metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(flavonolato-κ2O,O′)dioxidoosmium(VI) di­chloro­methane disolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Physics, Armstrong State University, Savannah, Georgia 31419, USA
*Correspondence e-mail: will.lynch@armstrong.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 30 August 2017; accepted 26 September 2017; online 29 September 2017)

In the crystal structure of the title solvated trans-dioxidoosmium(VI) flavonol­ate (flav) complex, [Os(C15H9O3)2O2]·2CH2Cl2 or [Os(flav)2O2]·2CH2Cl2, the two di­chloro­methane solvent mol­ecules have nonclassical hydrogen-bonding contacts at or greater than 3.18 Å. The pseudo-octa­hedrally coordinated central metal cation is observed with all donor atoms being oxygen. The Os=O bond lengths are 1.721 (5) and 1.728 (5) Å, with a 170.4 (2)° bond angle. The O—Os bond lengths arising from the flanvonolate ligand are observed to all be slightly over 2.0 Å. The chelate bond angles arising from the flavonolate O atoms with the osmium cation are constrained by the ligand at 80.72 (18) and 80.92 (17)°.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Quercetin 2,3-di­oxy­genase is a metalloprotein that catalyzes a ring-opening reaction of the polyphenolic heterocycle quercetin. Quercetin (3′,4′,5,7-tetra­hydoxyflavonol) undergoes activation at a central metal cation to relase carbon monoxide and produce the corresponding depside. A great deal of attention has been focused recently on small biomimetic complexes that bind flavonol (and its derivatives) to a central metal cation (see, for example, Sun et al., 2013[Sun, Y.-J., Huang, Q.-Q., Tano, T. & Itoh, S. (2013). Inorg. Chem. 52, 10936-10948.], and references therein). We have extended some of these reports to present the first osmium flavonolate complex reported in the literature. This structure is the third osmyl (trans-OsO22+) complex reported with the equatorial plane being composed of four O-atom donors.

The dioxidoosmium(VI) moiety in the title structure is completed by four O atoms from two flavonolate anions, resulting in a pseudo-octa­hedrally coordinated central metal cation, with all six donor atoms being oxygen. Previous structures of this type with the trans-disposed osmyl ion comprised of all O atoms in the equatorial plane are moderately rare (Stanislas et al., 2000[Stanislas, S., Beauchamp, A. L. & Reber, C. (2000). Inorg. Chem. 39, 2152-2155.]; Burvikova et al., 2007[Burvikova, Y. N., Lin'ko, I. V., Venskovii, N. U. & Rybakov, V. B. (2007). Kristallografiya, 52, 830-833.]; Struess & Preetz, 1998[Struess, A. & Preetz, W. (1998). Z. Naturforsch. Teil B, 53, 823-828.]). These examples are also of the highly oxidized ligands malonate and oxalate, so a structure of a moderately oxidizable ligand, such as 3-hy­droxy­flavone, is noteable. The title compound (Fig. 1[link]) crystallizes with two di­chloro­methane solvent mol­ecules in the unit cell. The trans Os=O axial bond lengths are 1.721 (5) Å for Os1—O1 and 1.728 (5) Å for Os1—O2. The trans-osmyl bond angle of 170.4 (2)° for O1—Os—O2 is similar to others wherein the structure is not centrosymmetric about the Os atom (see, for example, Lynch et al., 1991[Lynch, W. E., Lintvedt, R. L. & Shui, X. Q. (1991). Inorg. Chem. 30, 1014-1019.]). In the equatorial plane lie two anions of the deprotonated 3-hy­droxy­flavone, which are cis to each other. The Os—O bond lengths found from the ketone are 2.094 (4) Å for Os1—O4 and 2.088 (4) Å for Os1—O7. These are slightly longer than those observed for the deprotonated hy­droxy O atoms of 2.008 (5) Å for Os1—O3 and 2.019 (4) Å for Os1—O6. Typically, in a flavonolate–metal complex, the hy­droxy(oxygen)-to-metal bond length has been found to be shorter than that for the ketone(oxygen)-to-metal bond length (Sun et al., 2013[Sun, Y.-J., Huang, Q.-Q., Tano, T. & Itoh, S. (2013). Inorg. Chem. 52, 10936-10948.]). In the title compound, the corresponding Δd(Os—O) are 0.086 and 0.069 Å. The chelate bond angle arising from the flavonolate and Os central atom are 80.72 (18)° for O3—Os1—O4 and 80.92 (17)° for O6—Os1—O7. These constrained bond angles are typical for metal–flavonolate chelates.

[Figure 1]
Figure 1
A view of the mol­ecular components in the structure of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.

The two di­chloro­methane solvent mol­ecules inter­act with the complex via several weak nonclassical hydrogen-bonding inter­actions, with donor–acceptor (DA) distances less than or equal to 3.5 Å (Table 1[link]). The C31—O4 inter­action length is 3.180 (11) Å, whereas the corresponding C31—O7 distance is 3.221 (11) Å. This single di­chloro­methane (C31 centered dicholormethane) solvent mol­ecule spans the two flavonolate ligands via its two H atoms. The other solvent spans the opposite side of the equatorial plane using only atom H32A. The C32—O2 inter­action length is 3.420 (10) Å, whereas the corresponding C32—O6 is distance 3.489 (11) Å (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O3 0.95 2.24 2.876 (9) 124
C26—H26⋯O6 0.95 2.24 2.910 (8) 127
C30—H30⋯O2i 0.95 2.49 3.393 (9) 158
C31—H31A⋯O4 0.99 2.56 3.180 (11) 121
C31—H31B⋯O7 0.99 2.47 3.221 (11) 133
C32—H32A⋯O2 0.99 2.62 3.420 (10) 138
C32—H32A⋯O6 0.99 2.55 3.489 (11) 158
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal packing diagram of title compound viewed along the a axis. H atoms have been omitted for clarity.

Synthesis and crystallization

0.100 g of K2OsO2(OH)4 (0.271 mmol) (Malin, 1980[Malin, J. M. (1980). Inorg. Synth. 20, 61-63.]) was dissolved in approximately 20 mL of methanol under an ambient atmosphere. The solution turned royal blue as the potassium osmate dissolved. A second solution was made by dissolving 0.129 g of 3-hy­droxy­flavone (Hflav) (0.543 mmol) and 0.066 g of benzoic acid (0.543 mmol) in 20 mL of methanol. After dissolution, the solutions were mixed into one portion. The combined reaction mixture turned red, and a precipitate formed immediately. The solution was stirred for 10 min, filtered, washed with methanol and diethyl ether, and dried under vacuum. The yield of the crude red solid was 0.156 g. The solid product was dissolved in di­chloro­methane and deep-red–brown crystals were grown by slow evaporation of the solvent; the final yield of [OsO2(flav)2]·CH2Cl2 was 0.082 g (35%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Three reflections with (Iobs− Icalc)/σ > 10 were removed.

Table 2
Experimental details

Crystal data
Chemical formula [Os(C15H9O3)2O2]·2CH2Cl2
Mr 866.49
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 8.523 (1), 17.041 (2), 21.255 (2)
β (°) 93.565 (3)
V3) 3081 (1)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.54
Crystal size (mm) 0.24 × 0.18 × 0.16
 
Data collection
Diffractometer Rigaku XtalLab mini CCD
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.613, 0.765
No. of measured, independent and observed [I > 2σ(I)] reflections 32224, 7032, 5602
Rint 0.116
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.116, 1.10
No. of reflections 7032
No. of parameters 406
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.85, −2.79
Computer programs: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis(flavonolato-κ2O,O')dioxidoosmium(VI) dichloromethane disolvate top
Crystal data top
[Os(C15H9O3)2O2]·2CH2Cl2F(000) = 1688
Mr = 866.49Dx = 1.868 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.523 (1) ÅCell parameters from 7657 reflections
b = 17.041 (2) Åθ = 1.9–27.5°
c = 21.255 (2) ŵ = 4.54 mm1
β = 93.565 (3)°T = 173 K
V = 3081 (1) Å3Prism, dark red-brown
Z = 40.24 × 0.18 × 0.16 mm
Data collection top
Rigaku XtalLab mini CCD
diffractometer
5602 reflections with I > 2σ(I)
ω scansRint = 0.116
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
θmax = 27.5°, θmin = 1.9°
Tmin = 0.613, Tmax = 0.765h = 1111
32224 measured reflectionsk = 2222
7032 independent reflectionsl = 2727
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.026P)2 + 4.729P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
7032 reflectionsΔρmax = 1.85 e Å3
406 parametersΔρmin = 2.79 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were positioned geometrically and refined as riding, with C—H = 0.95 or 0.98 Å and Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Os10.48652 (3)0.51111 (2)0.27829 (2)0.02737 (9)
O10.6279 (6)0.5216 (3)0.3391 (2)0.0400 (12)
O20.3256 (6)0.4939 (2)0.2266 (2)0.0358 (11)
O30.6350 (5)0.4595 (2)0.2213 (2)0.0314 (10)
O40.4613 (5)0.3945 (2)0.3069 (2)0.0337 (11)
O50.6944 (5)0.2514 (2)0.1929 (2)0.0315 (10)
O60.5081 (5)0.6228 (2)0.2482 (2)0.0315 (10)
O70.3324 (5)0.5657 (2)0.3371 (2)0.0336 (10)
O80.3221 (5)0.7994 (2)0.3028 (2)0.0309 (10)
C10.6308 (8)0.3796 (3)0.2266 (3)0.0303 (14)
C20.5357 (8)0.3477 (3)0.2719 (3)0.0305 (14)
C30.5208 (8)0.2640 (4)0.2771 (3)0.0360 (16)
C40.4271 (9)0.2272 (4)0.3206 (4)0.0421 (18)
H40.3741110.2576470.3501570.051*
C50.4126 (8)0.1462 (4)0.3201 (4)0.0448 (19)
H50.3486330.1208420.3489160.054*
C60.4938 (8)0.1015 (4)0.2762 (4)0.0441 (19)
H60.4814590.0461360.2754510.053*
C70.5901 (8)0.1365 (4)0.2348 (4)0.0396 (17)
H70.6472150.1062590.2064260.048*
C80.6005 (8)0.2187 (4)0.2361 (3)0.0333 (15)
C90.7097 (8)0.3311 (3)0.1875 (3)0.0309 (14)
C100.8096 (7)0.3527 (4)0.1375 (3)0.0324 (15)
C110.8723 (8)0.4290 (4)0.1340 (3)0.0378 (16)
H110.8462460.4674430.1640450.045*
C120.9715 (10)0.4486 (5)0.0872 (4)0.0473 (19)
H121.0139970.5000570.0855990.057*
C131.0090 (9)0.3934 (5)0.0428 (4)0.049 (2)
H131.0759300.4071900.0104600.059*
C140.9482 (10)0.3176 (5)0.0456 (4)0.052 (2)
H140.9746020.2797150.0152010.063*
C150.8510 (9)0.2972 (4)0.0918 (4)0.0415 (17)
H150.8108490.2452400.0932620.050*
C160.4203 (7)0.6736 (3)0.2813 (3)0.0270 (13)
C170.3310 (8)0.6406 (4)0.3284 (3)0.0303 (14)
C180.2405 (8)0.6910 (4)0.3653 (3)0.0314 (14)
C190.1505 (8)0.6651 (4)0.4145 (3)0.0371 (16)
H190.1474080.6109170.4247670.045*
C200.0658 (9)0.7191 (5)0.4484 (3)0.0439 (18)
H200.0054980.7018910.4819120.053*
C210.0706 (9)0.7994 (4)0.4324 (3)0.0432 (19)
H210.0130350.8361240.4555260.052*
C220.1561 (9)0.8254 (4)0.3845 (3)0.0386 (16)
H220.1582380.8795870.3740280.046*
C230.2408 (8)0.7706 (4)0.3511 (3)0.0317 (14)
C240.4097 (8)0.7525 (4)0.2679 (3)0.0293 (14)
C250.4792 (8)0.7970 (4)0.2169 (3)0.0295 (14)
C260.5772 (8)0.7613 (4)0.1749 (3)0.0315 (14)
H260.5995920.7068390.1783190.038*
C270.6417 (8)0.8056 (4)0.1282 (3)0.0375 (16)
H270.7068110.7807720.0994390.045*
C280.6132 (9)0.8850 (4)0.1227 (3)0.0411 (17)
H280.6600830.9148950.0911330.049*
C290.5153 (9)0.9206 (4)0.1638 (4)0.0398 (17)
H290.4937740.9751280.1598090.048*
C300.4482 (8)0.8779 (4)0.2106 (3)0.0355 (15)
H300.3813690.9032130.2385030.043*
Cl10.5133 (4)0.37694 (16)0.47783 (17)0.0986 (10)
Cl20.2072 (4)0.44771 (18)0.49726 (13)0.0908 (9)
C310.3557 (12)0.4323 (6)0.4445 (4)0.069 (3)
H31A0.3100360.4047780.4066600.082*
H31B0.3955070.4837240.4309340.082*
Cl30.3489 (3)0.56545 (17)0.04430 (11)0.0729 (7)
Cl40.6777 (2)0.60300 (12)0.07876 (10)0.0519 (5)
C320.5139 (10)0.5474 (5)0.0958 (4)0.058 (2)
H32A0.4866640.5589140.1394200.070*
H32B0.5412910.4910280.0936630.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Os10.03312 (16)0.01694 (13)0.03253 (16)0.00219 (9)0.00586 (11)0.00099 (9)
O10.054 (3)0.025 (2)0.042 (3)0.003 (2)0.008 (2)0.002 (2)
O20.046 (3)0.023 (2)0.039 (3)0.0004 (19)0.005 (2)0.0035 (18)
O30.037 (3)0.018 (2)0.040 (3)0.0029 (17)0.009 (2)0.0050 (18)
O40.039 (3)0.015 (2)0.047 (3)0.0003 (17)0.010 (2)0.0061 (18)
O50.036 (3)0.015 (2)0.043 (3)0.0040 (17)0.001 (2)0.0009 (18)
O60.036 (3)0.019 (2)0.041 (3)0.0026 (17)0.015 (2)0.0006 (18)
O70.042 (3)0.019 (2)0.041 (3)0.0053 (18)0.012 (2)0.0007 (18)
O80.037 (3)0.016 (2)0.039 (3)0.0009 (17)0.005 (2)0.0061 (18)
C10.035 (4)0.021 (3)0.034 (4)0.003 (2)0.006 (3)0.001 (2)
C20.034 (4)0.017 (3)0.040 (4)0.001 (2)0.001 (3)0.001 (3)
C30.039 (4)0.022 (3)0.047 (4)0.001 (3)0.002 (3)0.006 (3)
C40.041 (4)0.024 (3)0.061 (5)0.004 (3)0.002 (4)0.007 (3)
C50.036 (4)0.024 (4)0.074 (6)0.006 (3)0.000 (4)0.016 (3)
C60.037 (4)0.027 (4)0.067 (5)0.002 (3)0.008 (4)0.009 (3)
C70.037 (4)0.020 (3)0.061 (5)0.001 (3)0.006 (3)0.001 (3)
C80.035 (4)0.019 (3)0.045 (4)0.003 (2)0.006 (3)0.003 (3)
C90.038 (4)0.018 (3)0.036 (4)0.004 (2)0.002 (3)0.001 (2)
C100.027 (3)0.029 (3)0.041 (4)0.004 (2)0.003 (3)0.006 (3)
C110.036 (4)0.036 (4)0.042 (4)0.001 (3)0.010 (3)0.002 (3)
C120.051 (5)0.038 (4)0.053 (5)0.004 (3)0.013 (4)0.005 (3)
C130.038 (4)0.066 (6)0.043 (5)0.015 (4)0.012 (3)0.009 (4)
C140.045 (5)0.060 (6)0.052 (5)0.019 (4)0.010 (4)0.009 (4)
C150.042 (4)0.035 (4)0.047 (5)0.005 (3)0.004 (3)0.010 (3)
C160.026 (3)0.020 (3)0.035 (4)0.001 (2)0.000 (3)0.002 (2)
C170.031 (4)0.025 (3)0.035 (4)0.002 (2)0.001 (3)0.001 (3)
C180.027 (4)0.034 (4)0.033 (4)0.004 (3)0.003 (3)0.000 (3)
C190.042 (4)0.033 (4)0.037 (4)0.004 (3)0.005 (3)0.001 (3)
C200.044 (5)0.055 (5)0.032 (4)0.011 (3)0.006 (3)0.002 (3)
C210.044 (5)0.047 (4)0.037 (4)0.019 (3)0.006 (3)0.017 (3)
C220.042 (4)0.034 (4)0.041 (4)0.011 (3)0.006 (3)0.009 (3)
C230.029 (4)0.034 (4)0.032 (4)0.001 (3)0.002 (3)0.009 (3)
C240.029 (4)0.024 (3)0.034 (4)0.002 (2)0.000 (3)0.003 (3)
C250.031 (4)0.024 (3)0.033 (4)0.003 (2)0.000 (3)0.004 (2)
C260.032 (4)0.027 (3)0.037 (4)0.001 (2)0.007 (3)0.002 (3)
C270.041 (4)0.038 (4)0.035 (4)0.002 (3)0.011 (3)0.004 (3)
C280.047 (5)0.036 (4)0.040 (4)0.007 (3)0.000 (3)0.013 (3)
C290.050 (5)0.018 (3)0.052 (5)0.001 (3)0.005 (4)0.009 (3)
C300.038 (4)0.026 (3)0.043 (4)0.003 (3)0.003 (3)0.001 (3)
Cl10.101 (2)0.0601 (17)0.132 (3)0.0052 (15)0.013 (2)0.0314 (17)
Cl20.101 (2)0.102 (2)0.0723 (18)0.0254 (17)0.0329 (16)0.0250 (15)
C310.081 (7)0.075 (7)0.052 (6)0.013 (5)0.016 (5)0.003 (5)
Cl30.0541 (14)0.111 (2)0.0536 (14)0.0061 (13)0.0045 (11)0.0158 (13)
Cl40.0532 (12)0.0462 (11)0.0570 (13)0.0032 (9)0.0097 (10)0.0016 (9)
C320.068 (6)0.056 (5)0.050 (5)0.008 (4)0.001 (4)0.017 (4)
Geometric parameters (Å, º) top
Os1—O11.721 (5)C14—C151.368 (11)
Os1—O21.728 (5)C14—H140.9500
Os1—O32.008 (5)C15—H150.9500
Os1—O62.019 (4)C16—C241.376 (8)
Os1—O72.088 (4)C16—C171.411 (9)
Os1—O42.094 (4)C17—C181.423 (9)
O3—C11.365 (7)C18—C231.389 (9)
O4—C21.284 (8)C18—C191.406 (10)
O5—C91.371 (7)C19—C201.396 (10)
O5—C81.372 (8)C19—H190.9500
O6—C161.368 (7)C20—C211.412 (10)
O7—C171.289 (7)C20—H200.9500
O8—C241.348 (8)C21—C221.362 (11)
O8—C231.365 (8)C21—H210.9500
C1—C91.377 (9)C22—C231.401 (9)
C1—C21.406 (9)C22—H220.9500
C2—C31.436 (8)C24—C251.476 (9)
C3—C81.376 (10)C25—C261.399 (9)
C3—C41.406 (10)C25—C301.410 (9)
C4—C51.385 (9)C26—C271.388 (9)
C4—H40.9500C26—H260.9500
C5—C61.416 (11)C27—C281.377 (9)
C5—H50.9500C27—H270.9500
C6—C71.377 (11)C28—C291.386 (10)
C6—H60.9500C28—H280.9500
C7—C81.404 (8)C29—C301.384 (10)
C7—H70.9500C29—H290.9500
C9—C101.450 (10)C30—H300.9500
C10—C111.410 (9)Cl1—C311.753 (9)
C10—C151.415 (9)Cl2—C311.762 (10)
C11—C121.386 (10)C31—H31A0.9900
C11—H110.9500C31—H31B0.9900
C12—C131.383 (11)Cl3—C321.754 (8)
C12—H120.9500Cl4—C321.743 (9)
C13—C141.396 (11)C32—H32A0.9900
C13—H130.9500C32—H32B0.9900
O1—Os1—O2170.4 (2)C13—C14—H14119.7
O1—Os1—O393.5 (2)C14—C15—C10120.7 (7)
O2—Os1—O392.7 (2)C14—C15—H15119.7
O1—Os1—O693.8 (2)C10—C15—H15119.7
O2—Os1—O692.45 (19)O6—C16—C24122.9 (6)
O3—Os1—O698.57 (17)O6—C16—C17116.7 (5)
O1—Os1—O786.6 (2)C24—C16—C17120.3 (6)
O2—Os1—O787.3 (2)O7—C17—C16119.7 (6)
O3—Os1—O7179.49 (17)O7—C17—C18121.3 (6)
O6—Os1—O780.92 (17)C16—C17—C18119.0 (6)
O1—Os1—O487.8 (2)C23—C18—C19118.4 (6)
O2—Os1—O486.08 (19)C23—C18—C17117.5 (6)
O3—Os1—O480.72 (18)C19—C18—C17124.1 (6)
O6—Os1—O4178.33 (18)C20—C19—C18120.0 (7)
O7—Os1—O499.78 (18)C20—C19—H19120.0
C1—O3—Os1111.5 (4)C18—C19—H19120.0
C2—O4—Os1111.0 (4)C19—C20—C21119.4 (7)
C9—O5—C8121.3 (5)C19—C20—H20120.3
C16—O6—Os1111.7 (4)C21—C20—H20120.3
C17—O7—Os1110.9 (4)C22—C21—C20121.3 (7)
C24—O8—C23121.7 (5)C22—C21—H21119.3
O3—C1—C9122.1 (6)C20—C21—H21119.3
O3—C1—C2117.5 (6)C21—C22—C23118.6 (7)
C9—C1—C2120.3 (6)C21—C22—H22120.7
O4—C2—C1118.8 (5)C23—C22—H22120.7
O4—C2—C3121.5 (6)O8—C23—C18121.5 (6)
C1—C2—C3119.7 (6)O8—C23—C22116.3 (6)
C8—C3—C4119.3 (6)C18—C23—C22122.2 (7)
C8—C3—C2117.3 (7)O8—C24—C16119.8 (6)
C4—C3—C2123.4 (7)O8—C24—C25111.2 (5)
C5—C4—C3119.5 (7)C16—C24—C25129.0 (6)
C5—C4—H4120.2C26—C25—C30118.7 (6)
C3—C4—H4120.2C26—C25—C24121.9 (6)
C4—C5—C6119.6 (7)C30—C25—C24119.4 (6)
C4—C5—H5120.2C27—C26—C25120.0 (6)
C6—C5—H5120.2C27—C26—H26120.0
C7—C6—C5121.5 (7)C25—C26—H26120.0
C7—C6—H6119.2C28—C27—C26121.3 (7)
C5—C6—H6119.2C28—C27—H27119.4
C6—C7—C8117.3 (7)C26—C27—H27119.4
C6—C7—H7121.3C27—C28—C29119.1 (6)
C8—C7—H7121.3C27—C28—H28120.4
O5—C8—C3121.9 (6)C29—C28—H28120.4
O5—C8—C7115.5 (6)C30—C29—C28121.0 (6)
C3—C8—C7122.6 (7)C30—C29—H29119.5
O5—C9—C1119.5 (6)C28—C29—H29119.5
O5—C9—C10112.0 (5)C29—C30—C25119.9 (7)
C1—C9—C10128.5 (6)C29—C30—H30120.0
C11—C10—C15118.0 (7)C25—C30—H30120.0
C11—C10—C9120.9 (6)Cl1—C31—Cl2112.7 (5)
C15—C10—C9121.1 (6)Cl1—C31—H31A109.0
C12—C11—C10120.6 (7)Cl2—C31—H31A109.0
C12—C11—H11119.7Cl1—C31—H31B109.0
C10—C11—H11119.7Cl2—C31—H31B109.0
C13—C12—C11120.2 (8)H31A—C31—H31B107.8
C13—C12—H12119.9Cl4—C32—Cl3113.3 (4)
C11—C12—H12119.9Cl4—C32—H32A108.9
C12—C13—C14119.9 (8)Cl3—C32—H32A108.9
C12—C13—H13120.0Cl4—C32—H32B108.9
C14—C13—H13120.0Cl3—C32—H32B108.9
C15—C14—C13120.6 (7)H32A—C32—H32B107.7
C15—C14—H14119.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O30.952.242.876 (9)124
C26—H26···O60.952.242.910 (8)127
C30—H30···O2i0.952.493.393 (9)158
C31—H31A···O40.992.563.180 (11)121
C31—H31B···O70.992.473.221 (11)133
C32—H32A···O20.992.623.420 (10)138
C32—H32A···O60.992.553.489 (11)158
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors would like to thank Armstrong State University for support of this work.

References

First citationBurvikova, Y. N., Lin'ko, I. V., Venskovii, N. U. & Rybakov, V. B. (2007). Kristallografiya, 52, 830–833.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLynch, W. E., Lintvedt, R. L. & Shui, X. Q. (1991). Inorg. Chem. 30, 1014–1019.  CSD CrossRef CAS Google Scholar
First citationMalin, J. M. (1980). Inorg. Synth. 20, 61–63.  Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStanislas, S., Beauchamp, A. L. & Reber, C. (2000). Inorg. Chem. 39, 2152–2155.  CSD CrossRef PubMed CAS Google Scholar
First citationStruess, A. & Preetz, W. (1998). Z. Naturforsch. Teil B, 53, 823–828.  CAS Google Scholar
First citationSun, Y.-J., Huang, Q.-Q., Tano, T. & Itoh, S. (2013). Inorg. Chem. 52, 10936–10948.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]