organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Piperazine-1,4-diium bis­­(4-nitro­benzoate) dihydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Presidency College, Chennai 600 005, Tamil Nadu, India, and bDepartment of Physics & Nano Technology, SRM University, SRM Nagar, Kattankulathur, Kancheepuram Dist, Chennai 603 203, Tamil Nadu, India
*Correspondence e-mail: ppkpresidency@gmail.com, phdguna@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 4 September 2017; accepted 10 September 2017; online 12 September 2017)

The asymmetric unit of the title mol­ecular salt, C4H12N22+·2C7H4NO4 ·2H2O, is composed of half a protonated piperazine dication, located about an inversion center, a benzoate anion and a water mol­ecule of crystallization. In the crystal, the various units are linked by N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds, forming a supra­molecular three-dimensional framework.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Piperazine derivatives are found in a number of biologically active compounds, including several marketed drugs, and the piperazine ring is considered to be a privileged structure in drug discovery (Suzuki et al., 1997[Suzuki, T., Fukazawa, N., San-nohe, K., Sato, W., Yano, O. & Tsuruo, T. (1997). J. Med. Chem. 40, 2047-2052.]). Piperazines are frequently used as building blocks for pharmaceuticals (Kaloustian et al., 1976[Kaloustian, M. K., Dennis, N., Mager, S., Evans, S. A., Alcudia, F. & Eliel, E. L. (1976). J. Am. Chem. Soc. 98, 956-965.]), and exhibit a substantial degree of selective RNA binding (Dega-Szafran et al., 2002[Dega-Szafran, Z., Jaskólski, M., Kurzyca, I., Barczyński, P. & Szafran, M. (2002). J. Mol. Struct. 614, 23-32.]).

The asymmetric unit of the title mol­ecular salt comprises half a protonated piperazine dication, a benzoate anion and a water mol­ecule of crystallization (Fig. 1[link]). The piperazine dication is located about an inversion center and the ring has a chair conformation. The geometric parameters agree well with those reported for a similar compound, piperazine-1,4-diium bis­(4-amino­benzene­sulfonate) (Kumar et al., 2015[Kumar, K. S., Ranjith, S., Sudhakar, S., Srinivasan, P. & Ponnuswamy, M. N. (2015). Acta Cryst. E71, o1084-o1085.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling and 30% probability displacement ellipsoids. The unlabelled atoms of the piperazine-1,4-diium dication are related to the labelled atoms by inversion symmetry (symmetry operation: −x + 1, −y + 1, −z + 2).

In the crystal, the various units are linked by N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds, forming a supra­molecular three-dimensional framework (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3 0.94 (2) 1.82 (2) 2.747 (2) 169 (2)
N2—H2B⋯O5i 0.92 (2) 1.85 (2) 2.751 (2) 162 (2)
O5—H5A⋯O4 0.89 (2) 1.85 (2) 2.733 (2) 168 (2)
O5—H5B⋯O3ii 0.91 (2) 1.88 (2) 2.761 (2) 164 (2)
C8—H8A⋯O2iii 0.97 2.51 3.326 (3) 141
C9—H9B⋯O5 0.97 2.52 3.312 (2) 139
Symmetry codes: (i) -x+2, -y+2, -z+2; (ii) x+1, y, z; (iii) -x, -y+1, -z+1.
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. Hydrogen bonds (Table 1[link]) are shown as dashed lines, and H atoms not involved in these inter­actions have been omitted for clarity.

Synthesis and crystallization

4.3 g (0.057 mol) of piperazine and 8.4 g (0.029 mol) of 4-nitro­benzoic acid were dissolved in 50 ml of double-distilled water and stirred at room temperature for 5 h to obtain an homogeneous solution. The solution was filtered and allowed to evaporate in a dust-free atmosphere. After a few days, yellow block-like crystals were obtained (yield 94%, m.p. 370 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula 0.5C4H12N22+·C7H4NO4·H2O
Mr 228.21
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 6.5793 (5), 6.8094 (5), 12.3767 (9)
α, β, γ (°) 92.085 (4), 99.427 (3), 109.301 (4)
V3) 513.81 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.20 × 0.20 × 0.15
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.976, 0.982
No. of measured, independent and observed [I > 2σ(I)] reflections 10658, 2019, 1369
Rint 0.043
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.106, 0.97
No. of reflections 2019
No. of parameters 162
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.17
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Piperazine-1,4-diium bis(4-nitrobenzoate) dihydrate top
Crystal data top
0.5C4H12N22+·C7H4NO4·H2OZ = 2
Mr = 228.21F(000) = 240
Triclinic, P1Dx = 1.475 Mg m3
a = 6.5793 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.8094 (5) ÅCell parameters from 2927 reflections
c = 12.3767 (9) Åθ = 6.2–30.1°
α = 92.085 (4)°µ = 0.12 mm1
β = 99.427 (3)°T = 296 K
γ = 109.301 (4)°Block, yellow
V = 513.81 (7) Å30.20 × 0.20 × 0.15 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2019 independent reflections
Radiation source: fine-focus sealed tube1369 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 0 pixels mm-1θmax = 26.0°, θmin = 3.2°
ω and φ scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 88
Tmin = 0.976, Tmax = 0.982l = 1515
10658 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.045P)2 + 0.1764P]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
2019 reflectionsΔρmax = 0.16 e Å3
162 parametersΔρmin = 0.17 e Å3
6 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.069 (7)
Special details top

Refinement. The NH2 and water H atoms were located in difference-Fourier maps and refined with distance restraints: N—H = O—H = 0.90 (2) Å and H···H = 1.48 (2) Å. The C-bound H atoms were fixed geometrically and allowed to ride on their parent atoms: C—H = 0.93 - 0.97 Å with Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3881 (3)0.7745 (2)0.62147 (14)0.0307 (4)
C20.1832 (3)0.7949 (3)0.60281 (15)0.0380 (5)
H20.12250.82210.66200.046*
C30.0685 (3)0.7751 (3)0.49680 (15)0.0397 (5)
H30.06880.78980.48400.048*
C40.1595 (3)0.7335 (3)0.41069 (14)0.0344 (4)
C50.3615 (3)0.7113 (3)0.42579 (15)0.0413 (5)
H50.42040.68240.36630.050*
C60.4745 (3)0.7332 (3)0.53230 (15)0.0392 (5)
H60.61250.71990.54440.047*
C70.5200 (3)0.7940 (3)0.73631 (15)0.0380 (5)
C80.5409 (3)0.3454 (3)0.93267 (14)0.0353 (4)
H8A0.48910.37390.85900.042*
H8B0.59430.22940.92650.042*
C90.7243 (3)0.5354 (3)0.99088 (15)0.0354 (4)
H9A0.78430.50321.06220.042*
H9B0.84050.57520.94830.042*
N10.0338 (3)0.7086 (3)0.29788 (13)0.0487 (5)
N20.6427 (2)0.7116 (2)1.00540 (12)0.0334 (4)
O10.1169 (3)0.6756 (3)0.22173 (13)0.0826 (6)
O20.1475 (3)0.7239 (3)0.28617 (13)0.0698 (5)
O30.4310 (2)0.8115 (2)0.81642 (10)0.0483 (4)
O40.7073 (2)0.7872 (3)0.74364 (12)0.0700 (5)
O51.0952 (2)0.9029 (2)0.88996 (11)0.0438 (4)
H2A0.588 (3)0.752 (3)0.9379 (12)0.052 (6)*
H2B0.753 (3)0.828 (3)1.0429 (14)0.055 (6)*
H5B1.187 (3)0.863 (4)0.8539 (17)0.071 (8)*
H5A0.971 (3)0.884 (4)0.8424 (17)0.082 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0281 (9)0.0282 (9)0.0337 (10)0.0086 (7)0.0028 (7)0.0026 (7)
C20.0356 (10)0.0517 (12)0.0316 (10)0.0195 (9)0.0099 (8)0.0041 (8)
C30.0273 (10)0.0534 (12)0.0394 (11)0.0165 (9)0.0026 (8)0.0067 (9)
C40.0359 (10)0.0337 (10)0.0284 (10)0.0080 (8)0.0003 (8)0.0027 (7)
C50.0449 (12)0.0483 (11)0.0352 (11)0.0200 (9)0.0121 (9)0.0002 (8)
C60.0304 (10)0.0464 (11)0.0448 (12)0.0188 (9)0.0063 (8)0.0031 (9)
C70.0368 (11)0.0379 (10)0.0374 (11)0.0154 (9)0.0028 (8)0.0002 (8)
C80.0370 (10)0.0389 (10)0.0308 (10)0.0148 (8)0.0053 (8)0.0005 (8)
C90.0282 (9)0.0434 (10)0.0352 (10)0.0138 (8)0.0042 (7)0.0044 (8)
N10.0537 (11)0.0490 (10)0.0354 (10)0.0133 (9)0.0041 (8)0.0025 (8)
N20.0303 (8)0.0332 (8)0.0308 (9)0.0059 (7)0.0001 (7)0.0011 (7)
O10.0929 (14)0.1240 (16)0.0322 (9)0.0438 (12)0.0045 (9)0.0088 (9)
O20.0550 (10)0.0952 (13)0.0524 (10)0.0289 (9)0.0153 (8)0.0047 (9)
O30.0507 (9)0.0685 (10)0.0309 (7)0.0293 (7)0.0029 (6)0.0072 (6)
O40.0425 (9)0.1151 (14)0.0537 (10)0.0404 (9)0.0115 (7)0.0104 (9)
O50.0361 (8)0.0481 (8)0.0389 (8)0.0074 (7)0.0006 (6)0.0047 (6)
Geometric parameters (Å, º) top
C1—C61.382 (2)C8—N2i1.487 (2)
C1—C21.384 (2)C8—C91.505 (3)
C1—C71.516 (2)C8—H8A0.9700
C2—C31.380 (3)C8—H8B0.9700
C2—H20.9300C9—N21.484 (2)
C3—C41.369 (2)C9—H9A0.9700
C3—H30.9300C9—H9B0.9700
C4—C51.370 (3)N1—O11.213 (2)
C4—N11.474 (2)N1—O21.217 (2)
C5—C61.380 (3)N2—C8i1.487 (2)
C5—H50.9300N2—H2A0.940 (14)
C6—H60.9300N2—H2B0.922 (15)
C7—O41.237 (2)O5—H5B0.908 (15)
C7—O31.252 (2)O5—H5A0.892 (16)
C6—C1—C2118.80 (16)N2i—C8—H8A109.6
C6—C1—C7118.92 (15)C9—C8—H8A109.6
C2—C1—C7122.28 (16)N2i—C8—H8B109.6
C3—C2—C1120.31 (17)C9—C8—H8B109.6
C3—C2—H2119.8H8A—C8—H8B108.1
C1—C2—H2119.8N2—C9—C8110.25 (14)
C4—C3—C2119.09 (17)N2—C9—H9A109.6
C4—C3—H3120.5C8—C9—H9A109.6
C2—C3—H3120.5N2—C9—H9B109.6
C3—C4—C5122.35 (16)C8—C9—H9B109.6
C3—C4—N1118.67 (16)H9A—C9—H9B108.1
C5—C4—N1118.97 (17)O1—N1—O2123.50 (18)
C4—C5—C6117.74 (17)O1—N1—C4118.42 (18)
C4—C5—H5121.1O2—N1—C4118.08 (18)
C6—C5—H5121.1C9—N2—C8i111.36 (14)
C5—C6—C1121.70 (17)C9—N2—H2A112.4 (11)
C5—C6—H6119.1C8i—N2—H2A106.2 (12)
C1—C6—H6119.1C9—N2—H2B111.1 (13)
O4—C7—O3124.85 (17)C8i—N2—H2B108.3 (12)
O4—C7—C1117.09 (17)H2A—N2—H2B107.3 (15)
O3—C7—C1118.05 (16)H5B—O5—H5A108.0 (17)
N2i—C8—C9110.14 (14)
C6—C1—C2—C30.3 (3)C6—C1—C7—O45.3 (3)
C7—C1—C2—C3179.75 (17)C2—C1—C7—O4175.23 (18)
C1—C2—C3—C40.5 (3)C6—C1—C7—O3173.33 (17)
C2—C3—C4—C50.2 (3)C2—C1—C7—O36.2 (3)
C2—C3—C4—N1178.82 (17)N2i—C8—C9—N256.7 (2)
C3—C4—C5—C60.3 (3)C3—C4—N1—O1178.66 (19)
N1—C4—C5—C6179.32 (17)C5—C4—N1—O12.3 (3)
C4—C5—C6—C10.5 (3)C3—C4—N1—O20.8 (3)
C2—C1—C6—C50.3 (3)C5—C4—N1—O2178.29 (18)
C7—C1—C6—C5179.25 (17)C8—C9—N2—C8i57.4 (2)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.94 (2)1.82 (2)2.747 (2)169 (2)
N2—H2B···O5ii0.92 (2)1.85 (2)2.751 (2)162 (2)
O5—H5A···O40.89 (2)1.85 (2)2.733 (2)168 (2)
O5—H5B···O3iii0.91 (2)1.88 (2)2.761 (2)164 (2)
C8—H8A···O2iv0.972.513.326 (3)141
C9—H9B···O50.972.523.312 (2)139
Symmetry codes: (ii) x+2, y+2, z+2; (iii) x+1, y, z; (iv) x, y+1, z+1.
 

Acknowledgements

The authors acknowledge the SAIF, IIT Madras, Chennai, for the data collection.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDega-Szafran, Z., Jaskólski, M., Kurzyca, I., Barczyński, P. & Szafran, M. (2002). J. Mol. Struct. 614, 23–32.  CAS Google Scholar
First citationKaloustian, M. K., Dennis, N., Mager, S., Evans, S. A., Alcudia, F. & Eliel, E. L. (1976). J. Am. Chem. Soc. 98, 956–965.  CrossRef CAS Web of Science Google Scholar
First citationKumar, K. S., Ranjith, S., Sudhakar, S., Srinivasan, P. & Ponnuswamy, M. N. (2015). Acta Cryst. E71, o1084–o1085.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citation[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.] Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuzuki, T., Fukazawa, N., San-nohe, K., Sato, W., Yano, O. & Tsuruo, T. (1997). J. Med. Chem. 40, 2047–2052.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]