V = 2911.4 (3) Å3 | Plate, colourless |
Z = 12 | 0.22 × 0.21 × 0.06 mm |
F(000) = 1464 |
Bruker SMART APEX CCD diffractometer | 3866 independent reflections |
Radiation source: fine-focus sealed tube | 3016 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.061 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 28.7°, θmin = 1.6° |
φ and ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −25→25 |
Tmin = 0.78, Tmax = 0.98 | l = −23→23 |
53113 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.110 | All H-atom parameters refined |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0599P)2 + 0.705P] where P = (Fo2 + 2Fc2)/3 |
3866 reflections | (Δ/σ)max < 0.001 |
281 parameters | Δρmax = 0.76 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 25 sec/frame. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.41305 (5) | 0.2500 | 0.55876 (3) | 0.01626 (13) | |
O1 | 0.7647 (2) | 0.2500 | 0.27364 (9) | 0.0290 (4) | |
O2 | 0.60283 (18) | 0.2500 | 0.36813 (9) | 0.0231 (4) | |
O3 | 0.72598 (17) | 0.2500 | 0.63055 (8) | 0.0212 (3) | |
N1 | 0.97947 (19) | 0.2500 | 0.59702 (10) | 0.0145 (3) | |
N2 | 1.13404 (19) | 0.2500 | 0.61869 (10) | 0.0155 (3) | |
N3 | 0.7358 (2) | 0.2500 | 0.34206 (10) | 0.0185 (4) | |
C1 | 1.2143 (2) | 0.2500 | 0.55576 (11) | 0.0133 (4) | |
C2 | 1.1184 (2) | 0.2500 | 0.48943 (11) | 0.0129 (4) | |
C3 | 1.1466 (2) | 0.2500 | 0.41136 (12) | 0.0148 (4) | |
H3 | 1.257 (3) | 0.2500 | 0.3913 (15) | 0.024 (6)* | |
C4 | 1.0184 (2) | 0.2500 | 0.36359 (12) | 0.0156 (4) | |
H4 | 1.042 (3) | 0.2500 | 0.3142 (14) | 0.014 (6)* | |
C5 | 0.8683 (2) | 0.2500 | 0.39485 (11) | 0.0156 (4) | |
C6 | 0.8350 (2) | 0.2500 | 0.47147 (11) | 0.0143 (4) | |
H6 | 0.733 (3) | 0.2500 | 0.4899 (12) | 0.010 (5)* | |
C7 | 0.9653 (2) | 0.2500 | 0.51857 (11) | 0.0133 (4) | |
C8 | 0.8598 (2) | 0.2500 | 0.65156 (12) | 0.0180 (4) | |
C9 | 0.9129 (3) | 0.2500 | 0.73218 (13) | 0.0260 (5) | |
H9A | 0.978 (3) | 0.2910 (11) | 0.7411 (13) | 0.046 (6)* | |
H9B | 0.827 (4) | 0.2500 | 0.7640 (17) | 0.037 (8)* | |
Cl2 | 0.02758 (4) | 0.42726 (2) | 0.43856 (2) | 0.01905 (11) | |
O4 | 0.67364 (16) | 0.41371 (7) | 0.72589 (7) | 0.0386 (3) | |
O5 | 0.83539 (14) | 0.40821 (6) | 0.63194 (7) | 0.0277 (3) | |
O6 | 0.71422 (12) | 0.40330 (6) | 0.36968 (6) | 0.0206 (2) | |
N4 | 0.46081 (14) | 0.41264 (6) | 0.40256 (7) | 0.0152 (3) | |
N5 | 0.30658 (13) | 0.41789 (6) | 0.38006 (7) | 0.0158 (3) | |
N6 | 0.70329 (16) | 0.41177 (7) | 0.65786 (8) | 0.0223 (3) | |
C10 | 0.22560 (17) | 0.42214 (7) | 0.44273 (8) | 0.0151 (3) | |
C11 | 0.32115 (16) | 0.42031 (7) | 0.50930 (8) | 0.0145 (3) | |
C12 | 0.29228 (18) | 0.42324 (7) | 0.58742 (9) | 0.0172 (3) | |
H12 | 0.188 (2) | 0.4277 (9) | 0.6083 (11) | 0.025 (5)* | |
C13 | 0.41978 (18) | 0.41991 (8) | 0.63526 (9) | 0.0187 (3) | |
H13 | 0.405 (2) | 0.4224 (8) | 0.6865 (12) | 0.022 (5)* | |
C14 | 0.57019 (17) | 0.41413 (7) | 0.60457 (9) | 0.0169 (3) | |
C15 | 0.60411 (17) | 0.41083 (7) | 0.52825 (9) | 0.0157 (3) | |
H15 | 0.711 (2) | 0.4055 (8) | 0.5104 (9) | 0.015 (4)* | |
C16 | 0.47364 (17) | 0.41386 (7) | 0.48071 (8) | 0.0142 (3) | |
C17 | 0.58083 (17) | 0.40742 (7) | 0.34803 (9) | 0.0171 (3) | |
C18 | 0.5292 (2) | 0.40755 (10) | 0.26742 (9) | 0.0244 (4) | |
H18A | 0.617 (2) | 0.4013 (10) | 0.2350 (13) | 0.037 (6)* | |
H18B | 0.478 (2) | 0.4507 (11) | 0.2553 (12) | 0.034 (5)* | |
H18C | 0.454 (2) | 0.3699 (10) | 0.2578 (13) | 0.040 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0087 (2) | 0.0177 (3) | 0.0224 (3) | 0.000 | 0.00009 (17) | 0.000 |
O1 | 0.0306 (9) | 0.0417 (10) | 0.0146 (8) | 0.000 | −0.0063 (7) | 0.000 |
O2 | 0.0149 (7) | 0.0292 (9) | 0.0252 (8) | 0.000 | −0.0065 (6) | 0.000 |
O3 | 0.0110 (7) | 0.0346 (9) | 0.0181 (8) | 0.000 | 0.0007 (6) | 0.000 |
N1 | 0.0083 (7) | 0.0222 (9) | 0.0131 (8) | 0.000 | −0.0019 (6) | 0.000 |
N2 | 0.0078 (7) | 0.0200 (9) | 0.0188 (8) | 0.000 | −0.0030 (6) | 0.000 |
N3 | 0.0191 (9) | 0.0190 (9) | 0.0175 (9) | 0.000 | −0.0055 (7) | 0.000 |
C1 | 0.0109 (8) | 0.0132 (9) | 0.0158 (9) | 0.000 | −0.0004 (7) | 0.000 |
C2 | 0.0112 (9) | 0.0102 (9) | 0.0174 (10) | 0.000 | −0.0008 (7) | 0.000 |
C3 | 0.0145 (9) | 0.0142 (10) | 0.0157 (9) | 0.000 | 0.0030 (8) | 0.000 |
C4 | 0.0178 (10) | 0.0154 (10) | 0.0135 (9) | 0.000 | 0.0005 (8) | 0.000 |
C5 | 0.0145 (9) | 0.0170 (10) | 0.0154 (10) | 0.000 | −0.0054 (8) | 0.000 |
C6 | 0.0119 (9) | 0.0163 (10) | 0.0148 (9) | 0.000 | −0.0010 (7) | 0.000 |
C7 | 0.0122 (9) | 0.0153 (10) | 0.0124 (9) | 0.000 | 0.0002 (7) | 0.000 |
C8 | 0.0138 (9) | 0.0234 (11) | 0.0168 (10) | 0.000 | 0.0041 (8) | 0.000 |
C9 | 0.0168 (10) | 0.0482 (16) | 0.0131 (10) | 0.000 | 0.0025 (8) | 0.000 |
Cl2 | 0.01007 (17) | 0.0234 (2) | 0.0237 (2) | 0.00078 (13) | −0.00004 (13) | −0.00311 (13) |
O4 | 0.0349 (7) | 0.0635 (10) | 0.0174 (6) | 0.0032 (6) | −0.0067 (5) | −0.0010 (5) |
O5 | 0.0171 (5) | 0.0339 (7) | 0.0320 (7) | −0.0015 (5) | −0.0070 (5) | 0.0052 (5) |
O6 | 0.0127 (5) | 0.0268 (6) | 0.0224 (6) | 0.0012 (4) | 0.0013 (4) | −0.0011 (4) |
N4 | 0.0098 (5) | 0.0199 (6) | 0.0159 (6) | −0.0003 (4) | −0.0014 (5) | −0.0004 (5) |
N5 | 0.0097 (6) | 0.0196 (6) | 0.0181 (6) | −0.0002 (4) | −0.0026 (5) | −0.0019 (5) |
N6 | 0.0239 (7) | 0.0239 (7) | 0.0192 (7) | −0.0005 (5) | −0.0066 (5) | 0.0019 (5) |
C10 | 0.0123 (6) | 0.0143 (7) | 0.0185 (7) | −0.0003 (5) | −0.0008 (5) | −0.0010 (5) |
C11 | 0.0128 (6) | 0.0130 (7) | 0.0176 (7) | −0.0011 (5) | −0.0006 (5) | −0.0004 (5) |
C12 | 0.0167 (7) | 0.0155 (7) | 0.0194 (7) | −0.0005 (5) | 0.0031 (6) | −0.0013 (5) |
C13 | 0.0216 (8) | 0.0185 (7) | 0.0161 (7) | −0.0009 (6) | 0.0000 (6) | −0.0004 (5) |
C14 | 0.0170 (7) | 0.0163 (7) | 0.0172 (7) | −0.0005 (5) | −0.0053 (5) | 0.0005 (5) |
C15 | 0.0139 (7) | 0.0142 (7) | 0.0188 (7) | −0.0005 (5) | −0.0007 (6) | 0.0016 (5) |
C16 | 0.0142 (6) | 0.0120 (7) | 0.0165 (7) | −0.0013 (5) | −0.0003 (5) | 0.0012 (5) |
C17 | 0.0147 (7) | 0.0174 (7) | 0.0193 (7) | −0.0006 (5) | 0.0027 (5) | −0.0005 (6) |
C18 | 0.0185 (7) | 0.0378 (10) | 0.0168 (7) | 0.0021 (7) | 0.0013 (6) | −0.0036 (6) |
Cl1—C1 | 1.703 (2) | O4—N6 | 1.2280 (18) |
O1—N3 | 1.233 (2) | O5—N6 | 1.2222 (18) |
O2—N3 | 1.228 (2) | O6—C17 | 1.2071 (18) |
O3—C8 | 1.205 (3) | N4—N5 | 1.3829 (16) |
N1—N2 | 1.378 (2) | N4—C16 | 1.3840 (19) |
N1—C7 | 1.390 (3) | N4—C17 | 1.4116 (19) |
N1—C8 | 1.406 (3) | N5—C10 | 1.3083 (18) |
N2—C1 | 1.306 (3) | N6—C14 | 1.4785 (19) |
N3—C5 | 1.468 (3) | C10—C11 | 1.432 (2) |
C1—C2 | 1.430 (3) | C11—C12 | 1.402 (2) |
C2—C3 | 1.399 (3) | C11—C16 | 1.406 (2) |
C2—C7 | 1.408 (3) | C12—C13 | 1.382 (2) |
C3—C4 | 1.384 (3) | C12—H12 | 0.97 (2) |
C3—H3 | 1.01 (3) | C13—C14 | 1.402 (2) |
C4—C5 | 1.399 (3) | C13—H13 | 0.91 (2) |
C4—H4 | 0.89 (2) | C14—C15 | 1.380 (2) |
C5—C6 | 1.382 (3) | C15—C16 | 1.399 (2) |
C6—C7 | 1.391 (3) | C15—H15 | 0.975 (17) |
C6—H6 | 0.93 (2) | C17—C18 | 1.490 (2) |
C8—C9 | 1.494 (3) | C18—H18A | 0.95 (2) |
C9—H9A | 0.98 (2) | C18—H18B | 0.96 (2) |
C9—H9B | 0.92 (3) | C18—H18C | 0.98 (2) |
Cl2—C10 | 1.7003 (16) | ||
N2—N1—C7 | 111.11 (16) | C16—N4—C17 | 128.53 (12) |
N2—N1—C8 | 120.67 (17) | C10—N5—N4 | 105.55 (12) |
C7—N1—C8 | 128.22 (17) | O5—N6—O4 | 123.99 (14) |
C1—N2—N1 | 105.63 (16) | O5—N6—C14 | 118.50 (13) |
O2—N3—O1 | 123.61 (18) | O4—N6—C14 | 117.50 (14) |
O2—N3—C5 | 118.60 (17) | N5—C10—C11 | 112.91 (13) |
O1—N3—C5 | 117.79 (18) | N5—C10—Cl2 | 119.71 (11) |
N2—C1—C2 | 113.19 (17) | C11—C10—Cl2 | 127.36 (11) |
N2—C1—Cl1 | 119.97 (15) | C12—C11—C16 | 121.37 (13) |
C2—C1—Cl1 | 126.84 (15) | C12—C11—C10 | 134.84 (14) |
C3—C2—C7 | 121.37 (18) | C16—C11—C10 | 103.79 (13) |
C3—C2—C1 | 134.99 (18) | C13—C12—C11 | 117.37 (14) |
C7—C2—C1 | 103.63 (17) | C13—C12—H12 | 119.9 (11) |
C4—C3—C2 | 117.59 (18) | C11—C12—H12 | 122.8 (11) |
C4—C3—H3 | 122.0 (15) | C12—C13—C14 | 119.58 (14) |
C2—C3—H3 | 120.4 (15) | C12—C13—H13 | 119.5 (12) |
C3—C4—C5 | 119.23 (19) | C14—C13—H13 | 120.9 (12) |
C3—C4—H4 | 114.7 (15) | C15—C14—C13 | 125.07 (14) |
C5—C4—H4 | 126.1 (15) | C15—C14—N6 | 117.22 (13) |
C6—C5—C4 | 125.13 (18) | C13—C14—N6 | 117.71 (13) |
C6—C5—N3 | 117.49 (18) | C14—C15—C16 | 114.57 (13) |
C4—C5—N3 | 117.38 (18) | C14—C15—H15 | 121.2 (10) |
C5—C6—C7 | 114.79 (18) | C16—C15—H15 | 124.2 (10) |
C5—C6—H6 | 122.4 (14) | N4—C16—C15 | 131.36 (14) |
C7—C6—H6 | 122.8 (14) | N4—C16—C11 | 106.60 (12) |
N1—C7—C6 | 131.68 (18) | C15—C16—C11 | 122.04 (14) |
N1—C7—C2 | 106.43 (16) | O6—C17—N4 | 118.55 (14) |
C6—C7—C2 | 121.89 (18) | O6—C17—C18 | 125.69 (14) |
O3—C8—N1 | 118.86 (19) | N4—C17—C18 | 115.76 (13) |
O3—C8—C9 | 125.63 (19) | C17—C18—H18A | 109.8 (13) |
N1—C8—C9 | 115.51 (18) | C17—C18—H18B | 110.4 (13) |
C8—C9—H9A | 109.0 (14) | H18A—C18—H18B | 109.6 (17) |
C8—C9—H9B | 109.8 (18) | C17—C18—H18C | 110.9 (13) |
H9A—C9—H9B | 110.6 (17) | H18A—C18—H18C | 108.6 (18) |
N5—N4—C16 | 111.15 (12) | H18B—C18—H18C | 107.5 (17) |
N5—N4—C17 | 120.32 (12) | ||
C7—N1—N2—C1 | 0.000 (1) | C16—N4—N5—C10 | −0.12 (15) |
C8—N1—N2—C1 | 180.000 (1) | C17—N4—N5—C10 | −179.72 (12) |
N1—N2—C1—C2 | 0.000 (1) | N4—N5—C10—C11 | 0.31 (16) |
N1—N2—C1—Cl1 | 180.000 (1) | N4—N5—C10—Cl2 | −178.42 (10) |
N2—C1—C2—C3 | 180.000 (1) | N5—C10—C11—C12 | 179.83 (15) |
Cl1—C1—C2—C3 | 0.000 (1) | Cl2—C10—C11—C12 | −1.6 (2) |
N2—C1—C2—C7 | 0.000 (1) | N5—C10—C11—C16 | −0.38 (16) |
Cl1—C1—C2—C7 | 180.000 (1) | Cl2—C10—C11—C16 | 178.23 (11) |
C7—C2—C3—C4 | 0.000 (1) | C16—C11—C12—C13 | 0.3 (2) |
C1—C2—C3—C4 | 180.000 (1) | C10—C11—C12—C13 | −179.91 (15) |
C2—C3—C4—C5 | 0.000 (1) | C11—C12—C13—C14 | 0.3 (2) |
C3—C4—C5—C6 | 0.000 (1) | C12—C13—C14—C15 | −0.5 (2) |
C3—C4—C5—N3 | 180.000 (1) | C12—C13—C14—N6 | 179.12 (13) |
O2—N3—C5—C6 | 0.000 (1) | O5—N6—C14—C15 | 1.2 (2) |
O1—N3—C5—C6 | 180.000 (1) | O4—N6—C14—C15 | −179.00 (14) |
O2—N3—C5—C4 | 180.000 (1) | O5—N6—C14—C13 | −178.49 (13) |
O1—N3—C5—C4 | 0.000 (1) | O4—N6—C14—C13 | 1.3 (2) |
C4—C5—C6—C7 | 0.000 (1) | C13—C14—C15—C16 | 0.1 (2) |
N3—C5—C6—C7 | 180.000 (1) | N6—C14—C15—C16 | −179.49 (12) |
N2—N1—C7—C6 | 180.000 (1) | N5—N4—C16—C15 | −179.17 (14) |
C8—N1—C7—C6 | 0.000 (1) | C17—N4—C16—C15 | 0.4 (2) |
N2—N1—C7—C2 | 0.000 (1) | N5—N4—C16—C11 | −0.11 (15) |
C8—N1—C7—C2 | 180.000 (1) | C17—N4—C16—C11 | 179.44 (13) |
C5—C6—C7—N1 | 180.000 (1) | C14—C15—C16—N4 | 179.41 (14) |
C5—C6—C7—C2 | 0.000 (1) | C14—C15—C16—C11 | 0.5 (2) |
C3—C2—C7—N1 | 180.000 (1) | C12—C11—C16—N4 | −179.90 (12) |
C1—C2—C7—N1 | 0.000 (1) | C10—C11—C16—N4 | 0.28 (14) |
C3—C2—C7—C6 | 0.000 (1) | C12—C11—C16—C15 | −0.7 (2) |
C1—C2—C7—C6 | 180.000 (1) | C10—C11—C16—C15 | 179.45 (13) |
N2—N1—C8—O3 | 180.000 (1) | N5—N4—C17—O6 | 179.59 (13) |
C7—N1—C8—O3 | 0.000 (1) | C16—N4—C17—O6 | 0.1 (2) |
N2—N1—C8—C9 | 0.000 (1) | N5—N4—C17—C18 | −0.40 (19) |
C7—N1—C8—C9 | 180.000 (1) | C16—N4—C17—C18 | −179.92 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O1i | 0.89 (2) | 2.46 (2) | 3.212 (3) | 142 (2) |
C9—H9B···N2ii | 0.92 (3) | 2.65 (3) | 3.554 (3) | 166 (2) |
C13—H13···O4ii | 0.91 (2) | 2.520 (19) | 3.235 (2) | 135.4 (15) |
C18—H18A···N5i | 0.95 (2) | 2.62 (2) | 3.530 (2) | 159.9 (16) |
Symmetry codes: (i) x+1/2, y, −z+1/2; (ii) x−1/2, y, −z+3/2. |
Acknowledgements
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.
References
Abbassi, N., Rakib, E. M., Chicha, H., Bouissane, L., Hannioui, A., Aiello, C., Gangemi, R., Castagnola, P., Rosano, C. & Viale, M. (2014). Arch. Pharm. Chem. Life Sci. 347, 423–431. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SADABS, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Lee, F. Y., Lien, J. C., Huang, L. J., Huang, T. M., Tsai, S. C., Teng, C. M., Wu, C. C., Cheng, F. C. & Kuo, S. C. (2001). J. Med. Chem. 44, 3746–3749. Web of Science CrossRef PubMed CAS Google Scholar
Li, X., Chu, S., Feher, V. A., Khalili, M., Nie, Z., Margosiak, S., Nikulin, V., Levin, J., Sprankle, K. G., Tedder, M. E., Almassy, R., Appelt, K. & Yager, K. M. (2003). J. Med. Chem. 46, 5663–5673. Web of Science CrossRef PubMed CAS Google Scholar
Lin, X., Busch-Petersen, J., Deng, J., Edwards, C., Zhang, Z. & Kerns, J. K. (2008). Synlett, 20, 3216–3220. Web of Science CrossRef Google Scholar
Mohamed Abdelahi, M. M., El Bakri, Y., Benchidmi, M., Essassi, E. M. & &Mague, J. T. (2017a). IUCrData, 2, x170432. Google Scholar
Mohamed Abdelahi, M. M., El Bakri, Y., Benchidmi, M., Essassi, E. M. & &Mague, J. T. (2017b). IUCrData, 2, x170433. Google Scholar
Mohamed Abdelahi, M. M., El Bakri, Y., Benchidmi, M., Essassi, E. M. & &Mague, J. T. (2017c). IUCrData, 2, x170434. Google Scholar
Patel, M., Rodgers, J. D., McHugh, R. J., Johnson, B. L., Cordova, B. C., Klabe, R. M., Bacheler, L. T., Erickson-Viitanen, S. & Ko, S. S. (1999). Bioorg. Med. Chem. Lett. 9, 3217–3220. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Zhu, G. D., Gong, J., Gandhi, V. B., Woods, K., Luo, Y., Liu, X., Guan, R., Klinghofer, V., Johnson, E. F., Stoll, V. S., Mamo, M., Li, Q., Rosenberg, S. H. & Giranda, V. L. (2007). Bioorg. Med. Chem. 15, 2441–2452. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.