metal-organic compounds
Bis(flavonolato-κ2O,O′)dioxidoosmium(VI) dichloromethane disolvate
aDepartment of Chemistry and Physics, Armstrong State University, Savannah, Georgia 31419, USA
*Correspondence e-mail: will.lynch@armstrong.edu
In the trans-dioxidoosmium(VI) flavonolate (flav) complex, [Os(C15H9O3)2O2]·2CH2Cl2 or [Os(flav)2O2]·2CH2Cl2, the two dichloromethane solvent molecules have nonclassical hydrogen-bonding contacts at or greater than 3.18 Å. The pseudo-octahedrally coordinated central metal cation is observed with all donor atoms being oxygen. The Os=O bond lengths are 1.721 (5) and 1.728 (5) Å, with a 170.4 (2)° bond angle. The O—Os bond lengths arising from the flanvonolate ligand are observed to all be slightly over 2.0 Å. The chelate bond angles arising from the flavonolate O atoms with the osmium cation are constrained by the ligand at 80.72 (18) and 80.92 (17)°.
of the title solvatedKeywords: crystal structure; osmium; 3-hydroxyflavone; quercetin dioxygenase.
CCDC reference: 1576643
Structure description
Quercetin 2,3-dioxygenase is a metalloprotein that catalyzes a ring-opening reaction of the polyphenolic heterocycle quercetin. Quercetin (3′,4′,5,7-tetrahydoxyflavonol) undergoes activation at a central metal cation to relase carbon monoxide and produce the corresponding depside. A great deal of attention has been focused recently on small biomimetic complexes that bind flavonol (and its derivatives) to a central metal cation (see, for example, Sun et al., 2013, and references therein). We have extended some of these reports to present the first osmium flavonolate complex reported in the literature. This structure is the third osmyl (trans-OsO22+) complex reported with the equatorial plane being composed of four O-atom donors.
The dioxidoosmium(VI) moiety in the title structure is completed by four O atoms from two flavonolate anions, resulting in a pseudo-octahedrally coordinated central metal cation, with all six donor atoms being oxygen. Previous structures of this type with the trans-disposed osmyl ion comprised of all O atoms in the equatorial plane are moderately rare (Stanislas et al., 2000; Burvikova et al., 2007; Struess & Preetz, 1998). These examples are also of the highly oxidized ligands malonate and oxalate, so a structure of a moderately oxidizable ligand, such as 3-hydroxyflavone, is noteable. The title compound (Fig. 1) crystallizes with two dichloromethane solvent molecules in the The trans Os=O axial bond lengths are 1.721 (5) Å for Os1—O1 and 1.728 (5) Å for Os1—O2. The trans-osmyl bond angle of 170.4 (2)° for O1—Os—O2 is similar to others wherein the structure is not centrosymmetric about the Os atom (see, for example, Lynch et al., 1991). In the equatorial plane lie two anions of the deprotonated 3-hydroxyflavone, which are cis to each other. The Os—O bond lengths found from the ketone are 2.094 (4) Å for Os1—O4 and 2.088 (4) Å for Os1—O7. These are slightly longer than those observed for the deprotonated hydroxy O atoms of 2.008 (5) Å for Os1—O3 and 2.019 (4) Å for Os1—O6. Typically, in a flavonolate–metal complex, the hydroxy(oxygen)-to-metal bond length has been found to be shorter than that for the ketone(oxygen)-to-metal bond length (Sun et al., 2013). In the title compound, the corresponding Δd(Os—O) are 0.086 and 0.069 Å. The chelate bond angle arising from the flavonolate and Os central atom are 80.72 (18)° for O3—Os1—O4 and 80.92 (17)° for O6—Os1—O7. These constrained bond angles are typical for metal–flavonolate chelates.
The two dichloromethane solvent molecules interact with the complex via several weak nonclassical hydrogen-bonding interactions, with donor–acceptor (D⋯A) distances less than or equal to 3.5 Å (Table 1). The C31—O4 interaction length is 3.180 (11) Å, whereas the corresponding C31—O7 distance is 3.221 (11) Å. This single dichloromethane (C31 centered dicholormethane) solvent molecule spans the two flavonolate ligands via its two H atoms. The other solvent spans the opposite side of the equatorial plane using only atom H32A. The C32—O2 interaction length is 3.420 (10) Å, whereas the corresponding C32—O6 is distance 3.489 (11) Å (Fig. 2).
Synthesis and crystallization
0.100 g of K2OsO2(OH)4 (0.271 mmol) (Malin, 1980) was dissolved in approximately 20 mL of methanol under an ambient atmosphere. The solution turned royal blue as the potassium osmate dissolved. A second solution was made by dissolving 0.129 g of 3-hydroxyflavone (Hflav) (0.543 mmol) and 0.066 g of benzoic acid (0.543 mmol) in 20 mL of methanol. After dissolution, the solutions were mixed into one portion. The combined reaction mixture turned red, and a precipitate formed immediately. The solution was stirred for 10 min, filtered, washed with methanol and diethyl ether, and dried under vacuum. The yield of the crude red solid was 0.156 g. The solid product was dissolved in dichloromethane and deep-red–brown crystals were grown by slow evaporation of the solvent; the final yield of [OsO2(flav)2]·CH2Cl2 was 0.082 g (35%).
Refinement
Crystal data, data collection and structure . Three reflections with (Iobs− Icalc)/σ > 10 were removed.
details are summarized in Table 2Structural data
CCDC reference: 1576643
https://doi.org/10.1107/S2414314617013918/wm4056sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617013918/wm4056Isup2.hkl
Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell
CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Os(C15H9O3)2O2]·2CH2Cl2 | F(000) = 1688 |
Mr = 866.49 | Dx = 1.868 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.523 (1) Å | Cell parameters from 7657 reflections |
b = 17.041 (2) Å | θ = 1.9–27.5° |
c = 21.255 (2) Å | µ = 4.54 mm−1 |
β = 93.565 (3)° | T = 173 K |
V = 3081 (1) Å3 | Prism, dark red-brown |
Z = 4 | 0.24 × 0.18 × 0.16 mm |
Rigaku XtalLab mini CCD diffractometer | 5602 reflections with I > 2σ(I) |
ω scans | Rint = 0.116 |
Absorption correction: multi-scan (REQAB; Rigaku, 1998) | θmax = 27.5°, θmin = 1.9° |
Tmin = 0.613, Tmax = 0.765 | h = −11→11 |
32224 measured reflections | k = −22→22 |
7032 independent reflections | l = −27→27 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.049 | H-atom parameters constrained |
wR(F2) = 0.116 | w = 1/[σ2(Fo2) + (0.026P)2 + 4.729P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max = 0.001 |
7032 reflections | Δρmax = 1.85 e Å−3 |
406 parameters | Δρmin = −2.79 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All H atoms were positioned geometrically and refined as riding, with C—H = 0.95 or 0.98 Å and Uiso(H) = 1.2Ueq(C). |
x | y | z | Uiso*/Ueq | ||
Os1 | 0.48652 (3) | 0.51111 (2) | 0.27829 (2) | 0.02737 (9) | |
O1 | 0.6279 (6) | 0.5216 (3) | 0.3391 (2) | 0.0400 (12) | |
O2 | 0.3256 (6) | 0.4939 (2) | 0.2266 (2) | 0.0358 (11) | |
O3 | 0.6350 (5) | 0.4595 (2) | 0.2213 (2) | 0.0314 (10) | |
O4 | 0.4613 (5) | 0.3945 (2) | 0.3069 (2) | 0.0337 (11) | |
O5 | 0.6944 (5) | 0.2514 (2) | 0.1929 (2) | 0.0315 (10) | |
O6 | 0.5081 (5) | 0.6228 (2) | 0.2482 (2) | 0.0315 (10) | |
O7 | 0.3324 (5) | 0.5657 (2) | 0.3371 (2) | 0.0336 (10) | |
O8 | 0.3221 (5) | 0.7994 (2) | 0.3028 (2) | 0.0309 (10) | |
C1 | 0.6308 (8) | 0.3796 (3) | 0.2266 (3) | 0.0303 (14) | |
C2 | 0.5357 (8) | 0.3477 (3) | 0.2719 (3) | 0.0305 (14) | |
C3 | 0.5208 (8) | 0.2640 (4) | 0.2771 (3) | 0.0360 (16) | |
C4 | 0.4271 (9) | 0.2272 (4) | 0.3206 (4) | 0.0421 (18) | |
H4 | 0.374111 | 0.257647 | 0.350157 | 0.051* | |
C5 | 0.4126 (8) | 0.1462 (4) | 0.3201 (4) | 0.0448 (19) | |
H5 | 0.348633 | 0.120842 | 0.348916 | 0.054* | |
C6 | 0.4938 (8) | 0.1015 (4) | 0.2762 (4) | 0.0441 (19) | |
H6 | 0.481459 | 0.046136 | 0.275451 | 0.053* | |
C7 | 0.5901 (8) | 0.1365 (4) | 0.2348 (4) | 0.0396 (17) | |
H7 | 0.647215 | 0.106259 | 0.206426 | 0.048* | |
C8 | 0.6005 (8) | 0.2187 (4) | 0.2361 (3) | 0.0333 (15) | |
C9 | 0.7097 (8) | 0.3311 (3) | 0.1875 (3) | 0.0309 (14) | |
C10 | 0.8096 (7) | 0.3527 (4) | 0.1375 (3) | 0.0324 (15) | |
C11 | 0.8723 (8) | 0.4290 (4) | 0.1340 (3) | 0.0378 (16) | |
H11 | 0.846246 | 0.467443 | 0.164045 | 0.045* | |
C12 | 0.9715 (10) | 0.4486 (5) | 0.0872 (4) | 0.0473 (19) | |
H12 | 1.013997 | 0.500057 | 0.085599 | 0.057* | |
C13 | 1.0090 (9) | 0.3934 (5) | 0.0428 (4) | 0.049 (2) | |
H13 | 1.075930 | 0.407190 | 0.010460 | 0.059* | |
C14 | 0.9482 (10) | 0.3176 (5) | 0.0456 (4) | 0.052 (2) | |
H14 | 0.974602 | 0.279715 | 0.015201 | 0.063* | |
C15 | 0.8510 (9) | 0.2972 (4) | 0.0918 (4) | 0.0415 (17) | |
H15 | 0.810849 | 0.245240 | 0.093262 | 0.050* | |
C16 | 0.4203 (7) | 0.6736 (3) | 0.2813 (3) | 0.0270 (13) | |
C17 | 0.3310 (8) | 0.6406 (4) | 0.3284 (3) | 0.0303 (14) | |
C18 | 0.2405 (8) | 0.6910 (4) | 0.3653 (3) | 0.0314 (14) | |
C19 | 0.1505 (8) | 0.6651 (4) | 0.4145 (3) | 0.0371 (16) | |
H19 | 0.147408 | 0.610917 | 0.424767 | 0.045* | |
C20 | 0.0658 (9) | 0.7191 (5) | 0.4484 (3) | 0.0439 (18) | |
H20 | 0.005498 | 0.701891 | 0.481912 | 0.053* | |
C21 | 0.0706 (9) | 0.7994 (4) | 0.4324 (3) | 0.0432 (19) | |
H21 | 0.013035 | 0.836124 | 0.455526 | 0.052* | |
C22 | 0.1561 (9) | 0.8254 (4) | 0.3845 (3) | 0.0386 (16) | |
H22 | 0.158238 | 0.879587 | 0.374028 | 0.046* | |
C23 | 0.2408 (8) | 0.7706 (4) | 0.3511 (3) | 0.0317 (14) | |
C24 | 0.4097 (8) | 0.7525 (4) | 0.2679 (3) | 0.0293 (14) | |
C25 | 0.4792 (8) | 0.7970 (4) | 0.2169 (3) | 0.0295 (14) | |
C26 | 0.5772 (8) | 0.7613 (4) | 0.1749 (3) | 0.0315 (14) | |
H26 | 0.599592 | 0.706839 | 0.178319 | 0.038* | |
C27 | 0.6417 (8) | 0.8056 (4) | 0.1282 (3) | 0.0375 (16) | |
H27 | 0.706811 | 0.780772 | 0.099439 | 0.045* | |
C28 | 0.6132 (9) | 0.8850 (4) | 0.1227 (3) | 0.0411 (17) | |
H28 | 0.660083 | 0.914895 | 0.091133 | 0.049* | |
C29 | 0.5153 (9) | 0.9206 (4) | 0.1638 (4) | 0.0398 (17) | |
H29 | 0.493774 | 0.975128 | 0.159809 | 0.048* | |
C30 | 0.4482 (8) | 0.8779 (4) | 0.2106 (3) | 0.0355 (15) | |
H30 | 0.381369 | 0.903213 | 0.238503 | 0.043* | |
Cl1 | 0.5133 (4) | 0.37694 (16) | 0.47783 (17) | 0.0986 (10) | |
Cl2 | 0.2072 (4) | 0.44771 (18) | 0.49726 (13) | 0.0908 (9) | |
C31 | 0.3557 (12) | 0.4323 (6) | 0.4445 (4) | 0.069 (3) | |
H31A | 0.310036 | 0.404778 | 0.406660 | 0.082* | |
H31B | 0.395507 | 0.483724 | 0.430934 | 0.082* | |
Cl3 | 0.3489 (3) | 0.56545 (17) | 0.04430 (11) | 0.0729 (7) | |
Cl4 | 0.6777 (2) | 0.60300 (12) | 0.07876 (10) | 0.0519 (5) | |
C32 | 0.5139 (10) | 0.5474 (5) | 0.0958 (4) | 0.058 (2) | |
H32A | 0.486664 | 0.558914 | 0.139420 | 0.070* | |
H32B | 0.541291 | 0.491028 | 0.093663 | 0.070* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Os1 | 0.03312 (16) | 0.01694 (13) | 0.03253 (16) | 0.00219 (9) | 0.00586 (11) | 0.00099 (9) |
O1 | 0.054 (3) | 0.025 (2) | 0.042 (3) | 0.003 (2) | 0.008 (2) | −0.002 (2) |
O2 | 0.046 (3) | 0.023 (2) | 0.039 (3) | 0.0004 (19) | 0.005 (2) | 0.0035 (18) |
O3 | 0.037 (3) | 0.018 (2) | 0.040 (3) | 0.0029 (17) | 0.009 (2) | 0.0050 (18) |
O4 | 0.039 (3) | 0.015 (2) | 0.047 (3) | 0.0003 (17) | 0.010 (2) | 0.0061 (18) |
O5 | 0.036 (3) | 0.015 (2) | 0.043 (3) | 0.0040 (17) | 0.001 (2) | −0.0009 (18) |
O6 | 0.036 (3) | 0.019 (2) | 0.041 (3) | 0.0026 (17) | 0.015 (2) | 0.0006 (18) |
O7 | 0.042 (3) | 0.019 (2) | 0.041 (3) | 0.0053 (18) | 0.012 (2) | 0.0007 (18) |
O8 | 0.037 (3) | 0.016 (2) | 0.039 (3) | 0.0009 (17) | 0.005 (2) | −0.0061 (18) |
C1 | 0.035 (4) | 0.021 (3) | 0.034 (4) | 0.003 (2) | −0.006 (3) | −0.001 (2) |
C2 | 0.034 (4) | 0.017 (3) | 0.040 (4) | −0.001 (2) | −0.001 (3) | 0.001 (3) |
C3 | 0.039 (4) | 0.022 (3) | 0.047 (4) | 0.001 (3) | −0.002 (3) | 0.006 (3) |
C4 | 0.041 (4) | 0.024 (3) | 0.061 (5) | 0.004 (3) | −0.002 (4) | 0.007 (3) |
C5 | 0.036 (4) | 0.024 (4) | 0.074 (6) | −0.006 (3) | 0.000 (4) | 0.016 (3) |
C6 | 0.037 (4) | 0.027 (4) | 0.067 (5) | −0.002 (3) | −0.008 (4) | 0.009 (3) |
C7 | 0.037 (4) | 0.020 (3) | 0.061 (5) | −0.001 (3) | −0.006 (3) | −0.001 (3) |
C8 | 0.035 (4) | 0.019 (3) | 0.045 (4) | −0.003 (2) | −0.006 (3) | 0.003 (3) |
C9 | 0.038 (4) | 0.018 (3) | 0.036 (4) | 0.004 (2) | −0.002 (3) | −0.001 (2) |
C10 | 0.027 (3) | 0.029 (3) | 0.041 (4) | 0.004 (2) | −0.003 (3) | 0.006 (3) |
C11 | 0.036 (4) | 0.036 (4) | 0.042 (4) | 0.001 (3) | 0.010 (3) | −0.002 (3) |
C12 | 0.051 (5) | 0.038 (4) | 0.053 (5) | 0.004 (3) | 0.013 (4) | 0.005 (3) |
C13 | 0.038 (4) | 0.066 (6) | 0.043 (5) | 0.015 (4) | 0.012 (3) | 0.009 (4) |
C14 | 0.045 (5) | 0.060 (6) | 0.052 (5) | 0.019 (4) | 0.010 (4) | −0.009 (4) |
C15 | 0.042 (4) | 0.035 (4) | 0.047 (5) | 0.005 (3) | −0.004 (3) | −0.010 (3) |
C16 | 0.026 (3) | 0.020 (3) | 0.035 (4) | −0.001 (2) | 0.000 (3) | 0.002 (2) |
C17 | 0.031 (4) | 0.025 (3) | 0.035 (4) | 0.002 (2) | 0.001 (3) | 0.001 (3) |
C18 | 0.027 (4) | 0.034 (4) | 0.033 (4) | 0.004 (3) | 0.003 (3) | 0.000 (3) |
C19 | 0.042 (4) | 0.033 (4) | 0.037 (4) | 0.004 (3) | 0.005 (3) | 0.001 (3) |
C20 | 0.044 (5) | 0.055 (5) | 0.032 (4) | 0.011 (3) | 0.006 (3) | −0.002 (3) |
C21 | 0.044 (5) | 0.047 (4) | 0.037 (4) | 0.019 (3) | −0.006 (3) | −0.017 (3) |
C22 | 0.042 (4) | 0.034 (4) | 0.041 (4) | 0.011 (3) | 0.006 (3) | −0.009 (3) |
C23 | 0.029 (4) | 0.034 (4) | 0.032 (4) | 0.001 (3) | 0.002 (3) | −0.009 (3) |
C24 | 0.029 (4) | 0.024 (3) | 0.034 (4) | 0.002 (2) | 0.000 (3) | −0.003 (3) |
C25 | 0.031 (4) | 0.024 (3) | 0.033 (4) | −0.003 (2) | 0.000 (3) | −0.004 (2) |
C26 | 0.032 (4) | 0.027 (3) | 0.037 (4) | −0.001 (2) | 0.007 (3) | −0.002 (3) |
C27 | 0.041 (4) | 0.038 (4) | 0.035 (4) | 0.002 (3) | 0.011 (3) | 0.004 (3) |
C28 | 0.047 (5) | 0.036 (4) | 0.040 (4) | −0.007 (3) | 0.000 (3) | 0.013 (3) |
C29 | 0.050 (5) | 0.018 (3) | 0.052 (5) | 0.001 (3) | 0.005 (4) | 0.009 (3) |
C30 | 0.038 (4) | 0.026 (3) | 0.043 (4) | −0.003 (3) | 0.003 (3) | −0.001 (3) |
Cl1 | 0.101 (2) | 0.0601 (17) | 0.132 (3) | 0.0052 (15) | −0.013 (2) | 0.0314 (17) |
Cl2 | 0.101 (2) | 0.102 (2) | 0.0723 (18) | −0.0254 (17) | 0.0329 (16) | −0.0250 (15) |
C31 | 0.081 (7) | 0.075 (7) | 0.052 (6) | 0.013 (5) | 0.016 (5) | 0.003 (5) |
Cl3 | 0.0541 (14) | 0.111 (2) | 0.0536 (14) | −0.0061 (13) | 0.0045 (11) | 0.0158 (13) |
Cl4 | 0.0532 (12) | 0.0462 (11) | 0.0570 (13) | 0.0032 (9) | 0.0097 (10) | −0.0016 (9) |
C32 | 0.068 (6) | 0.056 (5) | 0.050 (5) | −0.008 (4) | −0.001 (4) | 0.017 (4) |
Os1—O1 | 1.721 (5) | C14—C15 | 1.368 (11) |
Os1—O2 | 1.728 (5) | C14—H14 | 0.9500 |
Os1—O3 | 2.008 (5) | C15—H15 | 0.9500 |
Os1—O6 | 2.019 (4) | C16—C24 | 1.376 (8) |
Os1—O7 | 2.088 (4) | C16—C17 | 1.411 (9) |
Os1—O4 | 2.094 (4) | C17—C18 | 1.423 (9) |
O3—C1 | 1.365 (7) | C18—C23 | 1.389 (9) |
O4—C2 | 1.284 (8) | C18—C19 | 1.406 (10) |
O5—C9 | 1.371 (7) | C19—C20 | 1.396 (10) |
O5—C8 | 1.372 (8) | C19—H19 | 0.9500 |
O6—C16 | 1.368 (7) | C20—C21 | 1.412 (10) |
O7—C17 | 1.289 (7) | C20—H20 | 0.9500 |
O8—C24 | 1.348 (8) | C21—C22 | 1.362 (11) |
O8—C23 | 1.365 (8) | C21—H21 | 0.9500 |
C1—C9 | 1.377 (9) | C22—C23 | 1.401 (9) |
C1—C2 | 1.406 (9) | C22—H22 | 0.9500 |
C2—C3 | 1.436 (8) | C24—C25 | 1.476 (9) |
C3—C8 | 1.376 (10) | C25—C26 | 1.399 (9) |
C3—C4 | 1.406 (10) | C25—C30 | 1.410 (9) |
C4—C5 | 1.385 (9) | C26—C27 | 1.388 (9) |
C4—H4 | 0.9500 | C26—H26 | 0.9500 |
C5—C6 | 1.416 (11) | C27—C28 | 1.377 (9) |
C5—H5 | 0.9500 | C27—H27 | 0.9500 |
C6—C7 | 1.377 (11) | C28—C29 | 1.386 (10) |
C6—H6 | 0.9500 | C28—H28 | 0.9500 |
C7—C8 | 1.404 (8) | C29—C30 | 1.384 (10) |
C7—H7 | 0.9500 | C29—H29 | 0.9500 |
C9—C10 | 1.450 (10) | C30—H30 | 0.9500 |
C10—C11 | 1.410 (9) | Cl1—C31 | 1.753 (9) |
C10—C15 | 1.415 (9) | Cl2—C31 | 1.762 (10) |
C11—C12 | 1.386 (10) | C31—H31A | 0.9900 |
C11—H11 | 0.9500 | C31—H31B | 0.9900 |
C12—C13 | 1.383 (11) | Cl3—C32 | 1.754 (8) |
C12—H12 | 0.9500 | Cl4—C32 | 1.743 (9) |
C13—C14 | 1.396 (11) | C32—H32A | 0.9900 |
C13—H13 | 0.9500 | C32—H32B | 0.9900 |
O1—Os1—O2 | 170.4 (2) | C13—C14—H14 | 119.7 |
O1—Os1—O3 | 93.5 (2) | C14—C15—C10 | 120.7 (7) |
O2—Os1—O3 | 92.7 (2) | C14—C15—H15 | 119.7 |
O1—Os1—O6 | 93.8 (2) | C10—C15—H15 | 119.7 |
O2—Os1—O6 | 92.45 (19) | O6—C16—C24 | 122.9 (6) |
O3—Os1—O6 | 98.57 (17) | O6—C16—C17 | 116.7 (5) |
O1—Os1—O7 | 86.6 (2) | C24—C16—C17 | 120.3 (6) |
O2—Os1—O7 | 87.3 (2) | O7—C17—C16 | 119.7 (6) |
O3—Os1—O7 | 179.49 (17) | O7—C17—C18 | 121.3 (6) |
O6—Os1—O7 | 80.92 (17) | C16—C17—C18 | 119.0 (6) |
O1—Os1—O4 | 87.8 (2) | C23—C18—C19 | 118.4 (6) |
O2—Os1—O4 | 86.08 (19) | C23—C18—C17 | 117.5 (6) |
O3—Os1—O4 | 80.72 (18) | C19—C18—C17 | 124.1 (6) |
O6—Os1—O4 | 178.33 (18) | C20—C19—C18 | 120.0 (7) |
O7—Os1—O4 | 99.78 (18) | C20—C19—H19 | 120.0 |
C1—O3—Os1 | 111.5 (4) | C18—C19—H19 | 120.0 |
C2—O4—Os1 | 111.0 (4) | C19—C20—C21 | 119.4 (7) |
C9—O5—C8 | 121.3 (5) | C19—C20—H20 | 120.3 |
C16—O6—Os1 | 111.7 (4) | C21—C20—H20 | 120.3 |
C17—O7—Os1 | 110.9 (4) | C22—C21—C20 | 121.3 (7) |
C24—O8—C23 | 121.7 (5) | C22—C21—H21 | 119.3 |
O3—C1—C9 | 122.1 (6) | C20—C21—H21 | 119.3 |
O3—C1—C2 | 117.5 (6) | C21—C22—C23 | 118.6 (7) |
C9—C1—C2 | 120.3 (6) | C21—C22—H22 | 120.7 |
O4—C2—C1 | 118.8 (5) | C23—C22—H22 | 120.7 |
O4—C2—C3 | 121.5 (6) | O8—C23—C18 | 121.5 (6) |
C1—C2—C3 | 119.7 (6) | O8—C23—C22 | 116.3 (6) |
C8—C3—C4 | 119.3 (6) | C18—C23—C22 | 122.2 (7) |
C8—C3—C2 | 117.3 (7) | O8—C24—C16 | 119.8 (6) |
C4—C3—C2 | 123.4 (7) | O8—C24—C25 | 111.2 (5) |
C5—C4—C3 | 119.5 (7) | C16—C24—C25 | 129.0 (6) |
C5—C4—H4 | 120.2 | C26—C25—C30 | 118.7 (6) |
C3—C4—H4 | 120.2 | C26—C25—C24 | 121.9 (6) |
C4—C5—C6 | 119.6 (7) | C30—C25—C24 | 119.4 (6) |
C4—C5—H5 | 120.2 | C27—C26—C25 | 120.0 (6) |
C6—C5—H5 | 120.2 | C27—C26—H26 | 120.0 |
C7—C6—C5 | 121.5 (7) | C25—C26—H26 | 120.0 |
C7—C6—H6 | 119.2 | C28—C27—C26 | 121.3 (7) |
C5—C6—H6 | 119.2 | C28—C27—H27 | 119.4 |
C6—C7—C8 | 117.3 (7) | C26—C27—H27 | 119.4 |
C6—C7—H7 | 121.3 | C27—C28—C29 | 119.1 (6) |
C8—C7—H7 | 121.3 | C27—C28—H28 | 120.4 |
O5—C8—C3 | 121.9 (6) | C29—C28—H28 | 120.4 |
O5—C8—C7 | 115.5 (6) | C30—C29—C28 | 121.0 (6) |
C3—C8—C7 | 122.6 (7) | C30—C29—H29 | 119.5 |
O5—C9—C1 | 119.5 (6) | C28—C29—H29 | 119.5 |
O5—C9—C10 | 112.0 (5) | C29—C30—C25 | 119.9 (7) |
C1—C9—C10 | 128.5 (6) | C29—C30—H30 | 120.0 |
C11—C10—C15 | 118.0 (7) | C25—C30—H30 | 120.0 |
C11—C10—C9 | 120.9 (6) | Cl1—C31—Cl2 | 112.7 (5) |
C15—C10—C9 | 121.1 (6) | Cl1—C31—H31A | 109.0 |
C12—C11—C10 | 120.6 (7) | Cl2—C31—H31A | 109.0 |
C12—C11—H11 | 119.7 | Cl1—C31—H31B | 109.0 |
C10—C11—H11 | 119.7 | Cl2—C31—H31B | 109.0 |
C13—C12—C11 | 120.2 (8) | H31A—C31—H31B | 107.8 |
C13—C12—H12 | 119.9 | Cl4—C32—Cl3 | 113.3 (4) |
C11—C12—H12 | 119.9 | Cl4—C32—H32A | 108.9 |
C12—C13—C14 | 119.9 (8) | Cl3—C32—H32A | 108.9 |
C12—C13—H13 | 120.0 | Cl4—C32—H32B | 108.9 |
C14—C13—H13 | 120.0 | Cl3—C32—H32B | 108.9 |
C15—C14—C13 | 120.6 (7) | H32A—C32—H32B | 107.7 |
C15—C14—H14 | 119.7 |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11···O3 | 0.95 | 2.24 | 2.876 (9) | 124 |
C26—H26···O6 | 0.95 | 2.24 | 2.910 (8) | 127 |
C30—H30···O2i | 0.95 | 2.49 | 3.393 (9) | 158 |
C31—H31A···O4 | 0.99 | 2.56 | 3.180 (11) | 121 |
C31—H31B···O7 | 0.99 | 2.47 | 3.221 (11) | 133 |
C32—H32A···O2 | 0.99 | 2.62 | 3.420 (10) | 138 |
C32—H32A···O6 | 0.99 | 2.55 | 3.489 (11) | 158 |
Symmetry code: (i) −x+1/2, y+1/2, −z+1/2. |
Acknowledgements
The authors would like to thank Armstrong State University for support of this work.
References
Burvikova, Y. N., Lin'ko, I. V., Venskovii, N. U. & Rybakov, V. B. (2007). Kristallografiya, 52, 830–833. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Lynch, W. E., Lintvedt, R. L. & Shui, X. Q. (1991). Inorg. Chem. 30, 1014–1019. CSD CrossRef CAS Google Scholar
Malin, J. M. (1980). Inorg. Synth. 20, 61–63. Google Scholar
Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stanislas, S., Beauchamp, A. L. & Reber, C. (2000). Inorg. Chem. 39, 2152–2155. CSD CrossRef PubMed CAS Google Scholar
Struess, A. & Preetz, W. (1998). Z. Naturforsch. Teil B, 53, 823–828. CAS Google Scholar
Sun, Y.-J., Huang, Q.-Q., Tano, T. & Itoh, S. (2013). Inorg. Chem. 52, 10936–10948. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.