organic compounds
1-Methyl-4-phenyl-1H-pyrazolo[3,4-d]pyrimidine
aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche Des Sciences des Médicaments, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: elhafi.mohamed1@gmail.com
In the crystal, molecules of the title compound, C12H10N4, stack in a head-to-tail manner along the b direction through π–π stacking interactions between both portions of the pyrazolopyrimidine ring system.
Keywords: crystal structure; π–π stacking; pyrimidine.
CCDC reference: 1570983
Structure description
During the last decade, considerable interest has been paid to the chemistry of pyrazolo[3,4-d]pyrimidines. This is undoubtedly due to a broad variety of biological activities of pyrazolo[3,4-d]pyrimidine derivatives, such as their action as antitubercular (Trivedi et al., 2012), antibacterial (Rostamizadeh et al., 2013) and antitumor agents (Intori et al., 2015). The present work is a continuation of the investigation of pyrazolo[3,4-d]pyrimidine derivatives reported by our team (Alsubari et al., 2011).
The fused heterobicyclic ring system (Fig. 1) shows maximum deviations of 0.0257 (1) and −0.0270 (1) Å from the least-squares plane through the nine atoms (r.m.s. deviation = 0.0209 Å). The dihedral angle between this plane and that of the phenyl ring is 33.43 (4)°. In the crystal, molecules stack along the b-axis direction in a head-to-tail fashion through π–π stacking interactions of the bicyclic core (Fig. 2). The dihedral angle between the five- and six-membered rings in each interaction is 2.30 (7)°, while the centroid–centroid distances alternate between 3.509 (1) and 3.645 (1) Å along the stack. In addition, there are C8—H8⋯π(ring) (ring = C7–C12, H⋯centroid = 2.93 Å and C—H⋯centroid = 148°) interactions on the outside of the stacks which are responsible in part for the orientation of the phenyl ring relative to the bicyclic core (Fig. 3).
Synthesis and crystallization
To a microwave vial was added 1-methyl-4-chloro-1H-pyrazolo[3,4-d]pyrimidine (50 mg, 0.3 mmol), phenylboronic acid (40.23 mg, 0.33 mmol), K2CO3 (124.38 mg, 0.9 mmol), [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II) or PdCl2(dppf) (22 mg, 0.03 mmol), THF (3 ml) and H2O (10 µl). The reaction mixture was heated with stirring in a microwave reactor at 443 K for 10 min. The crude reaction mixture was passed through a small silica-gel plug, eluting with EtOAc, and the crude material was purified by silica-gel (0 to 10% EtOAc gradient in hexanes). The title compound was recrystallized from ethanol, at room temperature, giving colourless crystals (yield 80%; m.p. 388–390 K).
Refinement
data are presented in Table 1Structural data
CCDC reference: 1570983
https://doi.org/10.1107/S241431461701238X/vm4027sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431461701238X/vm4027Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S241431461701238X/vm4027Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S241431461701238X/vm4027Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Bruker, 2016).C12H10N4 | Dx = 1.313 Mg m−3 |
Mr = 210.24 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 4337 reflections |
a = 14.6205 (10) Å | θ = 2.4–24.3° |
b = 7.1497 (5) Å | µ = 0.08 mm−1 |
c = 20.3532 (15) Å | T = 296 K |
V = 2127.6 (3) Å3 | Column, colourless |
Z = 8 | 0.29 × 0.20 × 0.16 mm |
F(000) = 880 |
Bruker SMART APEX CCD diffractometer | 2639 independent reflections |
Radiation source: fine-focus sealed tube | 1725 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.043 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 28.3°, θmin = 2.0° |
φ and ω scans | h = −19→19 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −9→9 |
Tmin = 0.86, Tmax = 0.99 | l = −27→26 |
18616 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.139 | w = 1/[σ2(Fo2) + (0.0655P)2 + 0.1279P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
2639 reflections | Δρmax = 0.20 e Å−3 |
147 parameters | Δρmin = −0.14 e Å−3 |
0 restraints | Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0053 (13) |
Experimental. The diffraction data were collected in three sets of 363 frames (0.5° width in ω) at φ = 0, 120 and 240°. A scan time of 40 sec/frame was used. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.93 - 0.97 Å). All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.40768 (7) | 0.80901 (19) | 0.41811 (6) | 0.0650 (4) | |
N2 | 0.31476 (8) | 0.87710 (17) | 0.51276 (6) | 0.0621 (3) | |
N3 | 0.15455 (7) | 0.85635 (16) | 0.49050 (6) | 0.0582 (3) | |
N4 | 0.09970 (8) | 0.8116 (2) | 0.43846 (6) | 0.0670 (4) | |
C1 | 0.24717 (8) | 0.80131 (17) | 0.40626 (6) | 0.0475 (3) | |
C2 | 0.33514 (9) | 0.78419 (17) | 0.37892 (7) | 0.0505 (3) | |
C3 | 0.39276 (10) | 0.8529 (2) | 0.48141 (8) | 0.0704 (4) | |
H3 | 0.4451 | 0.8685 | 0.5068 | 0.084* | |
C4 | 0.24321 (8) | 0.84873 (17) | 0.47294 (7) | 0.0493 (3) | |
C5 | 0.15443 (9) | 0.77896 (19) | 0.38832 (7) | 0.0574 (4) | |
H5 | 0.1346 | 0.7455 | 0.3465 | 0.069* | |
C6 | 0.11689 (12) | 0.8901 (3) | 0.55525 (7) | 0.0776 (5) | |
H6A | 0.0636 | 0.9678 | 0.5515 | 0.116* | |
H6B | 0.1617 | 0.9519 | 0.5820 | 0.116* | |
H6C | 0.1004 | 0.7731 | 0.5751 | 0.116* | |
C7 | 0.35299 (10) | 0.73913 (17) | 0.30951 (6) | 0.0546 (4) | |
C8 | 0.29471 (11) | 0.7977 (2) | 0.26000 (7) | 0.0671 (4) | |
H8 | 0.2427 | 0.8664 | 0.2705 | 0.081* | |
C9 | 0.31320 (15) | 0.7549 (3) | 0.19521 (8) | 0.0852 (6) | |
H9 | 0.2741 | 0.7961 | 0.1622 | 0.102* | |
C10 | 0.38869 (16) | 0.6522 (3) | 0.17949 (9) | 0.0936 (6) | |
H10 | 0.4003 | 0.6219 | 0.1358 | 0.112* | |
C11 | 0.44746 (14) | 0.5936 (2) | 0.22764 (9) | 0.0861 (5) | |
H11 | 0.4990 | 0.5242 | 0.2166 | 0.103* | |
C12 | 0.43046 (10) | 0.6371 (2) | 0.29249 (7) | 0.0665 (4) | |
H12 | 0.4709 | 0.5981 | 0.3250 | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0461 (7) | 0.0821 (9) | 0.0667 (7) | 0.0000 (5) | −0.0014 (5) | −0.0019 (6) |
N2 | 0.0523 (7) | 0.0758 (8) | 0.0583 (7) | −0.0049 (5) | −0.0055 (5) | −0.0033 (6) |
N3 | 0.0458 (6) | 0.0708 (7) | 0.0580 (7) | −0.0006 (5) | 0.0031 (5) | −0.0006 (5) |
N4 | 0.0459 (7) | 0.0877 (9) | 0.0675 (8) | −0.0034 (6) | −0.0042 (5) | 0.0008 (6) |
C1 | 0.0454 (7) | 0.0433 (6) | 0.0538 (7) | −0.0003 (5) | −0.0030 (5) | 0.0033 (5) |
C2 | 0.0474 (7) | 0.0452 (7) | 0.0588 (7) | 0.0016 (5) | −0.0006 (6) | 0.0041 (5) |
C3 | 0.0483 (8) | 0.0932 (11) | 0.0697 (9) | −0.0054 (7) | −0.0108 (7) | −0.0041 (8) |
C4 | 0.0459 (7) | 0.0468 (7) | 0.0553 (7) | −0.0011 (5) | −0.0017 (6) | 0.0032 (5) |
C5 | 0.0494 (7) | 0.0650 (9) | 0.0578 (8) | −0.0032 (6) | −0.0061 (6) | 0.0011 (6) |
C6 | 0.0628 (9) | 0.1040 (13) | 0.0661 (10) | 0.0007 (9) | 0.0138 (7) | −0.0065 (8) |
C7 | 0.0588 (8) | 0.0477 (7) | 0.0573 (8) | −0.0024 (5) | 0.0073 (6) | 0.0046 (6) |
C8 | 0.0747 (10) | 0.0648 (9) | 0.0619 (9) | 0.0045 (7) | 0.0022 (7) | 0.0096 (7) |
C9 | 0.1075 (15) | 0.0887 (13) | 0.0592 (10) | −0.0010 (10) | 0.0010 (9) | 0.0129 (9) |
C10 | 0.1308 (17) | 0.0880 (12) | 0.0620 (10) | −0.0013 (12) | 0.0268 (11) | 0.0010 (9) |
C11 | 0.1003 (13) | 0.0744 (11) | 0.0835 (11) | 0.0083 (9) | 0.0372 (10) | 0.0005 (9) |
C12 | 0.0638 (9) | 0.0646 (9) | 0.0712 (10) | 0.0051 (7) | 0.0152 (7) | 0.0054 (7) |
N1—C2 | 1.3388 (17) | C6—H6A | 0.9600 |
N1—C3 | 1.344 (2) | C6—H6B | 0.9600 |
N2—C3 | 1.3181 (18) | C6—H6C | 0.9600 |
N2—C4 | 1.3387 (17) | C7—C8 | 1.385 (2) |
N3—C4 | 1.3458 (16) | C7—C12 | 1.391 (2) |
N3—N4 | 1.3665 (16) | C8—C9 | 1.380 (2) |
N3—C6 | 1.4486 (18) | C8—H8 | 0.9300 |
N4—C5 | 1.3176 (18) | C9—C10 | 1.363 (3) |
C1—C4 | 1.4001 (19) | C9—H9 | 0.9300 |
C1—C2 | 1.4068 (18) | C10—C11 | 1.369 (3) |
C1—C5 | 1.4132 (18) | C10—H10 | 0.9300 |
C2—C7 | 1.4722 (19) | C11—C12 | 1.379 (2) |
C3—H3 | 0.9300 | C11—H11 | 0.9300 |
C5—H5 | 0.9300 | C12—H12 | 0.9300 |
C2—N1—C3 | 118.27 (11) | H6A—C6—H6B | 109.5 |
C3—N2—C4 | 111.29 (12) | N3—C6—H6C | 109.5 |
C4—N3—N4 | 110.49 (11) | H6A—C6—H6C | 109.5 |
C4—N3—C6 | 127.91 (12) | H6B—C6—H6C | 109.5 |
N4—N3—C6 | 121.42 (12) | C8—C7—C12 | 118.58 (13) |
C5—N4—N3 | 106.58 (11) | C8—C7—C2 | 121.55 (13) |
C4—C1—C2 | 116.25 (11) | C12—C7—C2 | 119.87 (13) |
C4—C1—C5 | 103.78 (11) | C9—C8—C7 | 120.51 (16) |
C2—C1—C5 | 139.92 (13) | C9—C8—H8 | 119.7 |
N1—C2—C1 | 118.49 (12) | C7—C8—H8 | 119.7 |
N1—C2—C7 | 117.41 (12) | C10—C9—C8 | 120.14 (18) |
C1—C2—C7 | 124.10 (12) | C10—C9—H9 | 119.9 |
N2—C3—N1 | 129.43 (13) | C8—C9—H9 | 119.9 |
N2—C3—H3 | 115.3 | C9—C10—C11 | 120.32 (17) |
N1—C3—H3 | 115.3 | C9—C10—H10 | 119.8 |
N2—C4—N3 | 125.86 (12) | C11—C10—H10 | 119.8 |
N2—C4—C1 | 126.24 (12) | C10—C11—C12 | 120.20 (17) |
N3—C4—C1 | 107.88 (11) | C10—C11—H11 | 119.9 |
N4—C5—C1 | 111.26 (12) | C12—C11—H11 | 119.9 |
N4—C5—H5 | 124.4 | C11—C12—C7 | 120.24 (16) |
C1—C5—H5 | 124.4 | C11—C12—H12 | 119.9 |
N3—C6—H6A | 109.5 | C7—C12—H12 | 119.9 |
N3—C6—H6B | 109.5 | ||
C4—N3—N4—C5 | −0.93 (16) | C2—C1—C4—N3 | −179.22 (11) |
C6—N3—N4—C5 | −176.30 (14) | C5—C1—C4—N3 | −1.27 (13) |
C3—N1—C2—C1 | −1.3 (2) | N3—N4—C5—C1 | 0.09 (16) |
C3—N1—C2—C7 | 179.06 (13) | C4—C1—C5—N4 | 0.73 (15) |
C4—C1—C2—N1 | 1.71 (18) | C2—C1—C5—N4 | 177.88 (15) |
C5—C1—C2—N1 | −175.20 (15) | N1—C2—C7—C8 | −147.81 (14) |
C4—C1—C2—C7 | −178.72 (11) | C1—C2—C7—C8 | 32.62 (19) |
C5—C1—C2—C7 | 4.4 (2) | N1—C2—C7—C12 | 31.51 (18) |
C4—N2—C3—N1 | 1.1 (2) | C1—C2—C7—C12 | −148.06 (13) |
C2—N1—C3—N2 | −0.2 (3) | C12—C7—C8—C9 | 0.2 (2) |
C3—N2—C4—N3 | 177.61 (13) | C2—C7—C8—C9 | 179.54 (14) |
C3—N2—C4—C1 | −0.6 (2) | C7—C8—C9—C10 | 0.8 (3) |
N4—N3—C4—N2 | −177.11 (13) | C8—C9—C10—C11 | −1.1 (3) |
C6—N3—C4—N2 | −2.1 (2) | C9—C10—C11—C12 | 0.4 (3) |
N4—N3—C4—C1 | 1.41 (14) | C10—C11—C12—C7 | 0.7 (3) |
C6—N3—C4—C1 | 176.39 (14) | C8—C7—C12—C11 | −1.0 (2) |
C2—C1—C4—N2 | −0.72 (19) | C2—C7—C12—C11 | 179.70 (14) |
C5—C1—C4—N2 | 177.24 (13) |
Acknowledgements
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.
References
Alsubari, A., Ramli, Y., Essassi, E. M. & Zouihri, H. (2011). Acta Cryst. E67, o1926. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Intori, C., Fallacara, A. L., Radi, M., Zamperini, C., Dreassi, E., Crespan, E., Maga, G., Schenone, S., Musumeci, F. & Brullo, C. (2015). J. Med. Chem. 58, 347–361. Web of Science PubMed Google Scholar
Rostamizadeh, S., Nojavan, M., Aryan, R., Sadeghian, H. & Davoodnejad, M. (2013). Chin. Chem. Lett. 24, 629–632. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Trivedi, A. R., Dholariya, B. H., Vakhariya, C. P., Dodiya, D. K., Ram, H. K., Kataria, V. B., Siddiqui, A. B. & Shah, V. H. (2012). Med. Chem. Res. 21, 1887–1891. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.