organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N′-[(E)-4-Chloro­benzyl­­idene]-2-(2,3-di­methyl­anilino)benzohydrazide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Mini University, 61519 El-Minia, Egypt, and eDepartment of Chemistry, College of Education, Kirkuk University, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 6 August 2017; accepted 15 August 2017; online 8 September 2017)

In the title compound, C22H20ClN3O, the dihedral angle between the planes of the chloro­phenyl and di­methyl­phenyl rings is 66.50 (9)°. These rings make dihedral angles 47.79 (8) and 69.24 (9)°, respectively, with the central benzene ring. In the crystal, mol­ecules are linked into a three-dimensional supra­molecular network by N—H⋯O, C—H⋯O hydrogen bonds and weak C—H⋯π inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Mefenamic acid (MA) is a non-steroidal anti-inflammatory drug (NSAID), which has analgesic, anti-inflammatory and anti­pyretic actions (Idowu et al., 2002[Idowu, S. O., Tambo, S. C., Adegoke, A. O. & Olaniyi, A. A. (2002). Tropical J. Pharm. Res. 1, 15-22.]). In addition, it can be indicated for the treatment of primary dysmenorrhea (Zhang & Wan, 1998[Zhang, W.-Y. & Li Wan Po, A. (1998). Br. J. Obstet. Gynaecol. 105, 780-789.]) and periodo­ntitis (Corry & Moran, 1998[Corry, D. & Moran, J. (1998). Biomaterials, 19, 1295-1301.]). The main side effects of MA include peptic ulceration and gastric bleeding, which can be attributed to the combination of local irritation produced by the direct contact of the free carb­oxy­lic group (Arun & Ashok, 2009[Arun, R. & Ashok, K. C. K. (2009). Int. J. Curr. Pharm. Res. 1, 47-55.]; Tegeli & More, 2014[Tegeli, V. S. & More, H. N. (2014). Der Pharma Chem. 6(6), 241-245.]). It has also been reported that compounds containing the hydrazide-hydrazone or imide moiety possess good analgesic and anti-inflammatory activity (Mohamed et al., 2012[Mohamed, S. K., Albayati, M. R., Omara, W. A. M., Abd-Elhamid, A. A., Potgeiter, H., Hameed, A. S. & Al-Janabi, K. M. (2012). J. Chem. Pharm. Res. 4, 3505-3517.]). A number of hydrazidehydrazones have been demonstrated to possess inter­esting antidepressant, anti­bacterial, anti­fungal, anti­convulsant, anti-inflammatory, anti­malarial and antituberculosis activities (Mohamed et al., 2015a[Mohamed, S. K., Mague, J. T., Akkurt, M., Mohamed, A. F. & Albayati, M. R. (2015a). Acta Cryst. E71, o957-o958.],b[Mohamed, S. K., Albayati, M. R., Abd Allah, O. A. A. & El-Saghier, A. M. M. (2015b). Int. J. Pharm. Sci. Rev. Res. 45, 232-242.]). Based on these findings and further to our previous inter­est in the synthesis of hydrazone NSAIDs, we report herein the synthesis and crystal structure determination of the title compound.

The title mol­ecule (Fig. 1[link]) is twisted with a dihedral angle of 66.50 (9)° between the chloro­phenyl and di­methyl­phenyl rings. The chloro­phenyl and di­methyl­phenyl rings make dihedral angles 47.79 (8) of and 69.24 (9)°, respectively, with the central benzene ring. The methyl groups of the 2,3-di­methyl­phenyl unit are co-planar with its bound benzene ring [C21—C19—C20—C22 = −1.9 (3)°]. The middle bridging fragment (C1/N1/N2/O1/C8) is not planar with the torsion angle N1—N2—C8—O1 = 16.3 (2)°. All bond lengths and angles are within normal ranges and are comparable with those in related structures (Zhen & Han, 2005[Zhen, X.-L. & Han, J.-R. (2005). Acta Cryst. E61, o4360-o4361.]; Chantrapromma et al., 2014[Chantrapromma, S., Boonnak, N., Horkaew, J., Quah, C. K. & Fun, H.-K. (2014). Acta Cryst. E70, o150-o151.]; Fun et al., 2011[Fun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644-o2645.]; Horkaew et al., 2012[Horkaew, J., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2012). Acta Cryst. E68, o1069-o1070.]).

[Figure 1]
Figure 1
The structure of the title compound, with displacement ellipsoids for non-H atoms drawn at the 50% probability level.

In the crystal (Fig. 2[link]), the mol­ecules are linked by N—H⋯O, and C—H⋯O hydrogen bonds (Table 1[link]) into a three dimensional network. A weak C—H⋯π inter­action (Table 1[link]) is also observed.

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C15–C20 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1i 0.84 (2) 2.01 (2) 2.8195 (18) 161 (2)
N3—H3N⋯O1 0.85 (2) 2.02 (2) 2.708 (2) 137 (2)
C16—H16⋯O1ii 0.95 2.59 3.518 (2) 166
C12—H12⋯Cg3iii 0.95 2.81 3.6466 (19) 147
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) x, y, z-1.
[Figure 2]
Figure 2
A part of packing diagram for the title compound, with hydrogen bonds drawn as dashed lines.

Synthesis and crystallization

The title compound was synthesized according to our previously reported procedure (Mohamed et al., 2015b[Mohamed, S. K., Albayati, M. R., Abd Allah, O. A. A. & El-Saghier, A. M. M. (2015b). Int. J. Pharm. Sci. Rev. Res. 45, 232-242.]). The crystals were collected and recrystallized from ethanol to afford pure crystals suitable for X-ray analysis with m.p. = 473 − 477 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C22H20ClN3O
Mr 377.86
Crystal system, space group Monoclinic, P21/c
Temperature (K) 171
a, b, c (Å) 15.6759 (5), 15.7743 (5), 8.0115 (3)
β (°) 100.530 (3)
V3) 1947.69 (12)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.86
Crystal size (mm) 0.4 × 0.4 × 0.3
 
Data collection
Diffractometer Agilent Xcalibur Eos Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.833, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7282, 3703, 3188
Rint 0.029
(sin θ/λ)max−1) 0.614
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.132, 1.04
No. of reflections 3703
No. of parameters 252
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.32
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and WinGX (Farrugia, 2012).

N'-[(E)-4-Chlorobenzylidene]-2-(2,3-dimethylanilino)benzohydrazide top
Crystal data top
C22H20ClN3OF(000) = 792
Mr = 377.86Dx = 1.289 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 15.6759 (5) ÅCell parameters from 2873 reflections
b = 15.7743 (5) Åθ = 4.0–71.1°
c = 8.0115 (3) ŵ = 1.86 mm1
β = 100.530 (3)°T = 171 K
V = 1947.69 (12) Å3Prism, colourless
Z = 40.4 × 0.4 × 0.3 mm
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
3703 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source3188 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 16.0416 pixels mm-1θmax = 71.3°, θmin = 4.0°
ω scansh = 1119
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1119
Tmin = 0.833, Tmax = 1.000l = 99
7282 measured reflections
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0805P)2 + 0.2369P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3703 reflectionsΔρmax = 0.25 e Å3
252 parametersΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The C-bound H atoms were placed in calculated positions and allowed to ride on their carrier atoms: aromatic C—H = 0.95 Å, with Uiso(H) = 1.2Ueq(C), C—Hmethyl = 0.98 Å with Uiso(H) = 1.5Ueq(C). The H atom of the NH group was found in a difference Fourier map and refined with N—H = 0.87 (2) Å, with Uiso(H) = 1.2Ueq(N).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.70836 (10)0.18574 (10)0.3822 (2)0.0263 (3)
H10.68380.15550.28250.032*
C20.79706 (10)0.16644 (10)0.4687 (2)0.0248 (3)
C30.83570 (11)0.21061 (11)0.6143 (2)0.0315 (4)
H3A0.80250.25060.66400.038*
C40.92144 (11)0.19700 (11)0.6868 (2)0.0337 (4)
H40.94700.22660.78670.040*
C50.96965 (11)0.13950 (10)0.6119 (2)0.0302 (4)
C60.93316 (11)0.09513 (10)0.4677 (2)0.0307 (4)
H60.96690.05600.41730.037*
C70.84679 (11)0.10853 (10)0.3977 (2)0.0279 (3)
H70.82110.07760.29950.033*
C80.53377 (10)0.32116 (10)0.3908 (2)0.0253 (3)
C90.46765 (10)0.36110 (10)0.2587 (2)0.0267 (3)
C100.48285 (13)0.36930 (12)0.0929 (2)0.0371 (4)
H100.53550.34810.06620.045*
C110.42359 (16)0.40722 (14)0.0327 (2)0.0483 (5)
H110.43540.41310.14430.058*
C120.34591 (14)0.43681 (13)0.0065 (2)0.0456 (5)
H120.30380.46170.08010.055*
C130.32920 (12)0.43061 (12)0.1687 (2)0.0368 (4)
H130.27550.45090.19210.044*
C140.39028 (11)0.39477 (11)0.3009 (2)0.0293 (4)
C150.30223 (11)0.42961 (12)0.5171 (2)0.0311 (4)
C160.29755 (13)0.51764 (13)0.5204 (3)0.0414 (4)
H160.34190.55080.48620.050*
C170.22818 (15)0.55678 (13)0.5735 (3)0.0480 (5)
H170.22470.61690.57640.058*
C180.16424 (14)0.50783 (14)0.6223 (3)0.0452 (5)
H180.11610.53480.65680.054*
C190.16843 (12)0.42067 (13)0.6221 (2)0.0375 (4)
C200.23916 (11)0.37978 (11)0.5699 (2)0.0315 (4)
C210.09662 (17)0.36903 (19)0.6768 (4)0.0660 (7)
H21A0.07830.32400.59380.099*
H21B0.04720.40600.68380.099*
H21C0.11800.34370.78840.099*
C220.24639 (16)0.28469 (13)0.5726 (3)0.0508 (5)
H22A0.29620.26750.52240.076*
H22B0.19330.26010.50700.076*
H22C0.25440.26450.69010.076*
Cl11.07800 (3)0.12222 (3)0.70239 (7)0.04846 (18)
N10.66402 (8)0.24281 (9)0.43998 (17)0.0265 (3)
N20.58792 (8)0.26525 (9)0.33423 (18)0.0277 (3)
H2N0.5781 (13)0.2445 (13)0.236 (2)0.033*
N30.37413 (10)0.39047 (12)0.4626 (2)0.0417 (4)
H3N0.4163 (13)0.3735 (15)0.537 (3)0.050*
O10.54090 (7)0.33759 (8)0.54416 (14)0.0299 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0240 (7)0.0287 (8)0.0257 (7)0.0011 (6)0.0032 (6)0.0006 (6)
C20.0233 (7)0.0239 (7)0.0272 (8)0.0004 (6)0.0047 (6)0.0034 (6)
C30.0296 (8)0.0324 (8)0.0321 (8)0.0043 (7)0.0042 (7)0.0058 (7)
C40.0316 (8)0.0329 (9)0.0339 (8)0.0008 (7)0.0014 (7)0.0046 (7)
C50.0226 (7)0.0262 (8)0.0400 (9)0.0006 (6)0.0006 (6)0.0064 (7)
C60.0304 (8)0.0238 (7)0.0385 (9)0.0059 (6)0.0079 (7)0.0024 (7)
C70.0303 (8)0.0243 (7)0.0286 (8)0.0004 (6)0.0041 (6)0.0002 (6)
C80.0198 (7)0.0287 (7)0.0273 (8)0.0010 (6)0.0038 (6)0.0015 (6)
C90.0256 (8)0.0275 (7)0.0257 (7)0.0010 (6)0.0010 (6)0.0014 (6)
C100.0424 (10)0.0393 (9)0.0299 (9)0.0101 (8)0.0075 (7)0.0023 (7)
C110.0655 (14)0.0534 (12)0.0248 (9)0.0192 (11)0.0050 (9)0.0050 (8)
C120.0550 (12)0.0445 (11)0.0309 (9)0.0191 (9)0.0092 (8)0.0018 (8)
C130.0336 (9)0.0368 (9)0.0366 (9)0.0093 (7)0.0032 (7)0.0008 (7)
C140.0256 (8)0.0311 (8)0.0301 (8)0.0014 (6)0.0019 (6)0.0029 (7)
C150.0259 (8)0.0379 (9)0.0285 (8)0.0065 (7)0.0026 (6)0.0045 (7)
C160.0432 (10)0.0367 (10)0.0423 (10)0.0058 (8)0.0026 (8)0.0058 (8)
C170.0661 (14)0.0301 (9)0.0455 (11)0.0111 (9)0.0039 (10)0.0010 (8)
C180.0495 (11)0.0475 (11)0.0401 (10)0.0195 (9)0.0125 (8)0.0032 (8)
C190.0338 (9)0.0460 (10)0.0345 (9)0.0040 (8)0.0111 (7)0.0005 (8)
C200.0330 (9)0.0322 (9)0.0292 (8)0.0040 (7)0.0057 (7)0.0002 (6)
C210.0525 (14)0.0758 (17)0.0790 (18)0.0007 (12)0.0363 (13)0.0073 (14)
C220.0660 (14)0.0329 (10)0.0581 (13)0.0035 (9)0.0237 (11)0.0012 (9)
Cl10.0259 (2)0.0426 (3)0.0702 (4)0.00625 (17)0.0086 (2)0.0052 (2)
N10.0202 (6)0.0328 (7)0.0256 (7)0.0014 (5)0.0017 (5)0.0011 (5)
N20.0222 (6)0.0360 (7)0.0232 (7)0.0039 (5)0.0001 (5)0.0011 (6)
N30.0281 (8)0.0637 (11)0.0339 (8)0.0181 (7)0.0075 (6)0.0143 (7)
O10.0263 (6)0.0389 (6)0.0235 (5)0.0050 (5)0.0021 (4)0.0003 (5)
Geometric parameters (Å, º) top
C1—N11.275 (2)C13—C141.410 (2)
C1—C21.468 (2)C13—H130.9500
C1—H10.9500C14—N31.367 (2)
C2—C71.388 (2)C15—C201.388 (2)
C2—C31.398 (2)C15—C161.391 (3)
C3—C41.380 (2)C15—N31.422 (2)
C3—H3A0.9500C16—C171.384 (3)
C4—C51.385 (3)C16—H160.9500
C4—H40.9500C17—C181.377 (3)
C5—C61.382 (3)C17—H170.9500
C5—Cl11.7419 (16)C18—C191.377 (3)
C6—C71.384 (2)C18—H180.9500
C6—H60.9500C19—C201.411 (2)
C7—H70.9500C19—C211.518 (3)
C8—O11.241 (2)C20—C221.504 (3)
C8—N21.358 (2)C21—H21A0.9800
C8—C91.480 (2)C21—H21B0.9800
C9—C101.398 (2)C21—H21C0.9800
C9—C141.420 (2)C22—H22A0.9800
C10—C111.375 (3)C22—H22B0.9800
C10—H100.9500C22—H22C0.9800
C11—C121.393 (3)N1—N21.3772 (18)
C11—H110.9500N2—H2N0.843 (16)
C12—C131.375 (3)N3—H3N0.846 (16)
C12—H120.9500
N1—C1—C2120.50 (15)N3—C14—C9121.42 (15)
N1—C1—H1119.7C13—C14—C9117.62 (16)
C2—C1—H1119.7C20—C15—C16121.10 (17)
C7—C2—C3118.65 (15)C20—C15—N3119.75 (17)
C7—C2—C1119.84 (15)C16—C15—N3119.13 (17)
C3—C2—C1121.27 (15)C17—C16—C15119.90 (18)
C4—C3—C2120.92 (16)C17—C16—H16120.0
C4—C3—H3A119.5C15—C16—H16120.1
C2—C3—H3A119.5C18—C17—C16119.39 (18)
C3—C4—C5119.07 (16)C18—C17—H17120.3
C3—C4—H4120.5C16—C17—H17120.3
C5—C4—H4120.5C19—C18—C17121.49 (18)
C6—C5—C4121.22 (15)C19—C18—H18119.3
C6—C5—Cl1119.45 (13)C17—C18—H18119.3
C4—C5—Cl1119.32 (14)C18—C19—C20119.83 (18)
C5—C6—C7119.09 (16)C18—C19—C21119.84 (19)
C5—C6—H6120.5C20—C19—C21120.33 (19)
C7—C6—H6120.5C15—C20—C19118.26 (16)
C6—C7—C2121.04 (15)C15—C20—C22120.87 (17)
C6—C7—H7119.5C19—C20—C22120.86 (18)
C2—C7—H7119.5C19—C21—H21A109.5
O1—C8—N2121.16 (14)C19—C21—H21B109.5
O1—C8—C9122.94 (15)H21A—C21—H21B109.5
N2—C8—C9115.90 (14)C19—C21—H21C109.5
C10—C9—C14119.52 (15)H21A—C21—H21C109.5
C10—C9—C8120.00 (15)H21B—C21—H21C109.5
C14—C9—C8120.41 (15)C20—C22—H22A109.5
C11—C10—C9121.73 (18)C20—C22—H22B109.5
C11—C10—H10119.1H22A—C22—H22B109.5
C9—C10—H10119.1C20—C22—H22C109.5
C10—C11—C12118.82 (18)H22A—C22—H22C109.5
C10—C11—H11120.6H22B—C22—H22C109.5
C12—C11—H11120.6C1—N1—N2115.25 (14)
C13—C12—C11120.98 (17)C8—N2—N1119.05 (14)
C13—C12—H12119.5C8—N2—H2N123.1 (14)
C11—C12—H12119.5N1—N2—H2N117.8 (14)
C12—C13—C14121.20 (17)C14—N3—C15124.34 (15)
C12—C13—H13119.4C14—N3—H3N115.0 (18)
C14—C13—H13119.4C15—N3—H3N118.9 (18)
N3—C14—C13120.93 (16)
N1—C1—C2—C7175.36 (15)C10—C9—C14—C134.0 (3)
N1—C1—C2—C31.0 (2)C8—C9—C14—C13178.89 (15)
C7—C2—C3—C40.2 (3)C20—C15—C16—C171.4 (3)
C1—C2—C3—C4174.63 (16)N3—C15—C16—C17179.80 (17)
C2—C3—C4—C50.9 (3)C15—C16—C17—C180.2 (3)
C3—C4—C5—C60.7 (3)C16—C17—C18—C191.1 (3)
C3—C4—C5—Cl1179.80 (14)C17—C18—C19—C200.5 (3)
C4—C5—C6—C70.2 (3)C17—C18—C19—C21179.9 (2)
Cl1—C5—C6—C7179.30 (13)C16—C15—C20—C192.0 (3)
C5—C6—C7—C20.9 (3)N3—C15—C20—C19179.61 (16)
C3—C2—C7—C60.7 (2)C16—C15—C20—C22177.56 (19)
C1—C2—C7—C6173.79 (15)N3—C15—C20—C220.8 (3)
O1—C8—C9—C10153.40 (17)C18—C19—C20—C151.1 (3)
N2—C8—C9—C1025.9 (2)C21—C19—C20—C15178.51 (19)
O1—C8—C9—C1423.7 (2)C18—C19—C20—C22178.48 (19)
N2—C8—C9—C14157.00 (15)C21—C19—C20—C221.9 (3)
C14—C9—C10—C111.8 (3)C2—C1—N1—N2169.64 (14)
C8—C9—C10—C11178.97 (19)O1—C8—N2—N116.3 (2)
C9—C10—C11—C121.1 (3)C9—C8—N2—N1162.97 (14)
C10—C11—C12—C131.8 (3)C1—N1—N2—C8175.36 (14)
C11—C12—C13—C140.5 (3)C13—C14—N3—C158.1 (3)
C12—C13—C14—N3178.55 (19)C9—C14—N3—C15173.89 (18)
C12—C13—C14—C93.4 (3)C20—C15—N3—C14115.0 (2)
C10—C9—C14—N3177.95 (17)C16—C15—N3—C1466.6 (3)
C8—C9—C14—N30.8 (3)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C15–C20 benzene ring.
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.84 (2)2.01 (2)2.8195 (18)161 (2)
N3—H3N···O10.85 (2)2.02 (2)2.708 (2)137 (2)
C16—H16···O1ii0.952.593.518 (2)166
C12—H12···Cg3iii0.952.813.6466 (19)147
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+1; (iii) x, y, z1.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer data.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationArun, R. & Ashok, K. C. K. (2009). Int. J. Curr. Pharm. Res. 1, 47–55.  Google Scholar
First citationChantrapromma, S., Boonnak, N., Horkaew, J., Quah, C. K. & Fun, H.-K. (2014). Acta Cryst. E70, o150–o151.  CSD CrossRef IUCr Journals Google Scholar
First citationCorry, D. & Moran, J. (1998). Biomaterials, 19, 1295–1301.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644–o2645.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHorkaew, J., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2012). Acta Cryst. E68, o1069–o1070.  CSD CrossRef IUCr Journals Google Scholar
First citationIdowu, S. O., Tambo, S. C., Adegoke, A. O. & Olaniyi, A. A. (2002). Tropical J. Pharm. Res. 1, 15–22.  Google Scholar
First citationMohamed, S. K., Albayati, M. R., Abd Allah, O. A. A. & El-Saghier, A. M. M. (2015b). Int. J. Pharm. Sci. Rev. Res. 45, 232–242.  Google Scholar
First citationMohamed, S. K., Albayati, M. R., Omara, W. A. M., Abd-Elhamid, A. A., Potgeiter, H., Hameed, A. S. & Al-Janabi, K. M. (2012). J. Chem. Pharm. Res. 4, 3505–3517.  CAS Google Scholar
First citationMohamed, S. K., Mague, J. T., Akkurt, M., Mohamed, A. F. & Albayati, M. R. (2015a). Acta Cryst. E71, o957–o958.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTegeli, V. S. & More, H. N. (2014). Der Pharma Chem. 6(6), 241–245.  Google Scholar
First citationZhang, W.-Y. & Li Wan Po, A. (1998). Br. J. Obstet. Gynaecol. 105, 780–789.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhen, X.-L. & Han, J.-R. (2005). Acta Cryst. E61, o4360–o4361.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]