organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-[((E)-{2-[(E)-(2-Hy­dr­oxy­benzyl­­idene)amino]­benz­yl}imino)­meth­yl]phenol

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, bDepartment of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 8 August 2017; accepted 22 August 2017; online 8 September 2017)

In the title hy­droxy­phenyl-substituted salophene compound, C21H18N2O2, there are two intra­molecular O—H⋯N hydrogen bonds forming S(6) ring motifs. The phenol rings are inclined to one another by 65.9 (3)°, and by 0.0 (2) and 65.9 (2)°, respectively, to the central benzene ring. In the crystal, mol­ecules are linked by a weak C—H⋯O contact forming chains along [010].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title hy­droxy­phenyl-substituted salophene compound was synthesized using Schiff base reactions, which play an important role in coordination chemistry (Ben Guzzi & El Alagi, 2013[Ben Guzzi, S. A. & El Alagi, H. S. (2013). J. Chem. Pharm. Res. 5, 10-14.]).

The mol­ecular structure of the title compound is shown in Fig. 1[link]. In the mol­ecule, there are two intra­molecular O—H⋯N hydrogen bonds forming S(6) ring motifs (Table 1[link] and Fig. 1[link]). The phenol rings (C1–C6 and C16–C21) are inclined to one another by 65.9 (3)°. The C1–C6 phenol ring lies in the plane of the central benzene ring (C8–C13), with a dihedral angle of 0.0 (2)°, while the C16–C21 phenol ring is inclined to the central benzene ring (C8–C13) by 65.9 (2)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.96 (6) 1.75 (6) 2.581 (5) 142 (5)
O2—H2⋯N2 0.92 (5) 1.77 (5) 2.589 (5) 147 (5)
C7—H7⋯O2i 0.93 2.63 3.526 (6) 161
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at the 30% probability level. The intra­molecular O—H⋯N hydrogen bonds are shown as dashed lines (see Table 1[link]).

In the crystal, mol­ecules are linked by weak C—H⋯O contacts forming chains propagating along the b-axis direction (Table 1[link] and Fig. 2[link]).

[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

Synthesis and crystallization

2-Amino­benzyl­amine (2 mmol) in methanol (50 ml) was added dropwise, with continuous stirring, to a warm methano­lic solution of the appropriate salicyl­aldehyde (4 mmol), and the mixture was refluxed for 3 h. The yellow solid obtained was filtered off, washed with cold Et2O (10 ml) and dried in a vacuum. After a few minutes, yellow block-like crystals appeared, which were isolated via filtration and used without further purification.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C21H18N2O2
Mr 330.37
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 4.8654 (14), 17.652 (6), 19.927 (6)
β (°) 91.727 (8)
V3) 1710.6 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.35 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker SMART APEXII area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.971, 0.992
No. of measured, independent and observed [I > 2σ(I)] reflections 17523, 2177, 1427
Rint 0.069
θmax (°) 22.3
(sin θ/λ)max−1) 0.535
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.150, 1.16
No. of reflections 2177
No. of parameters 234
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.22
Computer programs: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2016 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS2016 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015) and PLATON (Spek, 2009).

2-[((E)-{2-[(E)-(2-Hydroxybenzylidene)amino]benzyl}imino)methyl]phenol top
Crystal data top
C21H18N2O2F(000) = 696
Mr = 330.37Dx = 1.283 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 4.8654 (14) ÅCell parameters from 1427 reflections
b = 17.652 (6) Åθ = 1.5–22.3°
c = 19.927 (6) ŵ = 0.08 mm1
β = 91.727 (8)°T = 296 K
V = 1710.6 (9) Å3Block, yellow
Z = 40.35 × 0.15 × 0.10 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2177 independent reflections
Radiation source: fine-focus sealed tube1427 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
ω and φ scansθmax = 22.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 55
Tmin = 0.971, Tmax = 0.992k = 1818
17523 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: mixed
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0136P)2 + 3.0321P]
where P = (Fo2 + 2Fc2)/3
2177 reflections(Δ/σ)max < 0.001
234 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0311 (9)0.4754 (2)0.09631 (18)0.0762 (11)
H10.112 (12)0.455 (3)0.126 (3)0.11 (2)*
O20.7654 (10)0.1330 (2)0.12620 (19)0.0856 (13)
H20.656 (11)0.175 (3)0.131 (3)0.09 (2)*
N10.2561 (7)0.4637 (2)0.20684 (17)0.0440 (9)
N20.6237 (8)0.2743 (2)0.12028 (18)0.0491 (10)
C10.0757 (9)0.5601 (2)0.1879 (2)0.0489 (12)
C20.1524 (10)0.5363 (3)0.1230 (3)0.0572 (13)
C30.3537 (11)0.5745 (3)0.0867 (3)0.0766 (16)
H30.4028750.5584470.0435050.092*
C40.4815 (12)0.6357 (4)0.1136 (4)0.088 (2)
H40.6188230.6607370.0888100.105*
C50.4099 (13)0.6606 (3)0.1764 (4)0.090 (2)
H50.4958650.7027950.1942150.108*
C60.2102 (11)0.6230 (3)0.2133 (3)0.0696 (15)
H60.1634830.6400040.2563300.084*
C70.1301 (9)0.5220 (3)0.2282 (2)0.0476 (12)
H70.1731520.5402290.2709900.057*
C80.4603 (8)0.4252 (2)0.2448 (2)0.0398 (11)
C90.5489 (10)0.4456 (3)0.3096 (2)0.0551 (13)
H90.4712460.4872820.3303690.066*
C100.7494 (10)0.4046 (3)0.3429 (2)0.0575 (13)
H100.8041400.4184560.3863210.069*
C110.8712 (9)0.3433 (3)0.3133 (2)0.0544 (13)
H111.0083380.3159120.3359800.065*
C120.7847 (9)0.3234 (3)0.2490 (2)0.0503 (12)
H120.8664550.2821910.2284470.060*
C130.5812 (8)0.3627 (2)0.2145 (2)0.0392 (11)
C140.4834 (9)0.3410 (3)0.1441 (2)0.0529 (13)
H140.2870880.3314580.1437870.063*
H130.5158400.3829580.1138270.063*
C150.7827 (9)0.2816 (2)0.0713 (2)0.0468 (12)
H150.7981180.3288490.0509820.056*
C160.9399 (9)0.2192 (2)0.0461 (2)0.0425 (11)
C171.1157 (10)0.2311 (3)0.0068 (2)0.0569 (13)
H171.1251230.2789770.0260860.068*
C181.2748 (11)0.1740 (4)0.0312 (3)0.0718 (16)
H181.3906680.1828230.0666420.086*
C191.2609 (13)0.1040 (4)0.0028 (3)0.0872 (19)
H191.3688300.0650280.0190710.105*
C201.0912 (14)0.0900 (3)0.0493 (3)0.0870 (19)
H201.0840640.0418600.0680860.104*
C210.9311 (11)0.1473 (3)0.0738 (2)0.0612 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.100 (3)0.074 (3)0.053 (2)0.018 (2)0.012 (2)0.005 (2)
O20.133 (4)0.061 (3)0.064 (3)0.012 (3)0.013 (3)0.016 (2)
N10.050 (2)0.043 (2)0.039 (2)0.0002 (19)0.0056 (18)0.0015 (18)
N20.061 (3)0.049 (2)0.037 (2)0.004 (2)0.001 (2)0.0075 (18)
C10.044 (3)0.044 (3)0.059 (3)0.000 (2)0.010 (2)0.005 (2)
C20.059 (3)0.052 (3)0.061 (4)0.002 (3)0.000 (3)0.013 (3)
C30.079 (4)0.076 (4)0.074 (4)0.004 (3)0.010 (3)0.022 (3)
C40.067 (4)0.078 (5)0.119 (6)0.010 (4)0.003 (4)0.044 (4)
C50.079 (5)0.064 (4)0.127 (6)0.019 (3)0.023 (4)0.007 (4)
C60.068 (4)0.062 (4)0.079 (4)0.009 (3)0.009 (3)0.000 (3)
C70.053 (3)0.049 (3)0.041 (3)0.006 (2)0.005 (2)0.004 (2)
C80.043 (3)0.044 (3)0.032 (3)0.006 (2)0.003 (2)0.001 (2)
C90.067 (3)0.055 (3)0.044 (3)0.001 (3)0.001 (3)0.004 (2)
C100.074 (4)0.066 (3)0.032 (3)0.020 (3)0.003 (3)0.002 (3)
C110.056 (3)0.064 (3)0.042 (3)0.004 (3)0.013 (2)0.013 (3)
C120.053 (3)0.051 (3)0.047 (3)0.001 (2)0.002 (2)0.001 (2)
C130.041 (3)0.043 (3)0.034 (2)0.005 (2)0.002 (2)0.002 (2)
C140.053 (3)0.063 (3)0.042 (3)0.004 (2)0.004 (2)0.010 (2)
C150.056 (3)0.046 (3)0.037 (3)0.002 (2)0.012 (2)0.001 (2)
C160.051 (3)0.045 (3)0.030 (3)0.002 (2)0.009 (2)0.008 (2)
C170.060 (3)0.064 (3)0.046 (3)0.005 (3)0.003 (3)0.005 (3)
C180.069 (4)0.099 (5)0.047 (3)0.017 (4)0.002 (3)0.011 (3)
C190.098 (5)0.094 (5)0.069 (4)0.040 (4)0.009 (4)0.025 (4)
C200.131 (6)0.058 (4)0.071 (4)0.038 (4)0.012 (4)0.005 (3)
C210.085 (4)0.055 (3)0.043 (3)0.010 (3)0.008 (3)0.001 (3)
Geometric parameters (Å, º) top
O1—C21.344 (6)C9—H90.9300
O1—H10.96 (6)C10—C111.375 (6)
O2—C211.362 (6)C10—H100.9300
O2—H20.92 (5)C11—C121.382 (6)
N1—C71.278 (5)C11—H110.9300
N1—C81.405 (5)C12—C131.376 (6)
N2—C151.271 (5)C12—H120.9300
N2—C141.448 (5)C13—C141.518 (5)
C1—C61.393 (6)C14—H140.9700
C1—C21.398 (6)C14—H130.9700
C1—C71.432 (6)C15—C161.440 (6)
C2—C31.377 (7)C15—H150.9300
C3—C41.365 (8)C16—C211.385 (6)
C3—H30.9300C16—C171.394 (6)
C4—C51.362 (8)C17—C181.369 (7)
C4—H40.9300C17—H170.9300
C5—C61.371 (8)C18—C191.361 (8)
C5—H50.9300C18—H180.9300
C6—H60.9300C19—C201.368 (8)
C7—H70.9300C19—H190.9300
C8—C131.397 (6)C20—C211.375 (7)
C8—C91.397 (6)C20—H200.9300
C9—C101.370 (6)
C2—O1—H1112 (3)C10—C11—H11120.8
C21—O2—H2107 (3)C12—C11—H11120.8
C7—N1—C8123.3 (4)C13—C12—C11122.0 (4)
C15—N2—C14118.2 (4)C13—C12—H12119.0
C6—C1—C2117.4 (5)C11—C12—H12119.0
C6—C1—C7119.9 (5)C12—C13—C8119.3 (4)
C2—C1—C7122.7 (4)C12—C13—C14122.4 (4)
O1—C2—C3119.8 (5)C8—C13—C14118.3 (4)
O1—C2—C1119.9 (4)N2—C14—C13111.7 (4)
C3—C2—C1120.3 (5)N2—C14—H14109.3
C4—C3—C2120.4 (6)C13—C14—H14109.3
C4—C3—H3119.8N2—C14—H13109.3
C2—C3—H3119.8C13—C14—H13109.3
C5—C4—C3120.6 (6)H14—C14—H13107.9
C5—C4—H4119.7N2—C15—C16122.1 (4)
C3—C4—H4119.7N2—C15—H15118.9
C4—C5—C6119.6 (6)C16—C15—H15118.9
C4—C5—H5120.2C21—C16—C17117.8 (4)
C6—C5—H5120.2C21—C16—C15122.7 (4)
C5—C6—C1121.6 (6)C17—C16—C15119.5 (4)
C5—C6—H6119.2C18—C17—C16121.6 (5)
C1—C6—H6119.2C18—C17—H17119.2
N1—C7—C1121.7 (4)C16—C17—H17119.2
N1—C7—H7119.1C19—C18—C17119.0 (5)
C1—C7—H7119.1C19—C18—H18120.5
C13—C8—C9118.7 (4)C17—C18—H18120.5
C13—C8—N1116.7 (4)C18—C19—C20121.2 (5)
C9—C8—N1124.6 (4)C18—C19—H19119.4
C10—C9—C8120.5 (4)C20—C19—H19119.4
C10—C9—H9119.7C19—C20—C21119.8 (5)
C8—C9—H9119.7C19—C20—H20120.1
C9—C10—C11121.2 (4)C21—C20—H20120.1
C9—C10—H10119.4O2—C21—C20119.4 (5)
C11—C10—H10119.4O2—C21—C16120.1 (4)
C10—C11—C12118.3 (4)C20—C21—C16120.5 (5)
C6—C1—C2—O1179.3 (4)C11—C12—C13—C14179.6 (4)
C7—C1—C2—O10.0 (7)C9—C8—C13—C120.5 (6)
C6—C1—C2—C30.0 (7)N1—C8—C13—C12179.2 (4)
C7—C1—C2—C3179.3 (4)C9—C8—C13—C14180.0 (4)
O1—C2—C3—C4179.0 (5)N1—C8—C13—C140.3 (5)
C1—C2—C3—C40.3 (8)C15—N2—C14—C13113.7 (4)
C2—C3—C4—C50.8 (9)C12—C13—C14—N21.7 (6)
C3—C4—C5—C60.9 (9)C8—C13—C14—N2178.7 (4)
C4—C5—C6—C10.6 (9)C14—N2—C15—C16177.3 (4)
C2—C1—C6—C50.1 (7)N2—C15—C16—C210.7 (7)
C7—C1—C6—C5179.5 (5)N2—C15—C16—C17178.6 (4)
C8—N1—C7—C1179.6 (4)C21—C16—C17—C180.2 (7)
C6—C1—C7—N1179.3 (4)C15—C16—C17—C18178.2 (4)
C2—C1—C7—N10.0 (7)C16—C17—C18—C190.2 (8)
C7—N1—C8—C13179.5 (4)C17—C18—C19—C200.1 (9)
C7—N1—C8—C90.2 (6)C18—C19—C20—C210.1 (9)
C13—C8—C9—C100.4 (6)C19—C20—C21—O2179.2 (5)
N1—C8—C9—C10179.9 (4)C19—C20—C21—C160.1 (8)
C8—C9—C10—C110.9 (7)C17—C16—C21—O2179.1 (4)
C9—C10—C11—C120.6 (7)C15—C16—C21—O21.2 (7)
C10—C11—C12—C130.4 (7)C17—C16—C21—C200.1 (7)
C11—C12—C13—C80.9 (6)C15—C16—C21—C20178.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.96 (6)1.75 (6)2.581 (5)142 (5)
O2—H2···N20.92 (5)1.77 (5)2.589 (5)147 (5)
C7—H7···O2i0.932.633.526 (6)161
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank TBI consultancy, University of Madras, India, for the data collection.

References

First citationBen Guzzi, S. A. & El Alagi, H. S. (2013). J. Chem. Pharm. Res. 5, 10–14.  CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]